

Sujet De Stage de Master

Sujet : Algorithme d'intelligence artificielle pour fiabiliser un système embarqué

Les Architectures Électroniques conçues pour l'exécution d'algorithmes d'intelligence artificielle ont été imaginées uniquement avec l'objectif de traiter le plus rapidement possible un grand nombre d'opérations. C'était le cas dans les années 1990 avec des ordinateurs neuronaux tel que Cnaps d'Adaptive Solutions [1], et cela reste majoritairement le cas aujourd'hui, avec des architectures comme DaVinci de Huawei [2], FSD de Tesla [3], Versal de Xilinx [4] ou ML d'Arm [5]. Ces architectures ne sont pas réellement adaptées à l'Internet des objets, où les capacités de calcul et de cognition sont distribuées dans des millions d'objets ayant des capacités plus ou moins grandes de traiter localement les données. Ces objets, qui sont des systèmes embarqués, doivent aussi satisfaire d'autres contraintes que la puissance de traitement. Parmi celles-ci, il y a la contrainte énergétique, avec des consommations de courant de l'ordre du mA, voir du μ A [6]. Une autre contrainte qui est apparue, et qui est incontournable pour nombre d'applications, est celle liée à la confiance. La confiance est définie comme le crédit accordé à quelqu'un ou à quelque chose [7]. Dans le document de la commission européenne « Excellence et confiance dans le domaine de l'intelligence artificielle » [8], des indicateurs de la confiance sont proposés :

- la transparence et la traçabilité et cela sous contrôle humain ;
- la conformité à des normes ;
- la capacité à avoir des traitements non entachés de biais ;

Dans le stage proposé, l'étudiant proposera et étudiera des algorithmes embarquables d'intelligence artificielle permettant de fiabiliser un système. Dans ce cas les contraintes du système pourront être critiques. Des contraintes évidentes s'expriment en termes d'énergie disponible pour le maintien d'un niveau de service pour l'Internet des objets et de mémoire qui déterminent non seulement la longueur et le degré de compression requis des traces de fonctionnement souvent nécessaires pour expliquer une décision prise par un système. La recherche pourra faire émerger d'autres contraintes moins évidentes.

Bibliographie:

- [1] D. Hammerstrom, "A VLSI architecture for high-performance, low-cost, on-chip learning," in 1990 IJCNN International Joint Conference on Neural Networks, 1990, pp. 537–544.
- [2] H. Liao, J. Tu, J. Xia, and X. Zhou, "DaVinci: A Scalable Architecture for Neural Network Computing," in 2019 IEEE Hot Chips 31 Symposium (HCS), 2019, pp. 1–44.
- [3] E. Talpes *et al.*, "Compute Solution for Tesla's Full Self-Driving Computer," *IEEE Micro*, vol. 40, no. 2, pp. 25–35, 2020.
- [4] S. Ahmad *et al.*, "Xilinx First 7nm Device: Versal Al Core (VC1902)," in *2019 IEEE Hot Chips 31 Symposium (HCS)*, 2019, pp. 1–28.
- [5] I. Bratt, "Arm's First-Generation Machine Learning Processor," 2018.
- [6] O. Chuquimia, B. Granado, A. Pinna, and X. Dray, "A low power and real-time architecture for Hough Transform processing integration in a full HD-Wireless Capsule Endoscopy," *IEEE Trans. Biomed. Circuits Syst.*, 2020.
- [7] Centre National de Ressources Textuelles et Lexicales, "Confiance." https://www.cnrtl.fr/definition/confiance.
- [8] Commission Européenne, "Excellence et confiance dans le domaine de l'intelligence artificielle.," Union Européenne, Feb. 2020.

Sujet De Stage de Master

[9] F. Ghaffari, O. Romain, and B. Granado, "Mitigation Transient Faults by Backward Error Recovery in SRAM-FPGA," in *Radiation Effects on Integrated Circuits and Systems for Space Applications*, Springer, 2019, pp. 249–276.

Lieu et Moyens:

Le stage se déroulera dans au sein des département d'ingénierie informatique de Polytechnique Montréal et du laboratoire LIP6 de Sorbonne Université. L'étudiant recruté effectuera un séjour dans les deux départements, il sera affecté principalement dans son établissement de rattachement et fera un séjour d'un mois et demi dans l'établissement partenaire. Les outils utilisés seront des PC sous Linux, les outils Gcc et Python pour le développement d'algorithme et les outils Mentor Graphics, Synopsis, Intel et Xilinx pour la conception FPGA.

Encadrement du Stage:

A Polytechnique:

Yvon Savaria et Pierre Langlois

Courriels:

yvon.savaria@polytmtl.ca , pierre.langlois@polytmtl.ca

A Sorbonne Université:

Julien Denoulet et Bertrand Granado

Courriels:

julien.denoulet@sorbonne-universite.fr , bertrand.granado@sorbonne-universite.fr

Adresse:

A Polytechnique:

Département d'ingénierie Electrique – Département d'ingénierie Informatique Polytechnique Montréal - 2900, boul. Édouard-Montpetit Campus de l'Université de Montréal 2500, chemin de Polytechnique Montréal (Québec) - H3T 1J4 – Canada

A Sorbonne Universite

Laboratoire LIP6 – équipe Syel Faculté des Sciences et Ingénierie Tour 25 – Couloir 24/25 – 5^{ième} étage BC 167 – 4 place jussieu 75252 Paris Cedex 05 France