
COSY Communication IP’s
J-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Pétrot∗, L. Pasquier∗∗,

E.A. de Kock, W.J.M. Smits
Philips Research Laboratories Eindhoven, Paris∗∗ Université Pierre et Marie Curie, Paris∗

E-mail: brunel@natlab.research.philips.com

ABSTRACT
The Esprit/OMI-COSY project defines transaction-levels to set-up
the exchange of IP’s in separating function from architecture and
body-behavior from proprietary interfaces. These transaction-
levels are supported by the “COSY COMMUNICATION IPs” that are
presented in this paper. They implement onto Systems-On-Chip
the extended Kahn Process Network that is defined in COSY for
modeling signal processing applications. We present a generic
implementation and performance model of these system-level
communications and we illustrate specific implementations. They
set system communications across software and hardware
boundaries, and achieve bus independence through the Virtual
Component Interface of the VSI Alliance. Finally, we describe the
COSY-VCC flow that supports communication refinement from
specification, to performance estimation, to implementation.

Keywords: System Design; IP; Communication Interface.

1. INTRODUCTION
Mixing and matching software & hardware modules (IPs) is
essential for designing new generation electronic systems. This
relies on defining interface standards. Emerging standards, e.g.
from the VSI Alliance [3], will first allow for connecting
hardware “Virtual Components” to different buses. We propose
higher interfaces for VCs that also target alternative software and
hardware implementations[2] (See Figure 1).

Application-level transactions (APP) are used for programming a
network of functions that specifies what the system is supposed to
do [5]. Functions communicate through directed point-to-point
first-in-first-out loss-less channels, using read and write on
variable-length vectors for data streaming and select for reacting
to non-deterministic control events (e.g. user). Application-level
transactions are refined into system transactions (SYS) when
choosing implementation of functions to SW or HW components.
Performance and cost are then the primary issues. Hence, SYS

transactions provide for parameters to trade-off throughput against
memory-size, e.g. FIFO-depths. Finally, system transactions that
operate on abstract data-types and high-level I/O semantics, are
unraveled into more detailed interfaces. For hardware we use VCI

as generic interface to ‘any’ physical bus specific protocol (PHY).

P C

PHY: Physical-Bus protocol, e.g. PIBUS

P C

VCI: «ANY BUS» Write, Read (address, data chunk)

P C

P C∞

APP: Write, Read (port, vector of «ANY» data-type)

Function
mapped to
HW or SW

(delay)

Interface Wrapper

Function
(zero-delay)

SYS: set Channel parameters to Tradeoff Speed versus Memory Size

Figure 1. Interface levels

These transaction levels are used for defining a “COSY IP”. It has
one functional model that complies with the APP interface, and one
or more software and hardware implementations that comply with
the SYS interface. Figure 2 shows how this is used for system
integration. Above the (APP) line, functional models are used for
creating a process network that is executed to verify that it meets
the functional requirements. Next, the downward arrows crossing
the (APP) line refer to a mapping diagram. The designer selects IPs
implementations. In the example, processes 1 and 2 are allocated
to separate software tasks, while processes 3 and 4 are allocated to
coprocessors. The SYS communications, across SW and/or HW

boundaries are implemented by “COSY COMMUNICATION IPs” [1].
They provide channel controllers, drivers and interfaces, on top of
the operating system (RTOS) for software and of the generic bus
interface (VCI) for hardware with dedicated wrappers to the
physical bus. The COSY COMMUNICATION IPs also provide for delay
models that allow to assess the impact of essential communication
parameters on the performance, e.g. fifo depths, choices of
physical buses and memories, etc.

PHY1

RTOS

CPU1 ASIC2ASIC1

COSY IP’s

fct

hw2 swhw1

APP

SYS

VCI

PHY2

Fct.
1

2 43

Software
module

Hardware
moduleSW

Channel I/F C-I/F

Wrappers

HW

Bus I/F

C-Ctl Channel Ctl

B-I/F
CPU-IOs

e.g. PIBus 32b, fixed priority

e.g. OtherBus 64b...

C-Ctl COSY System
Communication IP’s

RTOS & CPU
& VCI-OCB suppliers

Bus suppliers

N Implementations

1 Functional Model

SYS

APP

Figure 2. System Integration

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
DAC 2000, Los Angeles, California
(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

The remainder of this paper is organized as follows. The generic
implementation and performance models of the system-level
transactions are presented in Section 2. In Section 3 we detail
specific implementations that are supported by the COSY

Communication IPs. Support for selecting and predicting the
performance of the communications in the COSY-VCC flow is
addressed in Section 4 before the conclusion.

2. GENERIC COMMUNICATION MODEL
We present the generic implementation and performance model of
the system-level communications that was developed in COSY. On
top of Figure 3 we illustrate a SYS channel between producer P and
consumer C, where FIFO F holds at most D data-items of type T. We
note um (resp. vp) the sequence of variable length data-vectors that
are written by P (resp. read by C) during an interval [t0, t1]. Each
write blocks the producer until the last item is copied to F,
symmetrically for read until the last item is retrieved from F. This
is implemented using a ‘threshold’ protocol to minimize
synchronization overhead while preventing deadlock whatever are
the vector sizes and the FIFO depth [2].

SYS Channel-Controller

SYS FIFO-Controller

cw cr

frfw

P out CinDT,F

rtr

wtr

U V

write read
tstr setr

wkr

wkw

setw tstw

inc dec

fifostoref loadfloadu storev

(um) (vp)

push
tstwn tstrn

pull

u v

n

VCI-level Data Transfersumcd vpcd

Figure 3. Generic Implementation Model

The generic implementation model is detailed on the
transformation graph in Figure 3. Circles represent control
processes and rectangles represent shared memory elements. Bi-
directional arrows indicate synchronous control events: the
initiator stalls until completion of the task by the target node (bold
arrow). Simple arrows indicate asynchronous control events: the
initiator proceeds after generating the event. The Channel-
Controller synchronizes write and read operations, while the FIFO-
Controller performs actual data transfers. The Channel-Writer CW

decomposes a write request into push actions of data-chunks in
FIFO depending on available places. When blocked, CW uses setw
for requesting a wkw-callback from the Channel-Reader CR when
there are at least wtr empty places in FIFO. The FIFO-Writer FW

decomposes push request into loadu and storef operations that
copy data from source location U to FIFO, and issues inc for
incrementing the number of items n in FIFO. The Channel-Reader
CR and FIFO-Reader FR play a symmetrical role on read.

The associated performance model defines delay equations for the
latency of read and write operations (Figure 4). We distinguish
between delay constants that are characterized for each specific
implementation prior to execution, and variables that can only be
known at execution or simulation time.

Delay constants, in bold, account for propagation delays (dcsig ,
lines 1 & 6), memory access times (dmsig, lines 3 & 8), process
wake-up times (dwsig , lines 2 & 7) and execution delays (defct,
lines 4 & 9). They are statically set from e.g. propagation delay of
physical bus transfer, memory access time of SRAM; wake-up time
for initializing a function, execution delay of a software basic
block.

Run-time variables, in italic, first account for the number of data-
vectors (m), data-chunks (c) and data-items (d) on write, as well
as the branch (Bcw, line 4) that is taken in CW at each invocation.
Run-time variables also account for waiting times (dtwkw, line 5) of
CW on call-backs, and for arbitration delays (dasig, line 5 & 10)
on shared resources, e.g. bus, cpu, memory…

)10(;)()(

)9(

)8()(

)7(

)6()(

(5))(

(4)) ...(

(3))(

(2)

(1))(

∑∑

∑∑
∑

++++
×+×+

+×+×+
×+

++×+×+
+++++

×+×+×+
++×+

×+
++×+×=

d storefdaloadudaincdac pushda

dc

dc

c

dc
c wkwdtwkwdatstrdatstwndam writeda

c cw4Bcw1Bc

c

m

cmwriteL

fw1defw0de
storefdmloadudmincdm

pushdw
incdcstorefdcloadudcpushdc

cw4decw1decw0de
wtrdmrtrdmtstwndm

writedw
setwdctstrdctstwndcwritedc

Figure 4. Write Latency

A procedure, called YAPITI, is used for calibrating the delay
constants for a specific implementation. First, delay constants are
estimated by analyzing the actual code. For instance, the delay for
propagating the write request (dcwrite) between the producer and
the Channel-Writer will account for a simple function call (e.g. 10
cycles), if both are executed in the same software task, or for a
RTOS queue-event (e.g. 900 cycles) if they are executed in separate
tasks. Next, write latencies are measured on the implementation
using a cycle-true simulator. Finally, both estimated and measured
results are compared, and delay constants are refined. This
calibration distinguishes between “actual” and “intrinsic” delays.
The latter nullify arbitration delays (da) and call-back waiting
times (dt) such that the calibrated performance model can be re-
used for any application on COSY architecture. Results of the
calibration procedure are illustrated in Figure 5 for a specific
implementation.

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

Intrinsic Input Rate = (d × sizeofitem × clockfreq) / Lwrite in MBytes/sec

Number of Chunks per Write Request (c/m)

Estimated Measured
(TSS)

Calibrated
(yapiti)

calibration

Figure 5. Write Input Rate - Calibration

The read and write latency equations are implemented in
performance models in the COSY-VCC flow. The contribution of

the arbitration and call-back delays are added at simulation time,
such that the results account for the contention on shared
resources when exploring alternative system implementations.

3. IMPLEMENTATION SCHEMES
We developed several implementation schemes of the generic
system-level communication model. Examples are detailed below.

YSH1 – Software To Hardware scheme 1. Figure 6 illustrates
the YSH1 scheme between a Producer in software and a Consumer
in hardware. FIFO buffer and status variables (rtr , wtr, n) are
mapped to shared memory. Write-components (CW; FW) are
executed in the Producer’s task, using memcpy for data transfers
(loadu, storef). Read-components (CR; FR) are executed in a
separate task, triggered on read by an interrupt from the hardware
interface that includes a DMA engine for the loadf transfers. The
call-back signals (wkr, wkw) are implemented by pSOS queue
system calls q_send and q_receive.

PIBUS

Sys-
ISR

ITC

RAMCPU
MIPS

pSOS + bootcode

VCI

PHY

SYS

DMA

VCI shield

IT
REG

Wrapper

FIFO I/F

vector
SYS I/F

ASIC

TimerI$

P

D$

YSH1-task

CR FRFW

CW

r,w,n

FIFOU

CV

Figure 6. YSH1 scheme

YHS1 – Hardware To Software scheme 1. YHS1 scheme applies
for a Producer in hardware and a Consumer in software. FIFO is
implemented in the hardware interface as well as CW & FW. Read-
components (CR, FR) are executed in the Consumer’s task and
retrieve fifo-items from a slave memory-location in the hardware
interface. The status variables (rtr , n) are memory-mapped
registers in the interface. The hardware interface automatically
updates n and callbacks the reader (wkr) by means of an interrupt
and an ISR that re-triggers the Consumer’s task via a q_send
system call. The call-back mechanism on write is not implemented
as the Producer in hardware cannot suspend.

YSS1 – Software To Software scheme 1. This is the simplest
scheme between a Consumer and a Producer in software. Both use
their own run-time task, in which respective parts of the protocol
run. FIFO is mapped in shared memory, and accessed by memcpy.
RTOS queues are used to implement the wkw and wkr signals.

YHH1 – Hardware To Hardware scheme 1. This scheme applies
for a Producer and a Consumer in hardware. The Producer uses
DMA for pushing items in the FIFO that is implemented in the
Consumer’s interface. No software support is required, expect for
the address configuration phase.

Software components are implemented by a pSOS C library
(SYSLIB). From a user point of view, it allows for executing a YAPI

process as a pSOS task without changing the body function. The
user must provide an interface function which can be

automatically derived from the corresponding YAPI class
constructor.

Hardware interfaces, from UPMC, support the COSY communication
schemes by keeping fifo-status information and by generating
interrupts at a read/write coprocessor request, or on threshold
conditions. They also allow a coprocessor to communicate with
“any” physical bus by using the VCI-OCB standard.

vector vector

Coprocessor

Master Wrapper

Fifo
State
Threshold

Slave Wrapper
VCI interface

FIFO interface

YAPI interface

Config Status

Fifo
State
Threshold

Bus interface

SYS
interface

Service
Unit

Figure 7. Generic UPMC interface module

Figure 7 shows the three levels that translate SYS read and write
requests from the coprocessor to bit and cycle level protocol of
the physical bus. The vector unit, on top, translates the SYS vector
primitive into a simple fifo protocol consuming or producing the
data vector item per item. It may optionally issue an interrupt on
each request. The service unit, below, translates the fifo protocol
into VCI protocol. It provides a fifo service, and configuration and
status registers. Each fifo has a state register indicating the
number of free slots, and a threshold register that triggers an
interrupt when the fifo state reach this number. A master fifo has
in addition a run-time configurable address generator. The last
level is the bus wrapper; in COSY a VCI-PIBUS wrapper has been
realized. The interface module is written in generic VHDL, with
parameters for number and type of fifos, width and depth, and for
number of status and configuration registers. Implementation with
1 slave input and 1 slave output fifo, each 32 bits wide and 8 slots
deep, contains 5884 gates and supports a 100 MHz clock.

void boot_code(void)
{
 1: COSY_process_idT p,f;
 2: COSY_channel_idT p2f;

 3: COSY_syslink_init();
 4: p = COSY_create_process("prod1","producer");
 5: f = COSY_reate_process("filter1","filter");
 ...
 6: p2f = COSY_create_channel(p,"out",f,"in",
 sizeof(pixel), DEPTH);
 ...
 7: COSY_map_process(p, SW);COSY_map_process(f, HW);
 ...
 8: COSY_map_channel(p2f, YSH1);
 ...
 9: COSY_create_upmc_interface(f, V_PRIO, BASEADR,
 "in","out",NULL);
 ...
 10:COSY_create_task(p, PRODUCER_PRIO);
 11:COSY_start_syslink();
}

Figure 8. Boot code example

Finally, the SYSLIB library also provides an API for generating the
boot-code of the system. This is illustrated in Figure 8 for a 3-
processes network. It starts by building up the “logical” process

network (lines 4, 5, 6) after which processes and channels are
mapped to their respective implementations (lines 7 and 8). Next,
the required UPMC interfaces are instantiated (line 9) which
includes setting the interrupt priority and memory-base address.
Finally, run-time tasks are created and the application is started.

PR39KpSOS UPMC
I/F

hw
ASIC

MEM

PIBUS

sw
RT1

sw
RT2

W RF
push pull

←←
Producer ConsumerFifo

SYS

producer consumer

pixel: raw video

N frames N×L×B blocks

YAPI
Functional
Diagram

VCC
Functional
Diagram

VCC
Architectural
Diagram

VCC
Mapping
Diagram

Depth=128 pixelswkw

write read

Figure 9. COSY-VCC design entries

4. COSY-VCC FLOW
Philips and Cadence Design Systems collaborate in developing
the COSY-VCC flow. Design entries are illustrated on Figure 9 with
a simple Producer-Consumer system. Once captured and verified
with YAPI, the design is automatically imported in VCC. Functional
components are then mapped to architectural components. The
refined ‘WFR’ channel is used for selecting a COSY communication
scheme: we select here a YSH1 128-deep channel. Performance
simulation use the WFR models for the communication delays. For
instance, wkw call-backs are generated by F and received by W. In
YSH1, W is mapped to software hence the RTOS model accounts
for the task arbitration and resume time. Once started, W generates
e.g. a push event that is delayed by a delay model that is
generated by YAPITI as exposed in Section 2:

The generated push event triggers the bus delay model, before
reaching F that triggers memory delays and generates new events.

Once architectural choices are assessed in VCC, the design can be
automatically exported to TSS cycle-true co-verification
environment (Figure 10). This generates the boot-code and all
communication sw & hw components. Implementation modules
of YAPI functions are used if readily available, else we encapsulate
these functions into real-time task for software, and we use a co-
simulation link for hardware. Finally, we generate a detailed
netlist, using CPU’s cores, buses, memories, etc., and we export

probes and monitors from VCC to TSS level for calibrating the
performance models of new IPs.

VCC ackreq

→→ init

in out

← ←init

in

init

ack ↓

←

outreq

←

↑

init

in out in out

inout inout
Controller

Producer Filter Consume

Fifo1

Fifo2 Fifo3

Fifo4

Init

r3000pSOS memory UPMC_Fifo

HWfilter

UPMC_1
CPU1 MEM1

PIBU S1

ITBus1

SYS1

FILTER1

RunTimeTask RunTimeTask RunTimeTask RunTimeTask

RT1 RT2 RT3 RT4

YAPI
YAPI
C-fct

YAPI
channel

YAPI
app-lib

TSS Executable Implementation

vcc2tss

CPU
RAM

SYS

pSOS

ITC

sw-
tasks

ROM NVRAMTIMER

I/F

ASIC

VCC
C-fct

VCC
channel

yapi2vcc

sys
mapping
schemes

channel
param.

hw/sw
alloc.

VCC
sys-libVCC

core-lib

C-fct

yapi2tss

TSS
asics

C-fct
asic

Unix/
TSS

cosim.

C
sys-lib

boot-
code

TSS-
netlist

I/F
config.

TSS
sys-lib

TSS
cores

sys-I/F
GateBCU

Figure 10. COSY-VCC flow

5. SUMMARY AND FUTURE WORK
COSY Communication IPs are developed for defining IPs having a
function that can target SW or HW implementation. The
communication mechanisms reflects several abstraction levels that
are used in the COSY-VCC system integration flow for: functional
verification, performance estimation and link to implementation.
Preliminary results on a Digital Video Broadcast system quantify
simulation speed ratios: one second of video takes 3 minutes at
YAPI level, 6 at VCC level and 3 to 4 hours at TSS level. Work
continues with the validation of the performance models, and with
a final assessment in the context of the Nexperia-Digital Video
Platform for Philips Semiconductors[6]. The assessment results
will be used for contributing to the definition of IP interfaces
standards and commercial IP integration flow that are urgently
needed for designing new generation electronic systems.

Acknowledgements: This work is supported by the European
Commission under ESPRIT COSY EP25443. It evolves with the
contributions from Cadence Design Systems, Université Pierre et
Marie Curie in Paris and Politecnico di Torino.

6. REFERENCES
[1] J.Y Brunel et al., «COSY: a methodology for system design

based on reusable hardware & software IP's,» in: J-Y. Roger
(ed.), Technologies for the Information Society, IOS Press,
709-716, 1998

[2] J.-Y. Brunel et al., «Communication Refinement in Video
Systems on Chip,» CODES’99, Rome, 1999, pp. 142-146

[3] D. Fairbank et al., «The VSI Alliance: journey from vision to
production,» Electronic Design, vol. 46, no. 1, pp. 86-92, Jan
12 1998.

[4] G. Martin et al., «Methodology and technology for design of
communications and multimedia products via system-level IP
integration,» DAC, 1998

[5] E.A.de Kock et al., «YAPI: Application Modeling for Signal
Processing Systems,» Submitted to DAC2000, Los Angeles,
2000

[6] Peter Clarke, «Philips extends TriMedia reuse into Nexperia
cores» EE Times, Aug 30,1999

viewport integer d, bcw; /* dynamic variables */
delay_model() {

input (wkw); /* from F */
run(); /* run W functional model */
. . .
if (bcw == BCW1)

delay (4.75 + d * 24.35); /* push */
output (push); /* to F */

} /* generated for YSH1 (mips,psos,sram,pibus) */

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

