COSY Communication IP’s

J-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Pétrot", L. Pasquier™,
E.A. de Kock, W.J.M. Smits

Philips Research Laboratories Eindhoven, Paris™ Université Pierre et Marie Curie, Paris”
E-mail: brunel@natlab.research.philips.com

APP: Write, Read (port, vector of «<ANY» data-type)

O =1~

ABSTRACT

The Espritlomi-cOSY project defines transaction-levels to set-up
the exchange aP’s in separating function from architecture and _ SYS;/&‘Q‘“"E' parameters o Tradeoff Speed versus Memory Size
body-behavior from proprietary intedes. These transaction- arodeay) Bﬁ]ﬂ—’

levels are supported by thedsy coOMMUNICATION Irs” that are l R BLUS» Wiite, Read (address, deta ohurk)
presented in this paper. They implement onto Systems-On-Chip o : '

the extended Kahn Process Network that is definedosy for BI ’I

modeling signal processing applications. We present a generic PHY: Physical-Bus protocol, e.g. PIBUS
A
¥

implementation and performance model of these system-level
Wrapper

Function
mapped to
HW or SW

(delay)

communications and we illustrate specific implementations. They
set system communications across software and hardware
boundaries, and achieve bus independence through the Virtual
Component Intedce of the VSI Alliance. Finally, we describe the Figure 1. Interface levels

cosy-vce flow that supports communication refinement from rpase transaction levels are used for definingas 1. It has

specification, to performance estimation, to implementation. one functional modehat complies with thepr interface, and one
Keywords: System Design; IP; Communication Interface. or moresoftware and hardware implementatichat comply with

the sys interface. Figure 2 shows how this is used for system
1. INTRODUCTION integration. Above theapp) line, functional models are used for
Mixing and matching software & hardware moduless)(is creating a process network that is executed to verify that it meets
essential for designing new generation electronic systems. Thisthe functional requirements. Next, the downward arrows crossing
relies on defining interface standards. Emerging standards, e.gthe @pp) line refer to a mapping diagram. The designer seiests
from the VSI Alliance [3], will first allow for connecting implementations. In the example, processes 1 and 2 are allocated
hardware “Virtual Components” to different buses. We propose to separate software tasks, while processes 3 and 4 are allocated to
higher interfaces fovcs that also target alternative software and coprocessors. Theys communications, acrossw and/or HW
hardware implementations[2] (See Figure 1). boundaries are implemented bgosy COMMUNICATION Irs” [1].

Application-level transactionsxgp) are used for programming a They provi_de channel controllers, drivers and interfaces, on top of
network of functions that specifies what the system is supposed tdh€ operating systenr{os) for software and of the generic bus
do [5]. Functions communicate through directed point-to-point interface Yci) for hardware with dedicated wrappers to the
first-in-first-out loss-less channels, usimgad and write on physical bus. Theosy COMMUNICATION IFs also provide for delay
variable-length vectors for data streaming aetéctfor reacting models that allow to assess the impact of (_essentlal communication
to non-deterministic control events (e.g. user). Application-level Parameters on the performance, e.g. fifo depths, choices of
transactions are refined into system transactiss) (when physical buses and memories, etc.

Interface

choosing implementation of functions $w or Hw components.
Performance and cost are then the primary issues. Hemse,
transactions provide for parameters to trade-off throughput against
memory-size, e.grIFo-depths. Finally, system transactions that

operate on abstract data-types and high-level I/O semantics, are

unraveled into more detailed interfaces. For hardware weaise
as generic interface to ‘any’ physical bus specific protaaet)(

Permi ssion to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, the copyright notice, thetitle of the
publication and its date appear, and notice is given that copying is by permission of
ACM, Inc. To copy otherwise, to republish, to post on serversor to redistribute to
lists, requires prior specific permission and/or afee.

DAC 2000, Los Angeles, California

(c) 2000 ACM 1-58113-188-7/00/0006..$5.00

ST

CPU1 ASIC1 ASIC2

Hardware
‘ sw ‘ Hw ‘ module

COSY IP’s

i i
11 Functional Model |
i |

Software
module

COSY System
Communication IP’s

>VCl
RTOS & CPU

The remainder of this paper is organized as follows. The genericDelay constants, in bold, account fmopagation delaygdcsg ,
implementation and performance models of the system-levellines 1 & 6),memory access timédmg, lines 3 & §, process
transactions are presented in Section 2. In Section 3 we detailvake-up times(dwsyg , lines 2 & 7) andexecution delay$der,

specific implementations that are supported by thesy lines 4 & 9). They are statically set from e.g. propagation delay of
Communication IPs. Support for selecting and predicting the physical bus transfer, memory access timerafv; wake-up time
performance of the communications in thesy-vcc flow is for initializing a function, execution delay of a software basic
addressed in Section 4 before the conclusion. block.

2. GENERIC COMMUNICATION MODEL Run-time variables, in italic, first account for the nhumbedaiia-

]yectors(m), data-chunkgc) anddata-items(d) on write, as well
as the branchBcw, line 4) that is taken iow at each invocation.
Run-time variables also account feaiting times(dty, line 5) of

cw on call-backs, and faarbitration delays(dasig, line 5 & 10)

on shared resources, e.g. bus, cpu, memory...

We present the generic implementation and performance model o
the system-level communications that was developeway. On
top of Figure 3 we illustrate svs channel between produceand
consumec, whereriFo Fholds at mosb data-items of typg. We
noteu, (resp.v,) the sequence of variable length data-vectors that

are written byp (resp. read by) during an interval [t,]. Each Lwrite =mxdcyyrite *+C* (dCtstwn *dCtstr +dCsetw) (1)
write blocks the producer until the last item is copiedFfo +mx dWyyrite 2
symmetrically forread until the last item is retrieved from This +ex (dmigtyn + My +dmyir) 3)

is implemented using a ‘threshold’ protocol to minimize

d d d 4
synchronization overhead while preventing deadlock whatever are +exdecwo+ 3 o(Bowaxdeowd *- Bowa X decwa))

the vector sizes and teo depth [2]. * X m%@write * 3 c(dastwn* dastr + dawkw* dtwkw) - (5)
+cxdepysh +d x(dcjpadu * dCstoref +dCinc) (6)

(Un) —E— v —»@ +cxdwpysh (7)

() 0 +cxdming +d x (dMjoadu +dMstoref) ®

wrireg ”””””””””” ”””””””””” read +cxdefyo +d xdefy1 9)

+3y c(dapyush*danc) + Y g (daoadu* dastoref) ; (10)

SYS Channel-Controller

Figure 4. Write Latency

A procedure, calledvapiTi, is used for calibrating the delay
constants for a specific implementation. First, delay constants are
estimated by analyzing the actual code. For instance, the delay for
propagating thevrite request dc,) between the producer and
the channelwriter will acoount for a simple function call (e.g. 10
cycles), if both are executed in the same software task, or for a
__ RTOSqueue-event (e.g. 900 cycles) if they are executed in separate
tasks. Next, write latencies are measured on the implementation
using a cycle-true simulator. Finally, both estimated and measured
Figure 3. Generic Implementation Model results are compared, and delay constants are refined. This
The generic implementation model is detailed on the calibration distinguishes between “actual” and “intrinsic” delays.
transformation graph in Figure 3. Circles represent control The latter nullify arbitration delaysdg) and call-back waiting
processes and rectangles represent shared memory elements. Bimes @it) such that the calibrated performance model can be re-
directional arrows indicate synchronous control events: the used for any application onosy architecture. Results of the
initiator stalls until completion of the task by the target node (bold Calibration procedure are illustrated in Figure 5 for a specific
arrow). Simple arrows indicate asynchronous control events: theimplementation. ‘ ‘ . ‘ ‘
initiator proceeds after generating the event. Tdteannel- 0K Intrinsic Input Rate = (d X Size0fyqy, X CloCkyeg) / Lyye in MBytes/sec
controller synchronizes write and read operations, while it 35 [
controller performs actual data transfers. Thannelwriter cw
decomposes write request intgpush actions of data-chunks in 30 ¢
FIFo depending on available places. When blocked usessetw
for requesting avkw-callback from thechannelreadercr when %
there are at leasttr empty places irFiFo. The FIFO-writer Fw
decomposepush request intoloadu and storef operations that
copy data from source locatiom to FIFo, and issuesnc for
incrementing the number of itemsin FIFo. The channelreader

wkw

tstwn \‘ ‘/ tstrn

SYS FIFO-Controller

Measured Calibrated

Estimated (Tss) (yapiti) |

s
+

calibration

CR andriFo-rReaderrr play a symmetrical role oread 10| . [1
The associated performance model defines delay equations for the Number of Chunks per Write Requ
latency ofread andwrite operations (Figure 4). We distinguish %0 10 20 30 40 50 6 70 8 90 100
between delay constants that are characterized for each specific Figure 5. Write Input Rate - Calibration

implementation prior to execution, and variables that can only be

) . o The read and write latency equations are implemented in
known at execution or simulation time.

performance models in theosy-vcc flow. The contribution of

the arbitration and call-back delays are added at simulation time,

automatically derived from the correspondingari class

such that the results account for the contention on sharedconstructor.

resources when exploring alternative system implementations.

3. IMPLEMENTATION SCHEMES

Hardware interfaces, fromPMc, support theeosy communication
schemes by keeping fifo-status information and by generating

We developed several implementation schemes of the generidnterrupts at a read/write coprocessor request, or on threshold

system-level communication model. Examples are detailed below.
YsH1 — Software To Hardware scheme 1Figure 6 illustrates

theysHl scheme between a Producer in software and a Consumer

in hardware. Fo buffer and status variablestr(wtr, n) are
mapped to shared memory. Write-componerds; (Fw) are
executed in the Producer’s task, usingmcpyfor data transfers
(loaduy, store. Read-componentscg; FR) are executed in a
separate task, triggered ogmd by an interrupt from the hardware
interface that includes eMA engine for thdoadf transfers The
call-back signals vgkr, wkw) are implemented by sps queue
system callg|_sendandq_receive.

P AsiC [v](©) svs
L I e * -}
@ YSH1-task Sys-

@ ISR vector
A

| pSOS + bootcode |

cPy — RAM [DMA)
MIPS r,w,n VCl shield vCl
e [=
I$ |D$ <—|Timer FIFO Wrapper | pHY
- - -->

v v

\
< PIBUS >
Figure 6. YSH1 scheme

YHs1 — Hardware To Software scheme 1YHs1 scheme applies
for a Producer in hardware and a Consumer in softv##e.is
implemented in the hardware interface as wethast Fw. Read-
components dr, FR) are executed in the Consumer’s task and
retrieve fifo-items from a slave memory-location in the hardware
interface. The status variablestr(, n) are memory-mapped
registers in the interface. The hardware interface automatically
updates and callbacks the readevkr) by means of an interrupt
and anisr that re-triggers the Consumer’s task viagasend
system call. The call-back mechanism on write is not implemented
as the Producer in hardware cannot suspend.

v

A

Yssl — Software To Software scheme IThis is the simplest

scheme between a Consumer and a Producer in software. Both use

their own run-time task, in which respective parts of the protocol
run. FIFO is mapped in shared memory, and accessauéicpy
RTOSqueues are used to implement wWievandwkr signals.

YHH1 — Hardware To Hardware scheme 1This scheme applies

for a Producer and a Consumer in hardware. The Producer uses

DMA for pushing items in th&iFo that is implemented in the
Consumer’s interface. No softwanepport is required, expect for
the address configuration phase.

Software components are implemented by sospC library
(sysLiB). From a user point of view, it allows for executingag!
process as aspstask without changing the body function. The
user must provide an interface function which can be

conditions. They also allow a coprocessor to communicate with
“any” physical bus by using theci-ocs standard.

Coprocessor
A T _ SYS .
interface
A v FIFO interface
Fifo Service Fifo
State Unit State
Threshold Threshold
Config Status
i i VCl interface
F/Iaster' Wrapperl ISIave Wrapper |
A

Bus interface

W W.
¥ ¥

Figure 7. Genericupmc interface module

Figure 7 shows the three levels that transtateread and write
requests from the coprocessor to bit and cycle level protocol of
the physical bus. Theector unit on top, translates trsrs vector
primitive into a simple fifo protocol consuming or producing the
data vector item per item. It may optionally issue an interrupt on
each request. Theervice unit below, translates the fifo protocol
into vci protocol. It provides a fifo service, and configuration and
status registers. Each fifo has a state register indicating the
number of free slots, and a threshold register that triggers an
interrupt when the fifo state reach this number. A master fifo has
in addition a run-time configurable address generator. The last
level is thebus wrapperin cosy a vcCI-PIBUS wrapper has been
realized. The interface odule is written in generigHDL, with
parameters for number and type of fifos, width and depth, and for
number of status and configuration registers. Implementation with
1 slave input and 1 slave output filgch 32 bits wide and 8 slots
deep, contains 5884 gates and supports a 100 MHz clock.

void boot_code(void)

1: COSY_process_idT p,f;
2: COSY_channel_idT p2f;

3: COSY_syslink_init();

4: p = COSY_create_process("prod1","producer”);

5: f = COSY_reate_process(“filterl","filter");

6: p2f = COSY_create_channel(p,"out" f,"in",
sizeof(pixel), DEPTH;

COSY_map_process(p, SW;COSY_map_process(f, HW,

.

COSY_map_channel(p2f, YSHY);

COSY_create_upmc_interface(f,
"in","out",NULL);

V_PRIO, BASEADR

10:COSY_create_task(p,
11:COSY_start_syslink();
}

PRODUCER_PRID

Figure 8. Boot code example

Finally, thesysLis library also provides aapi for generating the
boot-code of the system. This is illustrated in Figure 8 for a 3-
processes network. It starts by building up the “logical” process

network (lines 4, 5, 6) after which processes and channels areprobes and monitors fromcc to Tss level for calibrating the

mapped to their respective implementations (lines 7 and 8). Next
the requiredupmc interfaces are instantiated (line 9) which
includes setting the interrupt priority and memory-base address
Finally, run-time tasks are created and the application is started.

pixel: raw video

YAPI
Functional producer
Diagram
N frames
c write 5 e read
VCC Producer = . | Fifo < Consumer,
Functional ! 1o <] |
Diagram ; "
wkw__ | Depth=128pixels
4 [o R ©
=gwe Srg BREs
pull
VCC
Mapping
Diagram
2
sSw hw
RT1 ASIC
e o
VCC
Architectural 5 % SYS
Diagram
° pSOS-{PR39K Uwc
Q 1)
PIBUS ¢ - VI >

Figure 9. cosy-vcc design entries

4. COSY-VCC FLOW

Philips and Cadence Design Systems collaborate in developin
thecosy-vcc flow. Design entries are illustrated on Figure 9 with
a simple Producer-Consumer system. Once captured and verifie
with YAPI, the design is automatically importedviac. Functional
components are then mapped to architectural components. Th
refined WFR' channel is used for selectingcasy communication
scheme: we select herevaHl 128-deep channel. Performance
simulation use thevFrR models for the communication delays. For
instancewkw call-backs are generated bynd received bw. In
YSH1, W is mapped to software hence thieos model accounts

for the task arbitration and resume time. Once stanegnerates
e.g. apush event that is delayed by a delay model that is
generated byAPITI as exposed in Section 2:

Viewport integer d, bcw; /*
delay_model() {

input (wkw); /*

run(); /*

dynamic variables */
fromF */
run W functional model */
if (bcw == BCW1)
delay (4.75 +d *24.35); /*
output (push); /* toF *
generated for YSH1 (mips,psos,sram,pibus)

push */

i */

The generateghush event triggers the bus delay model, before
reachingr that triggers memory delays and generates new events.

Once architectural choices are assessadat the design can be
automatically exported toTss cycle-true co-verification
environment (Figure 10). This generates the boot-code and all
communication sw & hw components. Implementation modules
of YAPI functions are used if readily available, else we encapsulate
thesefunctions into real-time task for software, and we use-a
simulation link for hardware. Finally, we generate a detailed
netlist, usingcPUs cores, buses, memories, etc., and we export

Jperformance models of news.

YAPI
B C-fet

YAPI

e
>
§E||
@

<

>

3

)
x=]
S

o

Jar

= =

[yapi2vce

VCC ||
C-fct

|

hw/sw Il
alloc.

Z<
3
o|
30
3

sys
mapping
schemes

vce2tss]

L] yapi2tss

TSS Executable Implementation

gjl
=1

Cct ||
asic

]
<
@

2L
® T

)

Figure 10.cosy-vcc flow

5. SUMMARY AND FUTURE WORK

cosy ammmunicationips are developed for definings having a
function that can targetsw or Hw implementation. The
communication mechanisms reflects several abstraction levels that
are used in theosy-vcc system integration flow for: functional
verification, performance estimation and link to implementation.
Preliminary results on a Digital Video Broadcast system quantify
simulation speed ratios: one second of video takes 3 minutes at

N level, 6 atvcc level and 3 to 4 hours ass level. Work

ontinues with the validation of the performance models, and with
final assessment in the context of the Nexperia-Digital Video
Platform for Philips Semiconductors[6]. The assessment results

Sill be used for contributing to the definition of IP interfaces

standards and commercial IP integration flow that are urgently
needed for designing new generation electronic systems.

Acknowledgements: This work is supported by the European
Commission under ESPRIT COSY EP25443. It evolves with the
contributions from Cadence Design Systems, Université Pierre et
Marie Curie in Paris and Politecnico di Torino.

6. REFERENCES

[1] J.Y Brunel et al., «COSY: a methodology for system design
based on reusable hardware & software IP's,» in: J-Y. Roger
(ed.), Technologies for the Information Society, 10S Press,
709-716, 1998

J.-Y. Brunel et al., «Communication Refinement in Video
Systems on Chip,6ODES’99 Rome, 1999, pp. 142-146

D. Fairbank et al., «The VSI Alliance: journey from vision to
production,»Electronic Designvol. 46, no. 1, pp. 86-92, Jan
12 1998.

G. Matrtin et al., «Methodology and technology for design of
communications and multimedia products via system-level IP
integration,»DAC, 1998

E.A.de Kock et al., «YAPI: Application Modeling for Signal
Processing SystemsSubmitted to DAC200Q.os Angeles,
2000

Peter Clarke, «Philips extends TriMedia reuse into Nexperia
cores» EE Times, Aug 30,1999

(2]
(3]

(4]

(5]

[6]

	Main
	DAC00
	Front Matter
	Table of Contents
	Session Index
	Author Index

