
REDUCING COMMUNICATION OVERHEAD IN DISTRIBUTED
LOGIC SIMULATION OF VLSI CIRCUITS

Amar Guettaf, Pirouz Bazargan-Sabet

Universit� Pierre et Marie Curie (Paris VI), Laboratoire LIP6/ASIM
Tour 55-65, 2�me �tage - 4, place Jussieu

75252 Paris Cedex 05, France

Keywords: partitioning, node replication, discrete
event, distributed simulation, VLSI

ABSTRACT

Distributed simulation represents an attractive
and smart way of improving the verification speed
of large VLSI circuits. Unfortunately, this inex-
pensive approach suffers from the low performance
of the communication networks used to connect local
workstations. In this paper, we present a parti-
tioning algorithm that attempt to find a suitable
balance between the communication and the
execution load in a distributed simulator to enhance
its speedup. The main features of this method are
the use of logic replication to reduce the commu-
nication overhead and a realistic cost function that
takes into account the activity of signals. Signals'
activity can be obtained through a probabilistic
evaluation. A distributed simulator implementing
a conservative synchronization method has been
used to measure the efficiency of this algorithm.

1 INTRODUCTION

Today, the verification of a complex VLSI may
represent the major part of the development time of
the circuit. In this process, the logic simulation is
certainly the tool the most often invoked. Simula-
tion is called whenever it is necessary to check
that, at a certain level, a description continues to
fit within the initial specifications. According to
designers, near 50% of the development time is
spent in logic simulation. Therefore, improving the
simulation speed may results in a significant profit
regarding the time-to-market constraint.

Distributed simulation seems to be an appro-
priated answer to make the verification of such

high complexity circuits be faster. Several proces-
sors are used to perform the simulation of a single
system. In this approach, which exceeds the tech-
nical bounds of a single machine, a great amount of
memory, disk space and other computational
resources are provided to enhance the simulation.

The efficiency of a distributed simulation can be
measured using a speedup value. The speedup is the
ratio of the time spent in achieving some process
using a standard program by the time required by
an enhanced program. In distributed simulation,
the speedup depends on 4 main parameters: (1) the
intrinsic parallelism of the system, (2) the number
of systems involved in the simulation process, (3)
the simulator's synchronization strategy and (4)
the efficiency of the partitioning method.

Several works have already been driven in the
field of parallel logic simulation (a detailed
overview is given in Meister 1993 and in Bailey et
al. 1994) but no general method has been found
which gives reasonable speedup under general
conditions. All previous works deal with specific
techniques that are promising for some synchroniz-
ing strategies and disappointing for others (Bailey
1992; Matsumoto and Taki 1992; Soul� 1992).

The main method used in logic simulation is the
event-driven trace-selective approach where
events are associated with a transition of a signal.
In this method, a signal is re-evaluated each time
an event occurs on, at least, one of its inputs. In
addition to the simulation method, in a distributed
simulator, different sub-simulators have to be
synchronized among each other to maintain the
global coherence of the system. Most of the
researches carried out in this domain concern this
last issue.

The main synchronization strategies for
distributed event-driven simulation are the
conservative (Misra 1986) and the optimistic
approaches (Jefferson and Sowizral 1984). Briefly,
the first one avoids out-of-order execution of events
by waiting for messages that maintain the global
simulator in a coherent state. The second class risks
sequencing errors by processing events as soon as
possible. In case of erroneous computation, the state
of the simulated system is rolled back to a former
state to correct the order of events. This requires
that the state of sub-simulators being periodically
saved. There exists a variety of combinations of
these basic strategies.

Partitioning is used to split a complex design
into multiple smaller blocks. Making the partition,
some important topics have to be considered:
respect of a certain balance between the different
blocks in terms of execution and reduction of the
communication through the network.

Finding an optimal partition for a given circuit
is a tricky task due to the NP-completeness of the
problem (Johnson and Garey 1979). Thus, heuristics
must be applied. A large number of algorithms has
been proposed. Four different classes can be pointed
out: move-based methods, combinatorial formula-
tions, geometric representations and clustering
approaches (Alpert and Khang 1995). In VLSI
tools, the move-based algorithms are the most
commonly used.

In this paper, we present a partitioning
algorithm that belongs to the move-based
approaches' class. We propose an improvement of
the basic Fiduccia and Mattheyses (Mattheyses
and Fiduccia 1982) algorithm by calling logic
replication to exchange communication load
against execution. Also, the concept of signal
activity has been introduced to build a more
realistic cost function for the event-driven
simulation method.

The next section gives a brief description of the
original algorithm proposed by Fiduccia and
Mattheyses. Section 3 presents the logic replication
method. The concept of signal activity and the cost
function is depicted in section 4. Sections 5 and 6
describe the distributed simulator used to measure
the efficiency of the proposed method as well as

some results on a set of benchmark circuits. In
section 7, a conclusion is given and future works are
put in perspective.

2 MOVE BASED PARTITIONING METHODS

Logic partitioning is a common task in digital
circuit design. It helps designers to apply the
divide-and-conquer technique to decrease the
complexity of problems. Many of the researches, in
this domain, address the problem of partitioning
for applications other than logic simulation: place
& root, testability, system prototyping, etc.

Despite the diversity of the domains where the
partitioning is applied, it is possible to give a
unique formulation for this problem. A VLSI circuit
may be represented by a hyper-graph H�(V,E) .
V={v1,v2,É,vn} is a set of n vertices representing
the internal nodes (containing a Boolean function)
and E= {e1,e2,É,em } a set of m hyper-edges
representing the internal signals that connect the
nodes. The partitioning problem consists in defining
k subsets - or blocs - V1,V2,É,Vk of V such as:

Vi

i=1

k
U = V and

(Vi ∩V j)
i=1
j≠i

k

U = ∅

The aim is to reach an optimized partition for
some specific application. As it is unreasonable to
run the application for each intermediate solution,
a cost function is defined to give a simplified model
of the target application. The cost function is
supposed to have a behavior as close as possible to
the target application. The cost function
traditionally used to measure the quality of a
partition is the cutsize. It represents the number of
signals that cross the partition.

The move-based algorithms belong to the class
of iterative improvement techniques. These
algorithms start with an initial partition. Then,
local changes are applied to get into a better
partition. The efficiency of the solution is then
measured and the procedure of local changes is
repeated as long as an improvement is possible.

One of the most known algorithms, in this
domain, has been proposed by Kernigan and Lin
(Lin and Kernigan 1970): a graph bisection

e1 u

w

v
e2

Part A

Part B

1-a

u

w

v
e1

e2

Part A

Part B
v'

e'2
1-b

Figure 1: Node replication to improve the cutsize

technique. It starts with a random initial partition
and uses pairwise swapping of vertices between
partitions as local change.

An improvement of the K-L algorithm which
reduces the time complexity to O(n) (where n is
the number of vertices in the graph) was proposed
by Fiduccia and Mattheyses (Mattheyses and
Fiduccia 1982). In this algorithm, only one vertex is
moved in a single move that allows the handling of
unbalanced partitions. The concept of cutsize is
extended to hyper-graphs and a well suited data
structure is defined to make a fast selection of the
vertices to be moved. As in K-L algorithm, a vertex
is locked when it is tentatively moved. When no
further move is possible, only those vertices that
result in the best cutsize are effectively moved.

3 REPLICATION PARTITIONING

A vertex replication technique has been
proposed by Kring and Newton (Newton and Kring
1991) for circuit partitioning applied to mapping on
FPGAs. It can substantially reduce the cutsize by
allowing some vertices to be replicated in two or
more partitions. Figure 1-a shows the partition of a
circuit without vertex replication. However, when
the node v is replicated, as in Figure 1-b, the
cutsize is reduced. When a node is replicated, it is
present in both sub-circuits and its outputs do not
contribute to the cutsize.

Once a node has been replicated, it tends to
remain so and nets connected to it remain in both
sub-circuits. This may reduce the possibility of
further improvements of the partition. For this
reason, the number of replicated nodes must be
limited to achieve an optimal partition. Table 1
shows the results obtained on a set of sequential
circuits from ISCAS89 where the number of
replicated nodes has been limited to 5%. Net
cutsize reduction is the cutsize obtained from the
application of node replication algorithm
compared to the cutsize resulted from the classical
F-M partition. The node replication is the
percentage of the replicated nodes to the total
number of nodes. The table shows clearly that node
replication can significantly reduce the cutsize
without increasing the size of the initial circuit.

circuit
cutsize
by KN

cutsize
by FM

cutsize
reduction

node
replication

s15850

s38584

s5378

s9234

s13207

s38417

87

81

94

56

75

144

48

49

59

41

49

38

44.8%

39.5%

37.2%

26.8%

34.7%

73.6%

4.2%

3.3%

4.3%

4.4%

4.3%

4.3%

s35932 128 97 24.2% 3.1%

Table 1: Improvement of the cutsize by K-N

4 IMPROVEMENT OF THE BASIC ALGORITHM

As mentioned in the above sections, the original
K-L algorithm as well as the F-M and the K-N
methods define a cost function based on the number
of signals that cross the partition. However, in a
distributed simulation, the cutsize does not give a
realistic representation of the simulation method.
In particular, the execution load is not taken into
account. Moreover, in K-N, to reduce the cutsize
through the node replication, a maximum number of
replicated nodes must be settled. Therefore, an
inappropriate replication rate may lead to a sub-
optimal simulation speed.

4.1 The cost function

In the node replication method, finding out the
optimal value for replication rate may be
hazardous. Moreover, replicated nodes increase the

execution load of the simulation. In this method,
the cost function has been defined to minimize the
communication load and would be:

ci

i

∑
Where ci is a signal crossing the cut and

ci the

number of blocs that read the signal ci.

Actually, the key point underlying the replica-
tion method, is to obtain a smaller communication
load by increasing the execution load. Knowing
that sending a message over the network requires
much more time than an execution, we propose a
function that attempt to reduce the global load of a
simulation: the execution and the communication
load. For a conservative distributed simulation,
the following cost function seems to be convenient:

Max
k

(Fout (xi)
i

∑) + Rce c j

j

∑

 Fout (n) is the fanout of a node n. xi are the
internal nodes of a bloc and cj are the hyper-edges
that cross the cut. Rce is the ratio of the time
required for one message to be transmitted from one
bloc to another by the time needed for the execution
of one node. To ensure that the partition is well
balanced in terms of events' execution, our
partitioning algorithm has to fit into the following
constraint :

Min_ Bound ≤ (Ek= Fout (xi)) ≤ Max _ Bound

xi∈Vk

∑
The proposed algorithm is based on the K-N

partitioning algorithm but uses a more realistic cost
function. However, in the above function and
constraint all signals have the same weight. In
fact, all the signals do not generate the same
number of messages on the interface of the
partitions. Communications due to "silent" signals
are not as important as the messages generated by
"active" signals. Yet, a more appropriate cost
function, that exploits the concept of signal's
activity, is conceivable.

4.2 Signals' activity calculation

These recent years, a great interest has been
given to the concept of signal's activity, in VLSI

design. The most important application of this
concept is certainly in the evaluation of the power
consumption. In a CMOS digital circuit, the most
part of the power consumption is due to the
transitions of signals. Therefore, knowing the mean
number of transitions of signals per second - or the
transition density - it is possible the estimate of
power consumption.

Number of researches have been initiated in
this domain. Basically, there are two classes of
methods to evaluate the transition density.
Statistical approaches use logic simulation and
count the number of transitions during the
simulation of a long sequence of patterns.
Probabilistic methods try to calculate the
transition density of signals through a single-pass
symbolic simulation, given the probability and the
transition density of the circuit's inputs.

The main problem, in the second class is the
correlation between signals which can impair the
probability calculation. We have developed a
method based on symbolic simulation to detect
potential sources of correlation. For each node,
statistically independent inputs are identified and
the Boolean expression of the node is expanded to
these signals. Then, the transition density of
signals is calculated in a second pass. The method
of calculation is detailed in Dunoyer et al. 1995 and
1996. Briefly, the calculation uses the concept of
Boolean difference and computes the transition
density of a signal from the transition density and
the probability of its inputs (Najm 1991):

D(s) = D(e j)

j

∑ P(
∂s

∂e j

)

Where s is the output signal of the node, D(s) is
the transition density of the signal s, ej is an input

of s,

∂s
∂ej

is the Boolean difference of s in regard of

ej and P(F) the probability of the Boolean function
F to take the value one.

However, in the partitioning problem, unlike
the power evaluation tools, the activity of a signal
is not directly related to its transition density. In a
distributed event-driven simulator, the value of a
signal is re-evaluated whenever, at least, one of its

circuit
gain

in
S.up

s15850

s38584

s5378

s9234

s13207

s38417

20%

25%

21%

19%

33%

23%

of
nodes

S.up
by F-M

S.up
proposed
approach

s35932

10 840

22 105

3 137

6 019

9 227

25 451

19 841

0.38

1.31

0.14

0.17

0.37

1.41

1.22

% of
replic.
nodes

7.2

4.6

13.4

12.1

8.8

4.7

6.5 22%

0.45

1.63

0.16

0.20

0.49

1.73

1.48

Table 2: Improvement of the speedup

direct inputs has received an event or a transition.
Thus, we propose a proper definition of the concept
of a c t i v i t y of a signal, well suited to the
partitioning problem. For a node i the activity is
defined as:

Ai = D(eij)

j

∑

Where eij is a direct input of the node i and
D(x) is the transition density of a signal x.

Using the concept of signal's activity the
proposed cost function becomes:

Max
k

(A(xi)
i

∑) + Rce A(c j) ⋅ c j

j

∑
and the constraint:

Min_ Bound ≤ (Ek = A(xi)) ≤ Max _ Bound

xi∈Vk

∑

5 SIMULATION ENVIRONMENT

A distributed simulation tool has been
developed to measure the efficiency of the
proposed algorithm. It has been built upon an
already existing set of CAD tools called Alliance
(Greiner and P�cheux 1993) and developed at
University of Paris VI. The distributed simulator is
derived from the Alliance's sequential event-
driven simulation tool which supports a subset of
VHDL. This simulator has been used as a reference
to check the correctness of the results and to
compare the performance of the prototype
distributed simulator.

The distributed simulator comprises two main
parts: a central task and several sub-simulators.
The central task reads the hierarchical description
of the circuit, produced by the partitioning tool.
Each bloc is distributed to one simulation task and
the communications between sub-simulators are
defined. The simulation process can start once the
test pattern file is loaded. The simulator imple-
ments a conservative synchronization strategy.
Using this technique, deadlocks may appear
because of cyclic dependencies. This is solved by
sending Null messages as proposed by Chandy and
Misra (Chandy and Misra 1981).

6 RESULTS

This section presents some results using the
proposed partitioning technique. The platform was
a network of Sun ULTRA SPARC 1 connected
through an Ethernet 10�Mbits/sec. A maximum of 8
machines with equivalent computing performance
were involved. The experiments were performed
using the sequential logic circuits from the ISCAS89
benchmark suite. Since the exact function of these
circuits is not known, random test patterns have
been applied during 1000 clock cycles.

To measure the speedup, the time spent in
sequential simulator was compared to the time
required by the distributed simulation. In theory, a
speedup of n is expected for a distributed simulator
running on n processors. However, this theoretical
value is never reached because of the communica-
tion overhead. This overhead depends on many
parameters: the test patterns, the circuit, the
partition, the synchronization strategy and the
network's load.

Table 2 shows the gain of speedup on two
machines using the proposed partitioning method.
It should be noted that the results presented in this
section take only into account the simulation time
excluding the partitioning and the initialization
time.

7 CONCLUSION AND FUTURE WORKS

A new partitioning method based on a realistic
cost function has been investigated. A reasonable
speedup for a distributed simulator can be reached.
The experiments show that a certain gain may be

obtained over the conventional partitioning even
with a conservative synchronization method. This
algorithm is able to reduce significantly the
amount of messages on the network, but the speedup
remains smaller then what would be expected. The
difference can be explained by: (1) the usage of
heuristics that may fall into local minima, (2) the
overhead introduced by the synchronization and
(3) the network's load.

Future works will focus on implementing other
synchronization strategies such as Time Warp to
study the relationship between synchronization
and partitioning and its impact on the speedup.
Also, the simulator will be implemented on a high
performance distributed computer, based on several
workstations connected through a 1 Gbyte/sec.
network.

REFERENCES

Alpert C.J., A.B. Khang, 1995, "Recent
Developments in Netlist Partitioning: A
Survey", Integration: the VLSI Journal, pp. 1-81.

Bailey M., 1992, "How Circuit Size Affects
Parallelism", IEEE Trans. on Computer-Aided
Design, Vol. 11, pp. 208-215.

Bailey M., Jr. Briner, R. Chamberlain, 1994,
"Parallel Logic Simulation of VLSI Circuits",
Computing Surveys, Vol. 24, pp. 255-294.

Chandy K., J. Misra, 1981, "Asynchronous
Distributed Simulation Via a Sequence of
Parallel Ccomputations", Communication of the
ACM, Vol. 24 pp. 198-206.

Dunoyer J., N. Abdallah, P. Bazargan-Sabet, 1995,
"A New Generation of Digital CAD Tools Based
on Probability", 27th Southeastern Symposium
on System Theory, pp. 348-352, 1995.

Dunoyer J., N. Abdallah, P. Bazargan-Sabet, 1996,
"A Symbolic Approach in Resolving Signal's
Correlation", 29th Annual Simulation Sympo-
sium, pp. 203-211.

Greiner A., F. P�cheux, 1993, "Alliance: A
Complete Set of Cad Tools for Teaching VLSI
Design", Proc. 3rd eurochip workshopon VLSI
design Training, pp. 230-237.

Jefferson D., H. Sowizral, 1984, "Fast Concurent
Simulation Using Time Warp Mechanism", Proc.
of the Conference on Distributed Simulation, pp.
63-69.

Johnson D.S., M. Garey, 1979, "Computer and
Intractability: A Guide to the Theory of NP
Completeness", San Fransisco, CA: Freeman.

Lin S., W. Kernigan, 1970, "An Efficient Heuristic
Procedure for Partitionning Graphs", Bel l
System Technical Journal, Vol 49, pp. 291-307.

Matsumoto Y., K. Taki, 1992, "Parallel Logic
Simulation on a Distributed Memory Machine",
Proc. of European Conference on Design
Automation, pp. 76-80.

Mattheyses R.M., C.M. Fiduccia, 1982, "A Linear
Time Heuristics for Improving Network
Partitions", Proceedings of the 19th Design
Automation Conference, pp. 175-181.

Meister G., 1993, "A Survey on Parallel Logic
Simulation", Technical Report No. TR 14-1993,
SFB 124, University of Saarland, Department of
Computer Science,

Misra J., 1986, "Distributed Discrete-Event Simula-
tion", Computing Surveys, Vol. 18 pp. 39-65.

Najm F., 1991, "Transition Density a Stochastic
Measure of Activity in Digital Circuits", 28th
Design Automation Conference, pp. 644-649.

Newton A.R., C. Kring, 1991, "A Cell-Replicating
Approach to Mincut-Based Circuit Partition-
ing", International Conference on Computer
Aided Design, pp. 2-5.

Soul� L., 1992, "Parallel Logic Simulation: An
Evaluation of Centrelized-Time and distributed
Time Algorithms", PhD thesis, Stanford
University, Technical Report CSL-TR-92-527.

