
A Lower Bound for Dynamic Scheduling of Data

Parallel Programs

Fabricio Alves Barbosa da Silva2, Luis Miguel Campos1, Isaac D. Scherson1;2

1 Information and Comp. Science, University of California, Irvine, CA 92697 U.S.A.

fisaac,lcamposg@ics.uci.edu? ? ?
2 Universit�e Pierre et Marie Curie, Laboratoire ASIM, LIP6, Paris, France.y

fabricio.silva@asim.lip6.frz

Abstract. Instruction Balanced Time Slicing (IBTS) allows multiple

parallel jobs to be scheduled in a manner akin to the well-known gang

scheduling scheme in parallel computers. IBTS however allows for time

slices to change dynamically and, under dynamically changing workload

conditions is a good non-clairvoyant scheduling technique when the par-

allel computer is time sliced one job at a time. IBTS-parallel is pro-

posed here as a dynamic scheduling paradigm which improves on IBTS

by allowing also dynamically changing space sharing of the computer's

processors. IBTS-parallel is also non-clairvoyant and it is characterized

under the competitive ratio metric. A lower bound on its performance is

also derived.

1 Introduction

A solution to the dynamic parallel job scheduling problem is proposed together
with its complexity analysis. The problem is one of de�ning how to share, in an
optimal manner, a parallel machine among several parallel jobs. A job is de�ned
as a set of data parallel threads. One important characteristic that makes the
problem dynamic, as de�ned in [3], is the possibility of arrival of new jobs at
arbitrary times. In the static case, the set of jobs to be executed is already
de�ned when scheduling decisions are made, and arbitrary job arrivals are not
permitted.

In this paper we propose a new scheduling algorithm dubbed IBTS-Parallel,
which is derived from the IBTS algorithm. IBTS stands for instruction balanced
time slicing, and was originally de�ned in [6]. IBTS is a non-clairvoyant [3]
scheduling algorithm designed to optimize the competitive ratio (CR) metric,
also de�ned in [6][4].

In addition to the theoretical analysis of IBTS-Parallel, we present an ex-
perimental analysis performed using a general purpose event driven simulator
developed by our research group.

? ? ? Supported in part by the Irvine Research Unit in Advanced Computing and NASA

under grant #NAG5-3692.
y Professor Alain Greiner is gratefully acknowledged.
z Supported by Capes, Brazilian Government, grant number 1897/95-11.

2 Previous Work

Various classi�cations for the parallel job scheduling problem have been sug-
gested in the literature. The classi�cation used here is based on the way in which
computing resources are shared : temporal sharing, also known as time slicing or
preemption; and space slicing, also called partitioning. These two classi�cations
are orthogonal, and may lead to a taxonomy based on the possible options. Ta-
ble 1 shows the scheduling policies adopted by commercial and research systems,
and was borrowed from [2]. It is worth noting that the lack of consensus on which
scheduling policy is best among those showed in table 1 is total. The problem is
that the assumptions leading to and justifying the di�erent schemes are usually
quite di�erent, which makes di�cult the comparison between di�erent solutions.

global queue local queue

Mach

Paragon/service
Meiko/timeshare
KSR/interactive
transputers
Tera/streams
Chrysalis

NX/2 on iPSC/2
nCUBE

CM-5
Cedar
DHC on SP2
DQT on RWC-1

Star OS
Psyche
Elxsi
AP1000

MasPar MP2
Alliant FX/8
Chagori on K2

IRIX on SGI
NYU Ultra
Dynix
2-level/top
Hydra/C.mmp

Medusa

Cray T3E
Meiko/gang
Paragon/gang
SGI/gang
Tera/PB
MAXI/gang

Butterfly@LLNL
IBM SP2, Victor
Meiko/batch
Paragon/slice
KSR/bath
2-level/bottom
TRAC, MICROS
Amoeba

Cray T3D
CM-2
PASM
hypercubes

Illiac IV
MPP
GF11
Warp

independent PEs gang scheduling
no

yes

time slicing

sp
ac

e
sl

ic
in

g
ye

s
no

st
ru

ct
ur

ed
fle

xi
bl

e

Fig. 1. Scheduling policies followed in current commercial and research systems

We address the scheduling problem by using the same assumptions (i.e. model
and metrics) described by Subramaniam and Scherson in [6][4]. In [6], Subra-
maniam and Scherson studied a scheduling policy named Instruction Balanced
Time Slicing (IBTS), which performs well under the competitive ratio metrics
[4]. Each job is allocated on all P processing elements (PE) of the machine for
a �nite quantum (time-slice). All time-quanta devoted to the various jobs are
equal as measured in machine instructions (that is, all jobs are preempted after
equal number of machine instructions).

Note that time quanta may vary in absolute value while still being equal
when measured in number of instructions. A good analysis of gang scheduling,
which is similar to IBTS but imposes an invariant constant time slice can be
found in [5].

In [4] the programming model used is the data parallel (V-RAM) model[1].
The scheduling problem was de�ned as a optimization problem, and the compet-

itive ratio was the metric used as the objective function. The competitive ratio
(CR) was de�ned in function of the non clairvoyance of the scheduler.

The competitive ratio (CR) is based on the happiness [4] concept. The hap-
piness metric attempts to capture the satisfaction of a job as a function of the
scheduling decisions made by a scheduler. The CR is then the ratio between
the happiness achieved by a knowledgeable malicious adversary, and the that
achieved by a partially ignorant scheduler. IBTS is hence a non-clairvoyant algo-
rithm, and the malicious adversary always has more information that the sched-
uler itself. It is that hidden information that is used by the adversary to keep the
happiness as low as possible. By minimizing the CR the scheduler approaches
the result that would be obtained by an adversary with global knowledge.

CR =
max

y0
Happiness(x; y0)

Happiness(x; y)
(1)

In equation 1, x represents the input to the algorithm, y is the result obtained
by the scheduler and y0 is the result obtained by the adversary.

Also:

Happiness(x; y) =

R T
0
minj}

j(�)d�

T
(2)

Where }j is the power delivered to job j, and T is the time at which the last
job completes. In analogy with physics terminology, the power delivered to a job
is de�ned as:

} =
W

�
(3)

� is the running time of a job as a function of the number of statements and
the mean time completion of each statement (the mean time completion is com-
puted according to the type of the statement: local statements, remote access
statements, etc, and is machine architecture dependent). W is the work, or the
processor-time product in the ideal world, i.e. it is the product of the ideal num-
ber of processors for execution of the job and the running time assuming all
statements as local statements.

} is valid for the single job case. For multiple jobs we have:

W j =

Z Tj

0

}j(�)d� (4)

Another related de�nition is the ine�ciency of running the job on a machine:

� =
P 0�

W
; � > 1 (5)

� is the running time of a job, W is the work and P 0 is the number of
processors actually allocated to the job.

The most important result contained in [4][6] is that, of all non-clairvoyant
schedulers, instruction-balanced time-slicing has the least CR, with the corre-
sponding proof. As a consequence of the proof it was veri�ed that the least

possible CR is equal to �max, which is the maximum ine�ciency among all jobs
that are running in a machine at a given moment.

3 IBTS-parallel

In IBTS, each job is allocated to the whole machine and executes a prede�ned
number of instructions before being preempted. However, not all jobs necessar-
ily use all processors of the machine at all times. In order to further optimize
the space sharing in parallel scheduling policies should allocate simultaneously
multiple jobs. We use the fact that IBTS is the non-clairvoyant algorithm with
the least CR to propose a modi�ed version of IBTS that also permits a better
spatial allocation of the machine.

Let us start by considering a machine with N processors in a MIMD archi-
tectural model as described in [4]. In our modi�ed version of IBTS the machine
is shared by more than one job at any given time. Jobs are preempted after all
threads, running in parallel, execute a �xed number I of instructions. The re-
sulting scheduling algorithm is dubbed IBTS-parallel. The use of many di�erent
spatial scheduling strategies are possible with IBTS-Parallel (�rst-�t, best-�t,
etc.

IBTS-Parallel has at least the same performance than IBTS under the CR
metric, as stated in the lemma below.

Lemma 1. The CR of IBTS-parallel is � �max

Proof. It follows from [4][6] by verifying that the two properties of IBTS are
valid for IBTS-parallel :

1. At any time, an equal amount of power is supplied to all running jobs
2. The job that �nishes last incurs the maximum amount of work

Using the lemma above, we can state the main result of this section.

Theorem 1. �IBTS par
max � �IBTSmax

In other words, IBTS represents the worst case of IBTS-parallel

Proof. As we are running multiple jobs in parallel, the execution time of each
job will necessarily be smaller than if we run one job after another, as is the case
in IBTS since one job allocates all processing elements of a machine. From the
de�nition of ine�ciency :

� =
P 0�

W
(6)

P 0 and W do not change from IBTS to IBTS-parallel. The time � is smaller
or equal for all jobs under IBTS-parallel as compared to pure IBTS. So, all jobs
have smaller or equal ine�ciencies under IBTS-parallel as compared to pure
IBTS, which makes the maximum ine�ciency in IBTS-parallel smaller than or
equal to the corresponding quantity in IBTS.

4 Simulation and Veri�cation

To verify the results above, we used a general purpose event driven simulator,
developed by our research group for studying a variety of related problems (e.g.,
dynamic scheduling, load balancing, etc). The simulator accepts two di�erent
formats for describing jobs. The �rst is a fully quali�ed DAG. The second is
a set of parameters used to describe the job characteristics such as computa-
tion/communication ratio. When the second form is used the actual communi-
cation type, timing and pattern are left unspeci�ed and it is up to the simulator
to convert this user speci�cation into a DAG, using probabilistic distributions,
provided by the user, for each of the parameters. Other parameters include the
spawning factor for each thread, a thread life span, synchronization pattern, de-
gree of parallelism (maximum number of thread that can be executed at any
given time), depth of critical path, etc. Even-though probabilistic distributions
are used to generate the DAG, the DAG itself behaves in a completely deter-
ministic way.

Once the input is in the form of a DAG, and the module responsible for
implementing a particular scheduling heuristics is plugged into the simulator,
several experiments can be performed using the same input by changing some
of the parameters of the simulation such as the number of processing elements
available or the topology of the network, among others. The outputs can be
recorded in a variety of formats for later visualization.

For this study we grouped parallel jobs in classes where each class represents
a particular degree of parallelism (maximum number of threads that can be
executed at any given time). We divided the workload into ten di�erent classes
with each class containing 50 di�erent jobs. The arrival time of a job is described
by a Poisson random variable with an average rate of two job arrivals per time
slice. The actual job selection is done in a round robin fashion by picking one job
per class. This way we guarantee the interleaving of heavily parallel jobs with
shorter ones.

We distinguish the classes of computation and of communication instructions
in the various threads that compose a job. A communication forces the thread
to be suspended until the communication is concluded. If the communication is
concluded during the currently assigned time-slice the thread resumes execution.
All threads are preempted only after executing 100 instructions (duration of a
time slice), with the caveat that any thread that executed one or more commu-
nication instruction will be preempted at the end of the time-slice regardless of
how many instructions it was able to execute in the current time-slice. We used
a factor of 0:001 communications per computation instructions.

The practical implementation of IBTS-parallel was based on a greedy algo-
rithm applied at the beginning of each workload change.During the workload
change interval, called cycle, the workload is obviously assumed constant. Thus,
the eligible threads of queued jobs are allocated to processors using the �rst �t
strategy for each time slice. Clearly, after all eligible threads are scheduled on
a processor for some time slice (slot), the temporal sequence is repeated peri-

odically until a workload change again occurs. We considered in simulations a
machine with 1024 processors.

Preliminary results are shown in table 1. They have been normalized to show
the total execution time of IBTS-parallel to be 100%.

Table 1. Preliminary experimental results

IBTS IBTS-parallel

Total Running Time (%) Total Idle Time (%) Total Running Time (%) Total Idle Time (%)

123.6 41.9 100 28.2

It is important to dissect the value obtained for idle time. This value is the
result of following three factors:

1. Communications
2. Absence of ready threads
3. Lack of job virtualization

The �rst is a natural consequence of threads communicating among them-
selves.. The second re
ects the fact that jobs arrive and �nish at random times
and at any given instance there might not be any job ready to be scheduled. The
last is a result of not allowing individual threads of a same job to be scheduled at
di�erent time-slices. This factor is, we believe, the chief reason behind the high
idle time measured and should be greatly reduced by extending IBTS-parallel
with job virtualization [4] techniques.

References

1. Blelloch,G. E.: Vector Models for Data-parallel Computing MIT Press,Cambridge,

MA (1990)

2. Feitelson, D.: Job Scheduling in Multiprogrammed Parallel Systems IBM Research

Report RC 19970, Second Revision (1997)

3. Motwani, R., Phillips, S., Torng, E., Non-clairvoyant scheduling, Theoretical Com-

puter Science, (1994) 130(1):17- 47

4. Scherson, I. D., Subramaniam R., Reis, V. L. M., Campos, L. M.. Scheduling Com-

putationally Intensive Data Parallel Programs. Ecole Placement Dynamique et Re'-

partition de charge (1996) 39{61

5. Squillante, M. S., Wang, F., Papaefthymiou,M., An Analysis of Gang Scheduling for

Multiprogrammed Parallel Computing Environments, Proceedings of the 8th Annual

ACM Symposium on Parallel Algorithms and Architectures, (1996) 89-98

6. Subramaniam, R.: A Framework for Parallel Job Scheduling PhD Thesis, University

of California at Irvine (1995)

