
Improvements in Gang Scheduling for Parallel Supercomputers

Fabricio Alves Barbosa da Silva1;� Luis Miguel Campos2

Isaac D. Scherson1;2;y

fabricio.silva@asim.lip6.fr, flcampos,isaacg@ics.uci.edu

1Laboratoire ASIM, LIP6, Universit�e Pierre et Marie Curie, Paris, France.

2Dept. of Information and Comp. Science, University of California, Irvine, CA 92697, U.S.A

Abstract

Gang scheduling has been widely used as a prac-

tical solution to the dynamic parallel job schedul-

ing problem. Parallel threads of a single job are

scheduled for simultaneous execution on a paral-

lel computer even if the job does not fully utilize

all available processors. Non allocated proces-

sors go idle for the duration of the time quantum

assigned to the threads. In this paper we pro-

pose a class of scheduling policies, dubbed Con-

current Gang, that is a generalization of gang-

scheduling, and allows for the exible simultane-

ous scheduling of multiple parallel jobs, thus im-

proving the space sharing characteristics of gang

scheduling. However, all the advantages of gang

scheduling such as responsiveness, e�cient shar-

ing of resources, ease of programming, etc., are

maintained. The resulting policy is simulated

and compared with gang scheduling using a gen-

eral purpose event driven simulator specially de-

veloped for this purpose.

1 Introduction

Gang Scheduling [1][5] has been proposed as a
practical solution to the dynamic parallel job
scheduling problem. Dynamic means that the

possibility of arbitrary arrival times for new jobs
is allowed. A parallel job scheduler in general is

�Supported by Capes, Brazilian Government, grant

number 1897/95-11.
ySupported in part by the Irvine Research Unit in Ad-

vanced Computing and NASA under grant #NAG5-3692.

responsible for �nding a good scheduling alloca-
tion, both temporal and spatial, as a function of
the existing workload. The temporal and spa-
tial allocation represent the two dimensions in

which computing resources are shared : the tem-
poral sharing is also known as time slicing or pre-
emption; and the space sharing is also known as

space slicing and partitioning. These two classi-
�cations are orthogonal, and may lead to a tax-
onomy based on all possible combinations [1].

In gang scheduling each thread of execution
of a parallel job is scheduled on an independent
processor. The threads of a job are supplied with

an environment that is very similar to a dedi-
cated machine [4][5], and may or may not use all
available processors.

In this paper we propose a class of scheduling
policies, dubbed Concurrent Gang. It is a gener-
alization of gang-scheduling, and allows for the

exible simultaneous scheduling of multiple par-
allel jobs, thus improving the space sharing char-
acteristics of gang scheduling. However, all the
advantages of gang scheduling such as respon-

siveness [2], e�cient sharing of resources, ease of
programming, �ne grain synchronization perfor-
mance bene�ts [4], etc. are maintained.

This paper is organized as follows : In section
2 the general class of Concurrent Gang policies is
described. In section 3 space sharing under Con-

current Gang is considered, with the de�nition
of important concepts for the precise description
of the space sharing strategy used. Section 4

gives the simulation results of Concurrent Gang
with �rst �t as space sharing strategy, with the



respective analysis and comparison with gang
scheduling.

2 Concurrent Gang

In gang scheduling, each job is allocated to the

whole parallel machine for a time slice before be-
ing preempted. However, not all jobs necessarily
use all of the machine's processors at all times.
In order to further optimize the use of massively

parallel systems the operating system must sup-
port scheduling policies aimed at scheduling si-
multaneously several jobs of di�erent sizes and
with no prede�ned arrival times.

Let us consider a machine with N processors
in a MIMD architectural model as described in
[6]. In Concurrent Gang the machine is shared

by more than one job at any given time. All the
jobs running concurrently are preempted by the
end of time slice. The scheduler is responsible for
providing an e�cient machine utilization, both

in temporal and spatial dimensions, always gang
scheduling each job on available resources.
For the de�nition of Concurrent Gang, we

view the parallel machine as composed of a gen-

eral queue of jobs to be scheduled and a num-
ber of servers, each server corresponding to one
processor. Each processor may have a queue of

eligible threads to execute. The mapping and
allocation of threads of a job from the general
queue to the processors' queues e�ected by the
scheduler. In the event of a job arrival, a job

termination or a job changing its number of el-
igible threads (events which de�ne e�ectively a
workload change) the Concurrent Gang Sched-
uler will :

1 Update Eligible thread list

2 Allocate Threads of First Job of General
Queue in the required number of processors.

3 While not end of Job Queue

{ Allocate all threads of remaining jobs
using a de�ned spatial sharing strategy

4 Run

It should be noted that this algorithm leads

to a bidimensional diagram, where one dimen-
sion corresponds to the number of processors,

and another dimension is time. As each job is
gang scheduled, it allocates the necessary num-

ber of processors in a given slot of time. As we
suppose that the number of jobs in any given mo-
ment is �nite, the time dimension is also �nite,

with a diagram de�ning a period that repeats
itself if there is no change in the number and/or
corresponding requirements of the jobs.

A variation of Concurrent Gang was proposed
in [7], where jobs are preempted after all threads,
running in parallel, execute a �xed number of

instructions. The reason behind the preemption
of the jobs after executing a �xed number of in-
structions is because it provides better perfor-

mance under the competitive ratio metrics [7, 6].
In that case, a time slice can vary as a function
of the characteristics of the job.

From the job's perspective, with Concurrent
Gang it still has the impression of running in

a dedicated machine, as in gang scheduling, ex-
cept perhaps for some possible reduction in I/O
and network bandwidth due to interference from
other jobs. Still, the CPU and memory resources

required for the job are dedicated.

Concurrent Gang implies a better perfor-

mance and machine utilization than pure gang
scheduling, since gang scheduled jobs may not
use all processors, resulting in a smaller rate of

processor utilization. Hence, Concurrent Gang
space sharing is proposed to improve the utiliza-
tion of individual processors in a parallel ma-
chine by combining the best characteristics of

gang scheduling and partitioning and assuming
current MIMD machines. Besides that, the ex-
ecution of jobs in parallel implies also better
overall execution times, since we are not obliged

to always create a new time slice for a new
coming job, but running that job in parallel
with another already-running job, provided that

there is a su�cient number of processors in the
time slice. The queueing system's approach of
Concurrent Gang provides a general framework
for describing space sharing strategies based on

gang scheduling, considering or not thread mi-
gration, given the capability of queueing systems
to model the workload-resources interaction.

However, the description of a scheduler under
Concurrent Gang is not complete if a space shar-

ing strategy is not de�ned. In the next section
we state some important concepts that are use-

P2-H-2



ful for this de�nition and give some examples of
Concurrent Gang schedulers.

3 Space sharing in Concurrent

Gang

It is clear that once the �rst job, if any, in the
general queue is allocated, the remaining avail-
able resources can be allocated to other eligible

threads by using a space sharing strategy. Some
possible strategies are �rst �t, best �t and greedy
policies. First �t and best �t policies were orig-
inally de�ned by Feitelson [3].

To clarify the application of these policies in

Concurrent Gang let us �rst state some impor-
tant concepts. These are the concepts of cycle,
slice, period and slot. Figure 2 illustrates these

de�nitions. A Workload change occurs at the ar-
rival of a new job, the termination of an existing
one, or through the variation of the number of
eligible threads of a job to be scheduled. The

time between workload changes is de�ned as a
cycle. Between workload changes, Concurrent
Gang scheduling is periodic, with a period that
is a function of the workload and the spatial al-

location. A period is composed of slices; a slice
corresponds to a time slice as in gang schedul-
ing, with the di�erence that in Concurrent Gang

we may have more than one job simultaneously
scheduled in a slice. A slot is the processors'
view of a slice. A Slice is composed of N slots,
for a machine with N processors. If a proces-

sor has no assigned thread during its slot in a
slice, then we have an idle slot. The bidimen-
sional diagram showed in �gure 3 is inherent to
the concurrent gang algorithm, and it is used to

de�ne the spatial allocation strategy. We refer
to this diagram as the trace diagram.

The implementation of Concurrent Gang with
�rst �t with thread migration is a �rst example

of a Concurrent Gang scheduler. It is based on a
greedy algorithm applied at the time of a work-
load change. During the cycle, the workload is
obviously assumed constant. Thus, the eligible

threads of queued jobs are allocated to proces-
sors using the �rst �t strategy for each slice.
Clearly, after all eligible threads are scheduled on

a processor for some slice (slot), the temporal se-
quence is repeated periodically until a workload

��
��
��
��

���� �� ���� ��

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��

J1

J1

J1

J1

Period

Workload Change Workload Change

Cycle

Period Period Period

Slot

J2

J2

J2

J2

J3

J4

J4

J4

J4

J4

J6

J6J1

J1

J3

P0

P1

P2

P3

P4

J5

J5

Slice

Idle Slots

Time

n-1P

Figure 1: Cycle, slice, period and slot de�nitions

change again occurs. In the event of a workload
change, the distribution of jobs in the machine
is reorganized depending on the change in the

workload, and as we have a queue of jobs, some
thread migration may occur because of this reor-
ganization. We will refer to this strategy hence-
forth simply as �rst �t.

Although we de�ned an algorithm where
thread migration was possible, if the machine

under consideration has no e�cient mechanism
for thread migration, algorithms with no thread
migration are also possible using these concepts.

A very simple policy for spatial sharing un-
der Concurrent Gang without thread migration
is the greedy one. At arrival, a job is scheduled

in a slice that has su�cient idle slots to accom-
modate the arriving job. In this case the de�-
nitions of cycle, slice, etc. would also be valid.
The scheduler should maintain a list of idle slots

in the period in order to know, at job arrival, if
it is possible to schedule the job in an already
existing slice.

It is worth noting that, relative to its def-
inition as a queueing network with processor
sharing discipline, Concurrent Gang is particu-

larly convenient to describe schedulers that are
periodic between workload changes. We will
now state a theorem that proves that a periodic
schedule performs at least as well as any non pe-

riodic one with respect to the total number of
idle slots, i.e., periodic schedulers achieves bet-
ter spatial allocation than (or at least as good

as) non-periodic ones when processor utilization
is measured through the ratio of total number of

P2-H-3



empty (idle) slots to the total number of slots in
the period. We denote this measure as the idling

ratio.

Theorem 1 Given a workload W, for every

temporal schedule S there exists a periodic sched-

ule Sp such that the idling ratio of Sp is at most

that of S,

Proof - First of all, let's make a de�nition that
will be useful in this proof. We de�ne here job
happiness in a interval of time as the number
of slots allocated to a job divided by the total

number of slots in the interval.

De�ne the progress of a job at a particular

time as the number of slices granted to each of
its threads up to that time. Thus, if a job has
V threads, its progress at slice t may be rep-

resented by a progress vector of V components,
where each component is an integer less than
or equal to t. By the rules of legal execution,
no thread may lag behind another thread of the

same job by more than a constant C number of
slices. Therefore, no two elements in the progress
vector can di�er by more than C. De�ne the dif-
ferential progress of a job at a particular time as

the number of slices by which each thread leads
the slowest thread of the job. Thus a di�eren-
tial progress vector at time t is also a vector of V

components, where each component is an integer
less than or equal to C. The di�erential progress
vector is obtained by subtracting out the mini-
mum component of the progress vector from each

component of the progress vector . The system's
di�erential progress vector (SDPV) at time t is
the concatenation of all job's di�erential progress
vectors at time t. The key is to note that the

SDPV can only assume a �nite number of val-
ues. Therefore there exists an in�nite sequence
of times ti1; ti2 ; ::: such that the SDPVs at these

times are identical.

Consider any time interval [tik ; ti0
k

]. One may
construct a periodic schedule by cutting out the

portion of the trace diagram between tik e ti0
k

and
replicating it in�nitely in the time dimension.

First of all, we claim that such a periodic
schedule is legal. From the equality of the
SPDVs at tik e ti0

k

it follows that all threads be-

longing to the same job receive the same number
of slices during each period. In other words, at

the end of each period, all the threads belong-
ing to the same job have made equal progress.

Therefore, no two threads lag behind another
thread of the same job by more than a constant
number of slices.

Secondly, observe that it is possible to choose
a time interval [tik ; ti0

k

] such that the happiness

of each job in the during this interval is at least
as much as in the complete trace diagram.This
implies that the happiness of each job in the
constructed periodic schedule is greater than or

equal to the happiness of each job in the original
temporal schedule.

Therefore, the idling ratio of the constructed
periodic schedule must be less than or equal to
the idling ration of the original temporal sched-
ule. Since the fraction of area in the trace di-

agram covered by each job increases, the frac-
tion covered by the idle slots must necessarily
decrease. This concludes the proof.

4 Simulation and Veri�cation

To verify the results above, we used a general
purpose event driven simulator, developed by
our research group for studying a variety of re-

lated problems (e.g., dynamic scheduling, load
balancing, etc.). The simulator accepts two dif-
ferent formats for describing jobs. The �rst is a
fully quali�ed DAG. The second is a set of pa-

rameters used to describe the job characteristics
such as computation/communication ratio.

When the second form is used the actual com-
munication type, timing and pattern are left un-
speci�ed and it is up to the simulator to con-

vert this user speci�cation into a DAG, using
probabilistic distributions, provided by the user,
for each of the parameters. Other parameters
include the spawning factor for each thread, a

thread life span, synchronization pattern, degree
of parallelism (maximum number of threads that
can be executed at any given time), depth of crit-
ical path, etc. Even though probabilistic distri-

butions are used to generate the DAG, the DAG
itself behaves in a completely deterministic way.

Once the input is in the form of a DAG, and
the module responsible for implementing a par-
ticular scheduling heuristics is plugged into the

simulator, several experiments can be performed
using the same input by changing some of the pa-

P2-H-4



rameters of the simulation such as the number
of processing elements available, the topology of

the network, among others, and their outputs,
in a variety of formats, are recorded in a �le for
later visualization.

For this study we grouped parallel jobs in
classes where each class represents a particu-
lar degree of parallelism (maximum number of

threads that can be executed at any given time).
The reason behind grouping parallel jobs by
their degree of parallelism is to evaluate the per-

formance of the algorithms being studied across
the vast spectrum of real parallel applications
(ranging from massive parallel to programs re-
quiring only two processing elements) and there-

fore reduce the bias towards a single type of ap-
plication.

We divided the workload into ten di�erent
classes with each class containing 50 di�erent
jobs. The arrival time of a job is described by
a Poisson random variable with an average rate

of two job arrivals per time slice. The actual
job selection is done in a round robin fashion by
picking one job per class. This way we guaran-
tee the interleaving of heavily parallel jobs with

shorter ones.

We distinguish the class of computation in-

struction and that of communication instruction
in the various threads that compose a job. The
latter forces the thread to be suspended until
the communication is concluded. If the com-

munication is concluded during the currently as-
signed time-slice the thread resumes execution.
We used a factor of 0.001 communications per

computation instructions.

The classes are ranked according to their de-
gree of parallelism (between 2 and 1024 in pow-

ers of two increments) and the jobs were sched-
uled in a simulated 1024 processor machine. In
table 1 we compare gang scheduling with Con-

current Gang using �rst �t as space sharing
strategy.

It is important to dissect the value obtained

for idle time, which is the result of three factors:

1 - Communications

2 - Absence of ready threads

3 - Inne�ciency of allocation

The �rst is a natural consequence of threads

communicating among themselves. The second
reects the fact that jobs arrive and �nish at

Gang

Total Running Time (%) Total Idle Time (%)

123.6 41.9

Concurrent Gang

Total Running Time (%) Total Idle Time (%)

100 28.2

Table 1: Experimental results

random times and at any given instance there
might not be any job ready to be scheduled. The

last is a result of ine�ciencies due to the non
optimality of the �rst �t algorithm.

References

[1] Feitelson, D. G.: Job Scheduling in Multi-
programmed Parallel Systems IBM Research

Report RC 19970, Second Revision, 1997

[2] Feitelson, D. G., Jette, M. A.: Improved

Utilization and Responsiveness with Gang
Scheduling Job Scheduling Strategies for

Parallel Processing, D. G. Feitelson and L.

Rudolph (eds.), pp. 238-261 Springer Verlag,
1997.

[3] Feitelson, D. G.: Packing Schemes for
Gang Scheduling Job Scheduling Strategies

for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 89-110 Springer Ver-
lag, 1996.

[4] Feitelson, D. G., Rudolph L., Gang Schedul-

ing Performance Bene�ts for Fine Grain Syn-
chronization, Journal of Parallel and Dis-

tributed Computing 16, pp. 306-318, 1992.

[5] Jette, M. A., Performance Characteristics of
Gang Scheduling in Multiprogrammed Envi-
ronments, Supercomputing' 97, 1997.

[6] Scherson, I. D., Subramaniam R., Reis, V.

L. M., Campos, L. M.. Scheduling Compu-
tationally Intensive Data Parallel Programs.
Ecole Placement Dynamique et Re'partition

de charge pp. 39-61, 1996

[7] Silva,F., Campos, L. M., Scherson, I. D.
A Lower Bound for Dynamic Scheduling
of Data Parallel Programs, EUROPAR' 98

(1998 - to appear)

P2-H-5


