
Proceedings of the IASTED International Conference

Parallel and Distributed Computing and Systems
November 3-6, 1999 in Cambridge Massachusetts, USA

Towards Flexibility and Scalability in Parallel Job Scheduling

Fabricio Alves Barbosa da Silva∗ Isaac D. Scherson†

fabricio.silva@lip6.fr isaac@uci.edu

Laboratoire ASIM, LIP6
Universite Pierre et Marie Curie

Paris, France

Information and Comp. Science
University of California
Irvine, CA 92697 U.S.A.

Abstract

Gang scheduling has been widely used as a practical solu-
tion to the dynamic parallel job scheduling problem. Par-
allel tasks of a job are scheduled for simultaneous execu-
tion on a partition of a parallel computer. Gang Schedul-
ing has many advantages, such as responsiveness, efficient
sharing of resources and ease of programming. However,
there are two major problems associated with gang schedul-
ing: scalability and the decision of what to do when a task
blocks. In this paper we propose a class of scheduling poli-
cies, dubbed Concurrent Gang, that is a generalization of
gang-scheduling, and allows for the flexible simultaneous
scheduling of multiple parallel jobs with different charac-
teristics. Besides that, scalability in Concurrent Gang is
achieved through the use of a global clock that coordinates
the gang scheduler among different processors.

Key Words: Parallel job scheduling, gang scheduling,
parallel computation

1 Introduction

Parallel job scheduling is an important problem whose so-
lution may lead to better utilization of modern parallel com-
puters. It is defined as: “Given the aggregate of all tasks
of multiple jobs in a parallel system, find a spatial and tem-
poral allocation to execute all tasks efficiently”. Each job
in a parallel machine is composed by one or more tasks.
For the purposes of scheduling, we view a computer as a
queueing system. An arriving job may wait for some time,
receive the required service, and depart [7]. The time asso-
ciated with the waiting and service phases is a function of
the scheduling algorithm and the workload. Some schedul-
ing algorithms may require that a job wait in a queue until
all of its required resources become available (as in variable
partitioning), while in others, like time slicing, the arriving
job receives service immediately through a processor shar-
ing discipline.

We focus on scheduling based on gang service, namely,

a paradigm where all tasks of a job in the service stage are
grouped into a gang and concurrently scheduled in distinct
processors. Reasons to consider gang service are respon-
siveness [3], efficient sharing of resources[8] and ease of
programming. In gang service the tasks of a job are sup-
plied with an environment that is very similar to a dedi-
cated machine [8]. It is useful to any model of computation
and any programming style. The use of time slicing allows
performance to degrade gradually as load increases. Ap-
plications with fine-grain interactions benefit of large per-
formance improvements over uncoordinated scheduling[5].
One main problem related with gang scheduling is the ne-
cessity of multi-context switch across the nodes of the pro-
cessor, which causes difficulty in scaling[2]. In this paper
we propose a class of scheduling policies, dubbed concur-
rent gang, that is a generalization of gang-scheduling and
allows for the flexible simultaneous scheduling of multiple
parallel jobs in a scalable manner.

The architectural model we will consider in this paper
is a distributed memory processor with three main compo-
nents:1) Processor/memory modules (Processing Element -
PE), 2) An interconnection network that provides point to
point communication, and 3) A synchronizer, that synchro-
nizes all components at regular intervals ofL time units.
This architecture model is similar to the one defined in the
BSP model [14]. We shall see that the synchronizer plays a
important role in the scalability of gang service algorithms.

Although it can be used with any programming model,
Concurrent Gang is intended primarily to schedule efficiently
SPMD jobs. The reason is that the SPMD programming
style is by far the most used in parallel programming.

This paper is organized as follows: the Concurrent Gang
algorithm is described in section II. Scalability issues in
Concurrent gang are discussed in section III. Experimen-
tal results are in section IV and section V contain our final
remarks.

1Supported by Capes, Brazilian Government, grant number 1897/95-11.
2Supported in part by the Irvine Research Unit in Advanced Computing and NASA

under grant #NAG5-3692.

302-258 -1-



2 Concurrent Gang

In this section we describe the Concurrent Gang algorithm.
First we describe the time utilization under Concurrent Gang.
Then, the task classification that is made by the algorithm is
described; we shall see that this task classification is used
by Concurrent Gang to decide locally which task to sched-
ule if the current task blocks. Then the algorithm itself is
detailed, with the description of the components of a Con-
current Gang Scheduler.

2.1 Time Utilization

In parallel job scheduling, as the number of processors is
greater than one, the time utilization as well as the spatial
utilization can be better visualized with the help of a bidi-
mensional diagram dubbedtrace diagram. One dimension
represents processors while the other dimension represents
time. Through the trace diagram it is possible to visualize
the time utilization of the set of processors given a schedul-
ing algorithm. A similar representation has already been
used, for instance, in [11]. One such diagram is illustrated
in figure 1

Gang service algorithms are preemptive algorithms. We
will be particularly interested in gang service algorithms
which areperiodic and preemptive. Related to periodic pre-
emptive algorithms are the concepts of cycle, slice, period
and slot. AWorkload changeoccurs at the arrival of a new
job, the termination of an existing one, or through the vari-
ation of the number of eligible tasks of a job to be sched-
uled. The time between workload changes is defined as a
cycle. Between workload changes, we may define a period
that is a function of the workload and the spatial allocation.
The period is the minimum interval of time where all jobs
are scheduled at least once. A cycle/period is composed of
slices; a slice corresponds to a time slice in a partition that
includes all processors of the machine. Observe that the
duration of the slice for Concurrent Gang is defined by the
period of the global clock. Aslot is the processors’ view of
a slice. A Slice is composed of N slots, for a machine with
N processors. If a processor has no assigned task during its
slot in a slice, then we have an idle slot. The number of idle
slots in a period divided by the total number of slots in that
period defines theIdling Ratio. Note that workload changes
are detected between periods. If, for instance, a job arrives
in the middle of a period, corresponding action of allocating
the job is only taken by the end of the period.

2.2 Task Classification

In Concurrent Gang, each PE classifies each one of its al-
located tasks into classes. Examples of such classes are:
I/O intensive, Synchronization intensive, and computation
intensive. Each one of these classes is similar to a fuzzy
set [15]. A fuzzy set associated with a class A is character-
ized by a membership functionfA(x) with associates each

� ��

� �� � �� � �� � �	


 
�

� �
� ��� ��

� �� � ��

� �� � ��

� ��

� ��

J1

J1

J1

J1

Period

Workload Change Workload Change

Cycle

Period Period Period

Slot

J2

J2

J2

J2

J3

J4

J4

J4

J4

J4

J6

J6J1

J1

J3

P0

P1

P2

P3

P4

J5

J5

Slice

Idle Slots

Time

n-1P

Figure 1: Definition of slice, slot, period and cycle

task T to a real number in the interval [0,1], with the value
of fA(T ) representing the “grade of membership” of T in
A. Thus, the nearer the value ofFA(T ) to unity, the higher
the grade of membership of T in A. For instance, consider
the class of I/O intensive tasks, with its respective charac-
teristic functionfIO(T ). A value offIO(T ) = 1 indicates
that the task T only have I/O statements, while a value of
fIO(x) = 0 indicates that the task T have executed no I/O
statement at all.

The value off(T ) for a class is computed by the PE
at the end of the slot dedicated to a task. As an example,
let’s consider the I/O intensive class. The computation is
made as follows: At the reception of the global clock sig-
nal, the scheduler computes the machine utilization of each
task that was scheduled in the previous global clock period.
For instance if at the beginning of the period one task was
scheduled and after 20% of the duration of the period the
task blocks due to an I/O command, the computation time
of that task was .20 and the I/O time was .80. A average of
the time spent in I/O is then made over the last five times
where the task was scheduled. This average determines the
grade of membership of a particular task to the class I/O
intensive. As many jobs proceed in phases, the reason for
using an average over the last five times a task was sched-
uled is detection of phase change. If a task changes from
a I/O intensive phase to a computation intensive phase, this
change should be detected by the Concurrent Gang sched-
uler.

In principle, four major classes are possible: I/O inten-
sive, Computing intensive, Communications (point to point)
intensive and synchronization intensive. We will see in the
next subsection that only a subset of them are used in Con-
current Gang.

2.3 Definition of Concurrent Gang

Referring to figure 2, for the definition of Concurrent Gang
we view the parallel machine as composed of a general queue

-2-



of jobs to be scheduled and a number of servers, each server
corresponds to one processor. Each processor may have a
set of tasks to execute. Scheduling actions are made at two
levels: In the case of a workload change, global spatial al-
location decisions are made in a front end scheduler, who
decides in which portion of the trace diagram the new com-
ing job will run. The switching of local tasks in a processor
as defined in the trace diagram is made through local sched-
ulers, independently of the front end.

A local scheduler in Concurrent Gang is composed of
two main parts: the Gang scheduler and the local task sched-
uler. The Gang Scheduler schedules the next task indicated
in the trace diagram at the arrival of a synchronization sig-
nal. The local task scheduler is responsible for scheduling
specific tasks (as described in the next paragraph) allocated
to a PE that do not need global coordination and it is similar
to a UNIX scheduler. The Gang Scheduler has precedence
over the local task scheduler.

We may consider two types of tasks in a concurrent
gang scheduler: Those that should be scheduled as a gang
with other tasks in other processors and those that gang
scheduling is not mandatory. Examples of the first class are
tasks that compose a job with fine grain synchronization in-
teractions [5] and communication intensive jobs[2]. Second
class task examples are local tasks or tasks that compose
an I/O bound parallel job, for instance. In [9] Lee et al.
proved that response time of I/O bound jobs suffers under
gang scheduling and that may lead to significant CPU frag-
mentation. On other side a traditional UNIX scheduler does
good work in scheduling I/O bound tasks since it gives high
priority to I/O blocked tasks when the data became available
from disk. As those tasks typically run for a small amount of
time and then blocks again, giving them high priority means
running the task that will take the least amount of time be-
fore blocking, which is coherent to the theory of uniproces-
sors scheduling where the best scheduling strategy possible
under total completion time is Shortest Job First [10]. In the
local task scheduler of Concurrent Gang, such high priority
is preserved. Another example of jobs where gang schedul-
ing is not mandatory are embarrassingly parallel jobs. As
the number of iterations among tasks belonging to this class
of jobs are small, the basic requirement for scheduling a
embarrassingly parallel job is to give those jobs the greater
fraction of CPU time possible, even in an uncoordinated
manner.

Differentiation among tasks that should be gang sched-
uled and those that a more flexible scheduler is better can
be made by the user or using the grade of membership in-
formation computed by the local scheduler (as explained in
the last subsection) about each task associated with the re-
spective processor. In Concurrent Gang we take the non-
clairvoyant approach (i.e. the grade of membership approach),
where the scheduler itself has minimum information about
the job - In our case processor count and memory require-
ments.

The local task scheduler defines a priority for each task

allocated to the corresponding PE. The priority of each task
is defined based on the grade of membership of a task to
each one of the major classes described in the previous sub-
section. Formally, the priority of a task T in a PE is defined
as:

Pr(T ) = max(α× λIO, λCOMP ) (1)

WhereλIO, λCOMP are the grade for membership of
task T to the classes I/O intensive and Computation inten-
sive. The objective of the parameterα is to give greater
priority to I/O bound jobs (α > 1). In our experiments in
this work we have definedα = 2. The choices made in
equation 1 intend to give high priority to I/O intensive jobs
and computation intensive job, since such jobs can benefit
the most from uncoordinated scheduling. The multiplica-
tion factorα for the class I/O intensive gives higher priority
to I/O bound tasks over computation intensive tasks, since
those jobs have a greater probably to block when scheduled
than computing bound tasks. By other side, synchronization
intensive and communication intensive jobs have low prior-
ity since they require coordinated scheduling to achieve ef-
ficient execution and machine utilization[5, 2]. A synchro-
nization intensive or communication intensive phase will re-
flect negatively over the grade of membership of the class
computation intensive, reducing the possibility of a task be
scheduled by the local task scheduler. Among a set of tasks
of the same priority, the local task scheduler uses a round
robin strategy.

In practice the operation of the Concurrent Gang sched-
uler at each processor will proceed as follows: The recep-
tion of the global clock signal will generate an interruption
that will make each processing element schedule tasks as
defined in the trace diagram. If a task blocks, control will
be passed to the one of the other tasks allocated in the PE
defined by the local task scheduler of the PE in function of
the priority assigned to each one of the tasks until the arrival
of the next clock signal. The task chosen is the one with
greater priority.

In the event of a job arrival, a job termination or a job
changing its number of eligible tasks (events which define
effectively a workload change if we consider moldable jobs)
the front end Concurrent Gang Scheduler will :

1 - Update Eligible task list
2 - Allocate Tasks of First Job in General Queue.
3 - While not end of Job Queue

Allocate all tasks of remaining parallel jobs
using a defined spatial sharing strategy

4 - Run

Between Workload Changes

- If a task blocks or in the case of an idle slot, the local
task scheduler is activated, and it will decide to schedule a
new task based on:

-3-



Synch.

Trace Diagram

Queue
Global (Arrival)

Figure 2: Modeling Concurrent Gang class algorithm

• Availability of the task (task ready)

• Priority of the task defined by the local task scheduler.

For rigid jobs, the relevant events which define a work-
load change are job arrival and job termination.

All processors change context at same time due to a
global clock signal coming from a central synchronizer. The
local queue positions represents slots in the scheduling trace
diagram. The local queue length is the same for all proces-
sors and is equal to the number of slices in a period of the
schedule. It is worth noting that in the case of a workload
change, only the PEs concerned by the modification in the
trace diagram are notified.

It is clear that once the first job, if any, in the general
queue is allocated, the remaining available resources can be
allocated to other eligible tasks by using a space sharing
strategy. Some possible strategies are first fit and best fit
policies which are classical bin-packing policies. In first fit,
slices are scanned in serial order until a slice with sufficient
capacity is found. In best fit, the slices are sorted accord-
ing to their capacities. The one with the smallest sufficient
capacity then is chosen.

In the case of creation of a new task by a parallel task,
or parallel task completion, it is up to the local scheduler
to inform the front end of the workload change. The front
end will then take the appropriate actions depending on the
pre-defined space sharing strategy.

3 Scalability in Concurrent Gang

Concurrent Gang is a scalable algorithm due to the presence
of a synchronizer working as a global clock, which allows
the scheduler to be distributed among all processors. The
front end is only activated in the event of a workload change,
and decision in the front end is made as a function of the
chosen space sharing strategy. As decisions about context
switch are made locally, without relying on a centralized
controller, concurrent gang schedulers with global clocks
provide gang service in a scalable manner. This differs from

typical gang scheduling implementation where job-wide con-
text switch relies in a centralized controller, which limits
scalability and efficient utilization of processors when a task
blocks. Another algorithm using gang service aimed at pro-
viding scalability is the Distributed Hierarchical Control[4,
6]. However authors give no solution for the task blocking
problem. In Concurrent Gang, the distribution of the sched-
uler among all processors without any hierarchy allows each
PE decide for itself to do if a task blocks, without depending
on any other PE.

4 Experimental Results

The performance of Concurrent Gang was simulated and
compared with the traditional gang scheduling algorithm,
using first fit without thread migration space sharing strat-
egy in both cases. The reason of using first fit is that it was
proven in [13] that this strategy can be used with no sys-
tem degradation if compared with other bin-packing poli-
cies (without thread migration) given the workload model
defined in [1], besides its smaller complexity. First we de-
scribe the simulator, then we detail the workload model used,
and finally simulation results are presented and analyzed.

4.1 Description of the Simulator

To perform the actual experiments we used a general pur-
pose event driven simulator, first described in [12], being
developed by our research group for studying a variety of
problems (e.g., dynamic scheduling, load balancing, etc).
The format used for describing jobs (composed by a set of
task) is a set of parameters used to describe the job charac-
teristics such as computation/communication ratio through
probabilistic distributions. The actual communication type,
timing and pattern (with whom a particular task from a job
will communicate with) are then left unspecified and it is
up to the simulator to convert this user specification into a
DAG, using the probabilistic distributions provided by the
user, for each of the parameters. Other parameters include
the spawning factor for each task, a task life span, synchro-
nization pattern, degree of parallelism (maximum number of
task that can be executed at any given time), depth of crit-
ical path, etc. Please notice that even though probabilistic
distributions are used to generate the DAG, the DAG itself
behaves in a completely deterministic way.

Once the input is in the form of a DAG, and the mod-
ule responsible for implementing a particular scheduling al-
gorithm is plugged into the simulator, several experiences
can be performed using the same input by changing some
of the parameters of the simulation such as the number of
processing elements available, the topology of the network,
among others, and their outputs, in a variety of formats, are
recorded in a file for later visualization. The simulator of-
fers a gamut of features aimed at simplifying the task of
the algorithm developer. For the case of dynamic schedul-
ing the simulator offers among others methods for manip-

-4-



ulating partitions (creation, deletion, and resizing), entire
job manipulation (suspension, execution), as well as task
level selection, message storing and forwarding, deadlock
free communication and synchronization, etc.

4.2 Workload Model

The workload model that we consider in this paper was pro-
posed in [1]. This is a statistical model of the workload ob-
served on a 322-node partition of the Cornell Theory Cen-
ter’s IBM SP2 from June 25, 1996 to September 12, 1996,
and it is intended to model rigid job behavior. During this
period, 17440 jobs were executed.

The model is based on finding Hyper-Erlang distribu-
tions of common order that match the first three moments of
the observed distributions. Such distributions are character-
ized by 4 parameters:

- p – the probability of selecting the first branch of the
distribution. The second branch is selected with probability
1 - p.

- λ1 – the constant in the exponential distribution that
forms each stage of the first branch.

- λ2 – the constant in the exponential distribution that
forms each stage of the second branch.

- n – the number of stages, which is the same in both
branches.

As the characteristics of jobs with different degrees of
parallelism differ, the full range of degrees of parallelism is
first divided into subranges. This is done based on powers
of two. A separate model of the inter arrival times and the
service times (runtimes) is found for each range. The de-
fined ranges are 1, 2, 3-4, 5-8, 9-16, 17-32, 33-64, 65-128,
129-256 and 257-322.

Tables with all the parameter values are available in [1].

4.3 Simulation Results

We simulated a 32-processor machine in a mesh configu-
ration. Six of the job size ranges described the previous
section were used. Five different workloads were consid-
ered. The first workload is composed exclusively by I/O
intensive jobs. We also simulated workloads composed ex-
clusively by computation intensive, communication inten-
sive and synchronization intensive jobs. The fifth workload
is composed by a mix of synchronization intensive, com-
puting intensive, I/O bound and communication intensive
jobs, with inter-arrival and execution times of jobs given by
Hyper Erlang Distributions. All workloads are randomly
generated, and then the same set of jobs with their arrival
and execution times are presented to both a Concurrent gang
scheduler and a Gang Scheduler. Space sharing strategy in
all cases is first fit without thread migration. At the end of
each simulation, the total idle time and number of completed
jobs are returned. It should be noted that the total idle time
in the simulations is not composed be idle slots only, but

also by the time which a particular task was waiting for I/O,
synchronization and communication completion. Context
switch time was not considered on simulations. The reason
is that context switch overhead is highly dependent on oper-
ating system implementation and processor architecture.

Simulation results for the I/O intensive workload are
shown in tables 1 and 2. We an observe a significant im-
provement over gang scheduling, both in throughput (jobs
completed by unit of time) and total idle time. This results
was expected, since Concurrent Gang provides grater flexi-
bility than gang scheduling, which is necessary for this kind
of job.

Table 1: Experimental results - I/O intensive workload

Simulation time Gang
Seconds Jobs Completed Total Idle Time (%)

5000 2 72
10000 6 68
20000 14 67
30000 23 66
40000 28 66

Table 2: Experimental results - I/O intensive workload

Simulation time Concurrent Gang
Seconds Jobs Completed Total Idle Time (%)

5000 5 43
10000 10 26
20000 19 14
30000 34 10
40000 45 7

Tables 3 and 4 show results of the simulation of a Com-
putation intensive workload, where the jobs have no com-
munication, I/O or synchronization statements at all. Also in
this case Concurrent Gang performs better tat Gang schedul-
ing. The reason is that Concurrent Gang uses the idle slots
of gang scheduling to schedule computing intensive tasks
that the local task scheduler on each PE detects at run-time.

Table 3: Experimental results - Computation intensive
workload

Simulation time Gang
Seconds Jobs Completed Total Idle Time (%)

5000 5 24
10000 11 17
20000 23 12
30000 35 11
40000 44 9

In tables 5 and 6, results for communication intensive
(point to point) workload are shown. Once again we ob-
serve a significant improvement in Total Idle time and in
throughput. Although gang scheduling is better than unco-
ordinated scheduling for this kind of job, Concurrent Gang

-5-



Table 4: Experimental results - Computation intensive
workload

Simulation time Concurrent Gang
Seconds Jobs Completed Total Idle Time (%)

5000 8 10
10000 12 6
20000 25 4
30000 37 3
40000 48 2

shown to be even better that gang scheduling. The commu-
nication semantics used was asynchronous non blocking for
send statements and blocking for receive statements. The
better performance of concurrent gang is due to the fact that
it will try to schedule each ready task as soon as possible, in
function of its priority. This minimizes the receiver’s block-
ing time if compared with gang scheduling, where each task
will only be scheduled a fixed number of times (generally 1)
on each cycle.

Table 5: Experimental results - Communication intensive
workload

Simulation time Gang
Seconds Jobs Completed Total Idle Time (%)

5000 3 43
10000 6 39
20000 17 34
30000 31 32
40000 35 31

Table 6: Experimental results - Communication intensive
workload

Simulation time Concurrent Gang
Seconds Jobs Completed Total Idle Time (%)

5000 5 27
10000 15 14
20000 33 8
30000 48 5
40000 63 4

Synchronization intensive workload simulation results
are shown in tables 7 and 8. The synchronization was al-
ways global, i.e. over all tasks of a job. Again, although
gang scheduler is a better option to scheduled those jobs
than uncoordinated scheduled, concurrent gang is shown to
be even better that gang scheduling, having significant im-
provements both in total idle time and throughput. This is
due to the fact that rescheduling those tasks that have not
reached the barrier on its originally assigned slot as soon as
possible allows those tasks to reach the barrier faster than if
they would be scheduled only on the next cycle. As a con-
sequence, the job can pass by the barrier earlier than with
standard gang.

Table 7: Experimental results - Synchronization intensive
workload

Simulation time Gang
Seconds Jobs Completed Total Idle Time (%)

5000 4 46
10000 14 43
20000 24 40
30000 41 39
40000 47 39

Table 8: Experimental results - Synchronization intensive
workload

Simulation time Concurrent Gang
Seconds Jobs Completed Total Idle Time (%)

5000 3 10
10000 16 6
20000 31 4
30000 54 3
40000 75 2

The last workload simulated was composed by a mix
of jobs with different characteristics varying from I/O in-
tensive to synchronization intensive. with some jobs also
composed by a mix of different kind of statements. The re-
sults are shown on tables 9 and 10. The improvement of
gang scheduling is significant, both in machine utilization
and in throughput.

Table 9: Experimental results - Mixed Workload - Gang
Scheduling

Simulation time Gang
Seconds Jobs Completed Total Idle Time (%)
10000 4 68
20000 8 67
30000 9 67
40000 9 67
50000 10 67

It is clear by the figures in tables 9 and 10 that Con-
current Gang outperforms the traditional gang scheduling
algorithm both in utilization and throughput for the mixed
workload. Again, this is due to the action of the local sched-
uler on each PE, that tries to schedule a eligible task every
time the current task blocks using the criteria previously de-
fined.

5 Discussion and Conclusion

In this paper we presented a new parallel scheduling algo-
rithm dubbed Concurrent Gang. The main differences over
standard gang scheduling are the explicit definition of a ex-
ternal global clock, which can be either hardware and soft-
ware implemented, and the presence of local task scheduler

-6-



Table 10: Experimental results - Mixed Workload - Concur-
rent Gang

Simulation time Concurrent Gang
Seconds Jobs Completed Total Idle Time (%)
10000 4 33
20000 10 23
30000 19 18
40000 24 15
50000 35 13

which decides what to do if a task of the job scheduled as a
gang blocks.

The concurrent gang approach are more beneficial to
workloads that require a more flexible scheduling than is
possible with gang scheduling. An example is I/O bound
workloads, as is demonstrated with simulation results. For
workloads requiring coordinated scheduled, the Concurrent
Gang algorithm becomes equivalent to the standard gang
scheduler, as verified with a communication bound work-
load.

The idle time in Concurrent Gang is reduced because,
in the event of an idle slot, Concurrent Gang always tries to
schedule other tasks that are either local tasks (although lo-
cal tasks are not considered in the simulations) or tasks that
do not require, at that moment, coordinated scheduling with
other tasks of the same job. This is the case, for instance,
of I/O intensive tasks and Computation intensive tasks. Ob-
serve that idle time can be further reduced through the use
of a space sharing strategy with thread migration.

We considered in this paper a parallel machine working
as a general purpose, multiuser, multiprogrammed server,
The workload considered in the simulations could be con-
sidered as a non-memory demanding workload: We sup-
pose that each PE has sufficient memory to accommodate
all tasks allocated for that processor at a time, or a efficient
virtual memory system minimizes the effects of insufficient
memory. Further work will consider the use of Concur-
rent Gang with heavy workloads, where all tasks have large
memory requirements.

References

[1] J. Jann et al. Modeling of Workloads in MPP.Job
Scheduling Strategies for Parallel Processing, LNCS
1291:95–116, 1997.

[2] Patrick G. Solbalvarro et al. Dynamic Coscheduling
on Workstation Clusters.Job Scheduling Strategies for
Parallel Processing, LNCS 1459:231–256, 1998.

[3] D. Feitelson and M. A.Jette. Improved Utilization
and Responsiveness with Gang Scheduling.Job
Scheduling Strategies for Parallel Processing, LNCS
1291:238–261, 1997.

[4] D. Feitelson and L. Rudolph. Distributed Hierarchi-
cal Control for Parallel Processing.IEEE Computer,
pages 65–77, May 1990.

[5] D. Feitelson and L. Rudolph. Gang Scheduling Perfor-
mance Benefits for Fine-Grain Synchronization.Jour-
nal of Parallel and Distributed Computing, 16:306–
318, 1992.

[6] D. Feitelson and L. Rudolph. Evaluation of Design
Choices for Gang Scheduling Using Distributed Hier-
archical Control.Journal of Parallel and Distributed
Computing, 35:18–34, 1996.

[7] D. Feitelson and L. Rudolph. Metrics and Bechmark-
ing for Parallel Job Scheduling.Job Scheduling Strate-
gies for Parallel Processing, LNCS 1459:1–24, 1998.

[8] M. A. Jette. Performance Characteristics of Gang
Scheduling In Multiprogrammed Environments. In
Proceedings of SC’97, 1997.

[9] W. Lee, M. Frank, V. Lee, K. Mackenzie, and
L. Rudolph. Implications of I/O for Gang Scheduled
Workloads.Job Scheduling Strategies for Parallel Pro-
cessing, LNCS 1291:215–237, 1997.

[10] R. Motwani, S. Phillips, and E. Torng. Non-
clairvoyant scheduling. Theoretical Computer Sci-
ence, 130(1):17–47, 1994.

[11] J.K. Ousterhout. Scheduling Techniques for Concur-
rent Systems. InProceedings of the 3rd International
Conference on Distributed Comp. Systems, pages 22–
30, 1982.

[12] F.A.B. Silva, L.M. Campos, and I.D. Scherson. A
Lower Bound for Dynamic Scheduling of Data Par-
allel Programs. InProceedings EUROPAR’98, 1998.

[13] F.A.B. Silva and I.D. Scherson. Improvements in Par-
allel Job Scheduling Using Gang Service. InProceed-
ings 1999 International Symposium on Parallel Archi-
tectures, Algorithms and Networks, 1999.

[14] L. G. Valiant. A bridging model for parallel computa-
tions. Communications of the ACM, 33(8):103 – 111,
1990.

[15] L. A. Zadeh. Fuzzy Sets.Information and Control,
8:338–353, 1965.

-7-


