
A Layout Approach for Electrical and Physical Design Integration of
High-Performance Analog Circuits

Mohamed Dessouky and Marie-Minerve Louërat

Universit́e Pierre et Marie Curie. Laboratoire LIP6-ASIM.
4, place Jussieu. 75252 Paris Cedex 05. France.

E-mail:Mohamed.Dessouky@lip6.fr

Abstract

This paper presents a layout generation tool that aims to
reduce the gap between electrical sizing and physical real-
ization of high performance analog circuits. The procedural
layout approach is shown to be best suited for this kind of
methodologies. Once captured, the procedural description
can be used several times to calculate both rapidly and ac-
curately all parasitics that appear during physical realiza-
tions without layout generation. Efficient algorithms are de-
veloped to take into account analog layout constraints such
as matching, parasitic control, shape and reliability consid-
erations. This allows to account for these effects early in
the design which guarantees the fulfillment of the required
performance specifications, permits to optimize various de-
sign aspects in the presence of parasitics and shortens the
overall design time by avoiding laborious sizing-layout iter-
ations. An example of a high performance OTA is presented
at the end to illustrate the effectiveness of the approach.

1. Introduction

During the design of high performance analog circuits,
device matching, parasitics, reliability design rules, thermal
and substrate effects must all be taken into account. All of
these effects can be controlled with a good layout design
performed either manually by an expert layout designer or
using a dedicated automatic tool. However, the nominal val-
ues of performance specifications are subject to degradation
due to a large number of parasitics which are generally dif-
ficult to estimate accurately before the actual layout is com-
plete. Over-estimation of layout parasitics results in wasted
power and area, while under-estimation of parasitics leads
to circuits that do not meet the required specifications.

Various layout automation tools have been reported in
order to automate the layout generation phase [1–6]. They
can be classified into two main groups: knowledge based
approaches and optimization based ones.

In the first group the circuit topology is always fixed. A
soundtopological arrangement for the building blocks of
the circuit is stored based on traditionally accumulated de-
sign experience. Knowledge storage can either be in the
form of a procedural layout [1] or through the use of topol-
ogy libraries [2], by employing adesign by exampleprin-
ciple (layout templates) [3].
The second group of approaches employs an optimization
algorithm to generate a suitable placement configuration
followed by a routing phase [4]. They are fully automated
and strive to take a large number of specific analog con-
straints into account. More recently, a performance-driven
layout methodology has been introduced [5]. Performance
specifications are mapped onto a set of constraints for criti-
cal parasitics which are then used to drive the layout tools.
In [6], performance constraints are used to drive directly
the layout tools.

As the knowledge based approaches offer a short gen-
eration time, and a reuse of the expert knowledge (which
seems to be indispensable to the analog domain), they suf-
fer from their high design cost and thus are best suited for
frequently used circuits. On the other hand, the optimiza-
tion based approaches offer anautomaticlayout generation
which tries to optimize the layout, but they suffer from the
complexity of the optimization problem and the determina-
tion of the appropriate cost function, this is besides a long
generation time. They are thus best suited for circuits with
small number of devices.

All of the systems cited above consider the layout as a
step whichfollowsthe design synthesis process. The layout
generation tool does not interact during the design synthe-
sis. So the circuit sizing tool hasno information about the
parasitics that the circuit is going to generate during the lay-
out phase.

In this paper a procedural layout tool that incorporates a
fast area optimization algorithm and accurate parasitic cal-
culation is presented as a solution that couples both circuit
sizing and layout generation.

Different module layout styles can be used, their corre-
sponding parasitic contribution is evaluated and sent back

to the circuit sizing program. Layout techniques that mini-
mize parasitic capacitances on certain nets and enhance the
overall performance can be further exploited in order to op-
timize certain design aspects. For example, in an opamp,
folding large transistors allows to decrease their source and
drain diffusion capacitances. This can be used to optimize
transistor sizes and to reduce the current consumption for a
given frequency and noise specifications.

This paper is organized as follows, section 2 presents the
overall design methodology. In Section 3 various analog
layout constraints are discussed and solutions that are in-
corporated in the tool are proposed. Section 4 describes the
implementation of the layout tool. An example of parasitic
calculation during circuit sizing is given in section 5. Fi-
nally, conclusions are summarized in section 6.

2. Layout-oriented design methodology

Layout
Generation

Performance
Evaluation

Layout

Sizing

Extraction

Layout

(b)(a)

Sizing

tool

Layout tool

Parasitic
Calculation

Spec. Technology Spec. Technology

Figure 1. Design Flow: (a) traditional and (b)
proposed

The problem of compensating layout parasitics is usu-
ally solved as demonstrated by the design flow shown in
Fig. 1(a). The design process follows laborious iteration
loops during which circuit sizing is followed by generating
the layout, extracting the circuit netlist with layout para-
sitics and evaluating the effect of those parasitics in order
to compensate for them by re-sizing the circuit. This re-
sizing modifies the parasitics and the loop is repeated till a
satisfying performance is obtained.

Fig. 1(b) shows the proposed layout-oriented method-
ology. The approach is an extension to that first presented
in [7] by considering a more detailed parasitic extraction
and analog layout constraints while treating circuit relia-
bility conditions in the same time. Layout information is
passed to the circuit sizing tool early in the design phase.

Multiple calls to the layout tool in aparasitic calculation
mode are allowed as the design progresses. This approach
guarantees a circuit that satisfies the performance specifica-
tions even in the presence of circuit parasitics. The accuracy
is largely dependent on the precision of parasitic calcula-
tions by the layout tool, as well as its capability to take ana-
log layout constraints into consideration. Physical layout
constraints such as the global aspect ratio and circuit relia-
bility design rules can be taken into accountduring circuit
sizing.

In order to be used in the proposed design methodology,
the layout generation tool must satisfy the following condi-
tions:

• It must be fast as it is normally called several times
during circuit sizing.

• It must support an accurate method for parasitic calcu-
lation.

• It must support conventional analog layout constraints.

• In order to explore various design space points, it must
support different layout options for each device.

It is clear from the first condition that optimization-
based layout generation approaches [4–6] can’t be used
due to their high computational cost. On the other hand,
the knowledge-based approach seems to be attractive for its
short layout generation time. The procedural approach has
been thus chosen for reasons of flexibility and generality.
The use of procedural module generators and routing al-
lows to predict parasitics before the layout is done. This is
achieved through a dedicated layout language that allows to
easily describe relatively both module placement and rout-
ing.

3. Analog layout constraints

In addition of being fast, analog layout effects must be
carefully treated in the layout tool. Layout constraints taken
into account are presented hereafter together with the algo-
rithms developed to control them.

3.1. Parasitics constraints

All transistors are built using a single motif generator
that produces one of the following motifs: A single-module
transistorM1, a double-module transistorM2, a single-
module transistor with a dummy oneM1D and a dummy
transistorMD all shown in Fig. 2. A bulk contact accom-
panies each motif to maintain the bulk potential. Motifs are
stacked or interleaved in order to build-up transistors. This
motif generator provides total control over transistor termi-
nals and wires. This gives an additional degree of freedom

M1 M2 M1D MD

Figure 2. Motifs used in building transistors

to control coupling parasitic capacitance between wires in-
side transistors according to the application [8]. Fig. 3
shows two different implementations of the same transis-
tor. In 3(a) the gate and source are superimposed, while the
drain passes over both of them. This module configuration
can be used in a biasing network or a low frequency appli-
cation. In 3(b) the gates are joined by the first metal layer
close to the active region to reduceRC effects, the source
passes over it using the second metal layer and the drain is
separated downwards. This module is best suited to high
frequency applications. Both versions could thus be used
in two different contexts depending on the application and
module routing. Both of them are generated using thesame
module generator.
Very wide transistors are also generated on multiple stacks.
This allows to insert more bulk contacts in order to avoid
latch-up and to reduce substrate coupling noise.

Drain

Source
Gate

Bulk Drain

Source

Gate

Bulk

(a) (b)

Figure 3. Different transistor overlapping ter-
minals

Transistor folding reduces the diffusion-bulk parasitic
capacitance (drain-bulk and source-bulk capacitances).
This is due to the sharing of these diffusion areas between
folds. The total effective diffusion widthWeff is usually
a fractionF of the transistor widthW (Weff = F.W),
whereF is the capacitancereduction factor. In case of a
non-folded transistorF = 1. While for a folded one,F
depends on the number of foldsNf and the position of the

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

fN

(b)

(a)

F

(c)

Figure 4. Capacitance reduction factor F

diffusion (for alternate source/drain diffusions) as follows:

F =


1
2 if Nf even & internal diffusion (a),
Nf+2
2Nf

if Nf even & external diffusion (b),
Nf+1
2Nf

if Nf odd (c).

(1)

As shown in Fig. 4, this reduction factorF decreases sig-
nificantly for the first few folds for cases 1(b) and 1(c). It is
clear that this parasitic capacitance can be minimized on a
given net by controlling the number of folds of the transis-
tor connected to this net to be even, and by connecting it to
the internal diffusion (case 1(a)). This parasitic control is
used by the tool to enhance the frequency characteristics of
the layout.

3.2. Matching constraints

Special layout styles of transistors are used in order to
minimize device mismatch based on considerations of pro-
cess gradients, temperature gradients, anisotropic effects,
and boundary effects. Interleaving and common centroid
configurations are shown to be effective in reducing the mis-
match due to linearly varying parameters across the chip
surface [9]. Combined with parasitic constraints, several
configurations of critical transistors in the circuit could be
investigated and a good compromise between matching and
parasitic effects could be found.

The mismatch between transistors is also dependent on
their relative channel orientation. Consider two MOS tran-
sistorsMi andMj, respectively split intoni andnj mod-
ules, all in the same stack and carrying the same nominal
currentI. The current mismatchFij between transistors

Mi andMj is given by [10]

Fij ,
εI
I

∣∣∣∣∆nini
− ∆nj

nj

∣∣∣∣ (2)

whereεI is the maximum error of the difference between
currents flowing through channels with opposite orienta-
tions, ∆ni(∆nj) is the difference between the number
of motifs oriented in opposite orientations of transistor
Mi(Mj). ForN transistors in the same stack, thecurrent
mismatchFN is defined as

FN =
N∑
i=1

N∑
j=i+1

Fij (3)

An algorithm dedicated to the layout of tightly matched
transistors has been developed. It takes into account chan-
nel orientation and guarantees maximum interleaving be-
tween transistors all centered (as much as possible) around
the stack mid-point (common-centroid).

The algorithm is based on theM2 and theM1D motifs
shown in Fig. 2. For these two motifs, if the source is
assigned to the external diffusion and the drain to the in-
ternal one, then they can be freely interleaved by sharing
the source diffusion area.

Current mirrors are a special case where tight matching be-
tween transistors is usually essential. Given the current ra-
tio of a mirror withN transistors, the first step is to as-
sign for each transistor the appropriate motifs that mini-
mizeFN given by equation 3. Each transistorMi is thus
composed ofnm1i motifs of typeM1D andnm2i motifs of
type M2. The total number of motifs in each transistor is
nmti = nm1i + nm2i and the total number of transistor
modules isni = nm1i + 2.nm2i. Since theM2 motif has
two transistor modules with opposite channel orientations
while M1D has only one module oriented to the right, then
by definition∆ni = nm1i. This motif assignment is done
by an exhaustive trial of all possible motif combinations.
A trivial solution that leads toFN = 0 is to take all mo-
tifs of the typeM1D, i.e. all transistors has the same chan-
nel orientation with dummy transistors inserted in between.
This solution however increases the distance between tran-
sistors which is another important matching factor. It also
requires overall excessive area. Thus solutions of more than
one transistor withall channel orientations in one direction
are rejected. Another possibility is to forceni to be even. In
this case∆ni = nm1i = 0 which leads toFN = 0. How-
ever, this results in stacks of non-practical aspect ratios and
to transistor modules with small widths. As a consequence,
mismatch problems due to small channel area arise [10].

nmt=5

nmt=2

nm1=1

nm2=0

nmt=1

nm1=1

nm2=2

nm1=3

nm2=1

M1D

M1D

M1D

M1D

M2

M1D

M2

M2_zM1D_z

M1D_zM2_yM2_z

M1D_x

M1D_y

M1D_z

M2

� � � � �� � � � �� � � � � �� � � � � �

� � � � � �� � � � � �

Stack

� � � � � �

� � � � � �� � � � � � 	 	 	 	 	

Odd
Stack
Right

� � � � � �� � � � � �

� � � � � �

(a)

(b)

(c)

Stack

Odd
Stack

Right
Stack

Left
Stack

Left

� � � � � �� � � � � �

(d)

� � � � � �� � � � � � � � � � � �� � � � � �

Mx Mz

� � � � � �� � � � � �

My

Mx

My

Mz

Bulk

Gate
Bulk

Source

Drain_z

Drain_y
Drain_x

Figure 5. Current mirror, (a) schematic, (b)
transistor motifs, (c) elementary stacks, and
(d) final layout

The second step is to interleave the motifs of all transis-
tors while centering each group of motifs belonging to a
given transistor around the middle of the stack. In order to
achieve this, three elementary stacks are constructed: An
oddstack containing one motif from each transistor with an
odd number of motifsnmt, and two other stacks (aleft and
a right stack) constructed by placing one motif alternatively
from each transistor till all motifs are exhausted. This en-
sures maximum interleaving between transistors. The re-
quired current mirror stack is then composed of theodd
stack placed at the middle, and the other two stacks abutted
one at each side. This places the centroid of all transistors
near the middle of the final stack.

As an example, consider a current mirror composed of
three transistorsMx : My : Mz = 1 : 3 : 7 shown in Fig.
5(a). Arrows show the direction of current flow. Apply-
ing the previous algorithm, the following motifs are found:
nm1x/nx : nm1y/ny : nm1z/nz = ∆nx/nx : ∆ny/ny :
∆nz/nz = 1/1 : 1/3 : 3/7 which minimizes equation (3).
The assigned motifs of each transistor are shown in Fig.
5(b). Since the number of motifs ofMx andMz (nmtx

andnmtz) are both odd, one motif from each is placed in
theodd stack. The other two stacks are then composed by
taking one motif alternatively from each transistor as shown
in Fig. 5(c). Fig. 5(d) shows the physical layout of the cur-
rent mirror stack after abutting the three elementary stacks
shown in 5(c). The gates of all dummy transistors are con-
nected to the bulk terminal to ensure their OFF state.

3.3. Reliability constraints

Reliability design rules are important for the long-term
functionality of the circuit. DC current information is used
to adjust wire widths inside each module as well as rout-
ing wires in order to respect the maximum current den-
sity allowed by the technology. This prevents electromi-
gration from taking place which may lead to open circuits
in wires subjected to high current densities [8]. The num-
ber of contacts are also increased for wide wires in order to
decrease their resistance according to the reliability design
rules. This is clearly shown in the current mirror shown in
Fig. 5(d) where wire widths and contact numbers have been
adjusted separately for each transistor assuming high cur-
rent densities. The widest wire is that of the source where
the sum of all transistor currents passes.

3.4. Shape constraint

The layout is usually driven by a shape constraint (a
given height or aspect ratio). Given this constraint area op-
timization is performed using an efficient algorithm based
onshape functionsandslicing structures[3].

Shape functions calculate the dimensions of alternative

OPTIMIZE SLICE(HS)
Phase 1:

FIND the initial set of group heightshi;
Phase 2:

DO {
FIND the widest groupj (wj = WS);
FIND ∆H such that

whenhj = hj + ∆H
wj = fj(hj) < WS;

/* Try to compensate∆H by the other groups */
FOR each groupi 6= j

WHILE (∆H > 0)
DO {
hi = hi −∆hi such thatwi = fi(hi) < WS;
∆H = ∆H −∆hi;}

IF (∆H <= 0)
/* ∆H is compensated by the other groups */
THEN

Conserve the new set of heights;
ELSE

Exit;
};

Figure 6. Slice width optimization algorithm

shapes for each module, while slicing structures are used
to store relative placement of layout modules. The proce-
dural tool allows to place modules relatively in horizontal
slices calledgroups, which in turn are placed in vertical
slices. Shape function propagation allows to calculate the
shape functions ofgroupsandslicesstarting form those of
the layout modules.

Given a slice heightHS, letWS be the corresponding
slice width,h be the set of group heights andw the set of
the corresponding widths, then the problem of slice area op-
timization can be formulated as follows:

given wi = fi(hi) (4)

minimize
h

WS = max(w) (5)

subjected to:
∑
i

hi ≤ HS (6)

himin ≤ hi ≤ himax (7)

wherefi is the groupi shape function.

The developed algorithm is summarized in Fig. 6. It
is completely hierarchical such that compound slices might
contain another previously defined sub-circuits which in
turns include several slices.

Analog layout constraints described in the previous sec-
tions are directly reflected in the shape function of the corre-
sponding module and affect indirectly the area optimization
algorithm.

4. Implementation

The procedural tool is implemented in a form of a special
language composed of a documented superset ofC func-
tions. This offers independency of any CAD vendor and
takes advantage of theC language sophisticated constructs
in the same time. An exisiting interactive debugger [11] is
being extended to be used with the language to allow graph-
ical interactive debugging.

4.1. Organization

Relative Placement

Routing Functions

Module Generators

Placement Functions
(slicing structure)

Area Optimization

Procedural Routing

Figure 7. Language Organization

Shaded blocks in Fig. 7 show the main parts constituting
the language:

• Complex module generators include transistors (sec-
tion 3), multi-capacitor arrays and resistors.

• Placement functions that allow to build up the slicing
structure.

• Module area optimization algorithm (section 3.4).

• Routing functions that allow relative routing descrip-
tion using predefined reference points. This results in
a shape-independent description of the routing.

As an example consider the folded cascode OTA shown
in Fig. 8. The three dark areas correspond to three hori-
zontal slices (groups) chosen for the corresponding slicing
structure. Fig. 9 shows the main sections of the correspond-
ing language code for generating the layout.
In section 1 a netlistspicefile is opened where device sizes
as well as special comments for additional device layout
options (number of stacks, transistor current,. . .) can be
seized. This file is normally generated by the sizing tool.
A device declaration section follows which calls the re-
quired deviceswith special layout options. A differential
pair DP1 is called in the first line with dummy transistors
at the ends and with the drain capacitance minimization op-
tion. Layout styles concerning terminal positions (section

MN6MN5

MN2CMN1C

MP4CMP3C

MP4MP3

VP2

VC1

MP5

Vout

VDD VDD

VC3

MP1 MP2

V+

V-

VP1

VDD

VSS

VSS VSS

Figure 8. Folded Cascode OTA

3.1) can be changed in an external default style file or di-
rectly in the language code as shown in the second line
where the second metal level is used for gate connections
inside theDP5device.
Section 3 constructs the slicing structure with the follow-
ing functions: theCAIROADD DEVICE() function which
builds the groups, the CAIROADD GROUP() function
which builds theslicesand theCAIROADD SLICE()func-
tion which adds the constructedslicesto the current module.
Area optimization is performed using theCAIRORESHAPE()
function in section 4.
Sections 5 and 6 contain the routing and module terminal
definitions. Routing functions support muli-layer routing
with appropriate via placement. The width of each wire is
determined according to the corresponding layer type and
the current of the modules connected to it.

Fig. 10 shows the generated layout. As can be seen from
the layout, all transistor folds are chosen such thatdrains
are internal diffusions to minimize drain capacitance and
enhance the frequency behavior. The input differential pair
is interleaved in a common centroid style with dummy tran-
sistors placed at the end in order to avoid boundary effects.

4.2. Parasitic extraction

In the parasitic calculationmode, after the determina-
tion of the shape of each module in the area optimization
step, each module calculates the values of parasitic com-
ponents in a predefined parasitic model which defines the
following:

• Transistor layout style. This includes the number of
folds for each transistor and their widths, the number
of source/drain diffusions which are external, internal
to the transistor or shared with other transistors. This
allows exact calculation of diffusion capacitances.

#include <cairo.h>
/* OTA */
main(argc,argv)
int argc;
char **argv;
{
/***** (1) Open a SPICE file *****************/
CAIRO_OPEN_SPICE_FILE(argv[1]);

CAIRO_OPEN_MODULE("OTA");

/***** (2) Device Declaration *****************/
CAIRO_DIFFPAIR_SPI("DP1",NTRANS,"MP1","MP2",B_O,

"DUMMY","DIFF_CAP",MIN_D,C_END);
CAIRO_TRANSISTOR_SPI("DP5",NTRANS,"MP5",B_S,

"GATE_TYPE_H",ALU2,"DIFF_CAP",MIN_D,C_END);
...

/***** (3) Placement (slicing structure) *****/
/***** (3.1) Building Groups ******************/
CAIRO_ADD_DEVICE("TP5","group_0","DP5",SYM_X,C_END);
CAIRO_ADD_DEVICE("TP1","group_1","DP1",ROT_P,C_END);
...
/***** (3.2) Building Slices *****************/
CAIRO_ADD_GROUP("group_0","slice_0","TO",2*PITCH,C_END);
CAIRO_ADD_GROUP("group_1","slice_0",C_END);
...
/***** (3.3) Building Module *****************/
CAIRO_ADD_SLICE("slice_0",C_END);

/***** (4) Area optimization *****************/
CAIRO_RESHAPE("OTA",H,argv[2],GENERATION_MODE);

/***** (5) Routing ***************************/
CAIRO_BEGIN_ROUTE("OTA","OTA");
CAIRO_WIRE3("2",ALU2,ALU2,ALU1,CURRENT_W,CURRENT_W,

CURRENT_W,"TP1","source",0,"TP5","drain",0,
CAIRO_GET_Y("MP5",TRA,REF),VER);

...

/***** (6) Defining the module interfaces *****/
CAIRO_PLACE_CON_H("TP5","gate",0,"evp1",ALU2,CURRENT_W);
...
CAIRO_END_ROUTE("OTA");

/***** (7) End module *************************/
CAIRO_CLOSE_MODULE("OTA");
}

Figure 9. Language description of the OTA cir-
cuit shown in Fig. 8

• Parasitic routing capacitance including coupling ca-
pacitance between wires.

• Exact well sizes so that floating well capacitance can
be calculated.

Routing parasitics are then calculated and added on cir-
cuit nodes. All parasitic calculations are done using simple
geometrical methods which combine reasonable accuracy
with low computational cost.

4.3. Technology independence

Technology independence is a key feature of any layout
tool. A symbolic layout approach [11] is used such that

MP3MP3C MP4CMP4MP5

MP2

MP1

MN1C MN5-MN6 MN2C

D
um

m
ie

s

Figure 10. Folded Cascode OTA Layout

layout generation passes through a technology independent
symbolic layout step followed by conversion towards the
target technology. A given language description is thus in-
dependent of the technology.

5. Example

As an example, the folded cascode OTA shown in Fig.
8 has been synthesized using different layout parasitic con-
siderations. To perform transistor sizing a knowledge-based
tool [12] has been used. The OTA is sized for aV DD of
3.3V, aGBW of 65MHz, a phase margin of65degrees and
a load capacitance of3pF. For comparison, the input com-
mon mode voltage range as well as the output voltage range
are kept the same for all cases.

Table 1 shows the obtained results, it also shows the
results of simulations of the extracted netlist with all par-
asitics (diffusion, routing and coupling capacitances) be-
tween brackets. Final extraction has been done using a com-
mercial design system. In case (1) no layout capacitances
(neither diffusion nor routing) have been taken in consider-
ation, only gate capacitances and transistor folding are con-
sidered. It can be seen that all dc characteristics matches the
extracted layout simulation results, while for theGBW and
phase margin we can notice a considerable difference. In
case (2) diffusion capacitance has been taken into consider-
ation but assuming only one fold per transistor and neglect-
ing routing capacitance, i.e. no layout information is used
during synthesis. Results show that theGBW and phase
margin exceed the required specifications. In fact, as the
diffusion capacitance is over-estimated, thus the obtained
transistor sizes are smaller. This implies that other specifi-
cations like the input noise, the dc gain and the output resis-

Table 1. Sizing compared to extracted layout simulation results

Specification Case (1) Case (2) Case (3) Case (4)

DC gain (dB) 70.1(70.1) 55.0(56.59) 66.1(66.1) 64.7(64.7)
GBW (MHz) 64.9(58.1) 66.5(71.2) 65.0(62.6) 65.8(66.1)
Phase margin (degrees) 65.3(56.3) 65.4(72.4) 65.4(64.4) 65.15(65.4)
Slew rate (V/µs) 94.0(86.5) 103.0(98.1) 93.3(93.3) 93.0(94.4)
CMRR (dB) 100.7(100.7) 76.9(79.6) 93.9(93.9) 91.6(91.6)
Offset voltage (mV) 0.0(0.0) 0.0(-0.1) 0.0(0.0) 0.0(0.0)
Output Resistance (Mohm) 2.4(2.4) 0.38(0.47) 1.5(1.47) 1.23(1.23)
Input noise voltage (µV) 83.9(96.1) 101.6(85.6) 83.3(87.8) 82.7(85.8)
Thermal noise density (nV/

√
Hz) 7.2 6.98 7.15 7.13

Flicker noise density @1Hz (µV/
√
Hz) 1.95(3.64) 1.4(8.1) 2.59(4.85) 2.82(5.28)

Power dissipation (mW) 2.0(2.0) 2.4(2.2) 2.1(2.1) 2.1(2.1)

Input specifications:V DD = 3.3V, GBW = 65MHz, phase margin= 65degrees,Cload = 3pF,
Input CM range= [−0.55, 1.84]V, Output range= [0.51, 2.31]V.

Case 1: Sizing with no layout capacitances (Neither diffusion nor routing).
Case 2: Sizing with diffusion capacitance assuming single transistor folds and no routing capacitance.
Case 3: Sizing with calculation of exact diffusion capacitance and neglecting routing capacitances.
Case 4: Sizing considering all layout parasitics.
Values between brackets are obtained from layout generation, extraction and simulation.

tance could not be optimized. Note also the resulting offset
voltage after folding due to the slight modification of tran-
sistor widths needed by layout grid. Case (3) shows sizing
results with layout information concerningexactdiffusion
capacitance, no routing capacitance is considered. We no-
tice only a slight difference in theGBW and phase margin
between synthesized and extracted netlist simulation. How-
ever, both specifications could not be satisfied. Case (4)
shows results with all parasitic capacitance information be-
ing considered during the synthesis phase. All results match
the extracted netlist simulations. The layout corresponding
to this case is shown in Fig. 10. Three calls of the layout
tool were needed before parasitic convergence. The sizing
time for each case including layout calls does not exceed
two minutes.

6. Conclusions and future work

A layout tool which aims to closely couple circuit sizing
and layout generation has been presented.
Procedural layout is shown to be the best suitable layout
method for such methodologies due to its fast layout gen-
eration time. The procedural nature of the layout facilitates
the use of aparasitic calculationmode where parasitics are
accurately determined without any layout generation.
The proposed tool thus allows to account for constraints re-
lated to the physical implementation of a given cicruit such
as parasitics and reliabilityduring the design optimization
phase and in the same time offers efficient solutions to im-
prove the quality of the produced layout.

Special attention will be given to RF circuits in the fu-
ture. Layout wire resistance and inductance can be accu-
rately calculated and used to improve design accuracy. Fu-
ture work also includes synthesis of larger systems as high
performance A/D converters using the same methodology.

References

[1] B. R. Owen, R. Duncan, S. Jantzi, C. Ouslis, S. Rezania, and
K. Martin. “BALLISTIC: An Analog Layout Language,”. In
Proc. IEEE Custom Integrated Circuits Conf., 1995.

[2] H. Y. Koh, C. H. Sequin, and P. R. Gray. “OPASYN: A
Compiler for CMOS Operational Amplifiers,”.IEEE Trans.
Computer-Aided Design, Feb. 1990, 9(2):113–125.

[3] J. D. Conway and G. G. Schrooten. “An Automatic Layout
Generator for Analog Circuits,”. InProc. European Design
Automation Conf., 1992, pp. 513–519.

[4] J. M. Cohn, R. A. Rutenbar, and L. R. Carley.
“KOAN/ANAGRAM II: New Tools for Device-Level Ana-
log Placement and Routing,”.IEEE J. of Solid-State Circuits,
Mar. 1991, 26(3):330–342.

[5] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-
Vincentelli. “Automation of ICL Layout with Analog Con-
straints,”. IEEE Trans. Computer-Aided Design, Aug. 1996,
15(8):923–942.

[6] K. Lampaert, G. Gielen, and W. M. Sansen. “A Performance-
Driven Placement Tool for Analog Integrated Circuits,”.
IEEE J. of Solid-State Circuits, July 1995, 30(7):773–780.

[7] H. Onodera, H. Kanbara, and K. Tamaru. “Operational-
Amplifier Compilation with Performance Optimization,”.
IEEE J. of Solid-State Circuits, Apr. 1990, 25(2):466–473.

[8] M. Wolf and U. Kleine. “Reliability Driven Module Gen-
eration for Analog Layouts,”. InProc. Int. Symposium on
Circuits and Systems, June 1999, pp. 412–415.

[9] J. Bastos, M. Steyart, B. Graindourze, and W. Sansen.
“Matching of MOS Transistors with Different Layout
Styles,”. InProc. IEEE Int. Conf. on Mecroelectronic Test
Structures, Mar. 1996, pp. 17–18.

[10] E. Malavasi and D. Pandini. “Optimum CMOS Stack Gen-
eration with Analog Constraints,”.IEEE Trans. Computer-
Aided Design, Jan. 1995, 14(1):107–122.

[11] F. Ṕetrot. Outils d’aide au d́eveloppement de Bibliothèques
VLSI portables. PhD thesis, Université Pierre et Marie Curie,
Laboratoire MASI, Paris, July 1994.

[12] J. Porte. COMDIAC: Compilateur de Dispositifs Actifs.
TELECOM Paris, Sept. 1997.

