
A GENERIC PROGRAMMABLE ARBITER WITH DEFAULT MASTER GRANT

Frédéric Pétrot and Denis Hommais

Département ASIM du LIP6
Université Pierre et Marie Curie

Paris, France

ABSTRACT

This paper details the design and implementation of a cen-
tralized bus arbiter implementing programmable fixed pri-
orities arbitration. The arbiter also handles default master
grant to the master with highest priority. The arbitration al-
gorithm is computed using a tree of specialized comparators
to fully exploit hardware parallelism. The design is imple-
mented as a generic VHDL model whose parameter is the
number of masters. After synthesis and place & route, a 16
masters arbiter has a critical path delay of 7.5 ns in 0.5µm
technology.

1. INTRODUCTION

On chip buses have received much attention from the indus-
trial world in the past few years, and several initiatives have
proposed bus protocol standards: the PI-Bus [1] of OMI, the
Amba bus [2] of ARM, the FISPbus [3] of Mentor Graph-
ics, and others. More recently, a abstract protocol, called
VCI[4], has been devised by the OCB group of the VSI Al-
liance.

On a bus, the implementation of the protocol lies from
one side in the master –the initiator of a transaction– and
slave –the target of a transaction– component plugged on
the bus and from an other side in the Bus Control Unit.

The Bus Control Unit is responsible of slave selec-
tion, timeout handling, protocol consistency verification and
master arbitration. Arbitration means choosing a unique
master among several masters requesting the bus.

The choice of an arbitration scheme is usually left to
the implementation, as it depends much of the application.
Most standards do not give any specifications for arbitra-
tion, the PCI [5] being a notable exception in asking for a
« fair » algorithm.

Our goal in this paper is not to devise a new bus al-
location scheme, but to cover the implementation of pro-
grammable fixed priorities arbitration schemes. Theses
schemes are of practical importance in many applications.
The most important ones concerning real-time constrained
systems. Programmable fixed priorities are needed to im-
plement deadline first scheduling for a given set of tasks[6]

This work has been funded in part by the COSY 25443 Esprit Project.

to maximize bus utilization. They can be extended quite
easily to the handling of mixed random/flow data exchanges
that has been devised in [7] to minimize bus access laten-
cies. They are also relevant to reconfigurable systems in the
which the set of tasks to execute changes over time.

The other important point of this study is the support of
the default master grant that exists in many standards[1, 8,
2]. The default grant mechanism allows the default mas-
ter to get the bus before requesting it, gaining a clock tick.
The default master should be the most constrained master
–for example a processor instruction cache–. This is very
simple to implement for the master: it simply checks that
it is granted the bus prior to request it, and if so bypasses a
request state. Unfortunately, for the Bus Control Unit, this
means being able to know if the bus requester is the default
master, and this requires a complex computation.

These points are trivial if the priorities are hardwired,
but gain an order of magnitude in complexity when they are
programmable.

Section 2 formulate the problem both in a natural and
more theoretical way. The details of the design and imple-
mentation are presented in Section 3, and the results in Sec-
tion 4. We conclude Section 5.

2. PROBLEM STATEMENT

Although the problem is of practical importance since a
long time, very few publications have dealt with the de-
sign of programmable fixed priority arbiters. Most commer-
cially available bus arbiters perform simple hardwired fixed
priorities[9, 10] or round-robin arbitration[10, 8]. [11] de-
tails a complex round-robin arbitration mixed with priority
levels to implement biased-fairness. It however does handle
only two bits for priority values, and no details are given on
the implementation.

Our goal is to devise a general architecture for pro-
grammable fixed priority arbiters with a variable number of
masters. To be consistent with the fixed priority scheme, the
default master must be the master currently with the highest
priority. Technological constraints impose an upper bound
on this numbern, but there is no theoretical reason for this
limit.

The arbiter hasn request linesReqi , n grant linesGnti ,

andn priority linesPrioi encoded ondlog2(n)e bits, 0< i <
n. ThePrioi lines can take any value in{0, . . . ,2dlog2(n)e−
1}, and are supposed to be stable during the whole clock
period. There are indeed output of registers whose values
are set by the software controlling the arbiter. Therefore,
there can be no warranty that all values are distinct, and we
must handle priority ties. The algorithm of the arbiter with
default master grant is as follow.

1. The master with highest priority among the request-
ing masters is granted the bus. If more than one mas-
ter are requesting and have the highest priority, then
there is a tie. We break it arbitrarily in granting the
bus to the master with the smallest request line num-
ber,

2. The highest priority masters is granted the bus if no
requests are pending. Here also, several masters may
have the highest priority. In such cases, we break the
tie as above.

We have the further constraint that the arbitration must take
place in a single bus cycle.

To arbitrate among the requesting masters necessitate to
have the non-requesting master priorities set to the lowest
possible value 0. Since the priorities are set by software, we
must ensure that a non requesting master will never have a
higher priority than a requesting master with the lowest pri-
ority. Since the software can write values between 0 and
2dlog2(n)e−1 inclusive in thePrioi registers, any requesting
master must have an internal priority as seen by the arbiter
of at least 2dlog2(n)e. This is easily achieved by setting the
internal priority asReqi‖Prioi , where‖ is the concatena-
tion operator. A requesting master of priority 0 will actually
have a priority of 2dlog2(n)e. Any non-requesting master will
actually have a priority of at most 2dlog2(n)e−1.

To handle the default master case, we remark that the
highest priority master grant line is set whenall masters are
requesting and this is exactly what we want whenno mas-
ters are requesting. So we simply detect that no requests are
pending, and set all requests as pending at the input of the
arbiter. This translates to 1‖Prioi for the internal priorities.

Using the above remarks, the problem is specified more
formally –see Algorithm 1– in order to be able to devise a
hardware architecture.

3. DESIGN AND IMPLEMENTATION

We assume that theReqi signals are available early on the
bus. Most busses demand that these signal be stable within
20% of the bus clock period. The arbiter has tight timing
constraints because it may well be on the critical path of
the system, thus the hardware parallelism must be fully ex-
ploited.

We note the bitb of signalX at depthd in the tree as
Xb,d.

Algorithm 1 Computation of the grant signals
if
∨

0<i<n Reqi = 1 then At least one request is pending
Hr = (j|∀0<k<nReqj‖Prio j ≥ Reqk‖Priok)

Hr is the ordered set of highest priority masters cur-
rently requesting

r = min(Hr)
r is the first element ofHr , i.e. the highest priority
requester with the smallest request line index

Gntr = 1
Gntk = 0,∀k|0< k< n,k 6= r

else No requests are pending
H1 = (j|∀0<k<n1‖Prio j ≥ 1‖Priok)

H1 is the ordered set of highest priority masters

r = min(H1)
As above, r is the first element ofH1, i.e. the highest
priority master with the smallest request line index

Gntr = 1
Gntk = 0,∀k|0< k< n,k 6= r

end if

The input stage of the arbiter, depicted in Figure 1(b),
is necessary to handle the default master case. We detect if
there are requests in computingReq=

∨
0≤i<nReqi , and if

no requests are pending, we force allRi,0 = 1.

1 bit

dlog2(n)e bits

A p

s⇐ p‖A≥ q‖B
qB

s

S

I0

R1,0‖P1,0

R1,0

Req0

1

1

R0,0‖P0,0

I1 R0,0

Z⇐ I0S+ I1S

(a) (b)

Prio1

Prio0

Req1

Req

Figure 1: (a) Comparator (b) Arbitration tree input stage

Beyond this stage, we do not need to know if we are
computing to grant the default master or any other master.

The arbitration algorithm is implemented as a binary
tree, and has therefore a depth ofdlog2(n)e. The basic el-
ement of the tree is a compator ofdlog2(n)e+ 1 bits. As
shown Figure 2, this element is generic because its function
depend on its depth in the tree.

At depth d, this comparator computes two values for
depthd+1:

1. A boolean value for everyRi,d+1 signals,

S0,d

S1,d

C0,d

R2d,d

R0,d+1

R2d−2,d+1

R2d−1,d+1

P0,d+1

R2d,d+1

R2d+1,d+1

R2d+1−1,d+1

P0,d

R0,d

R2d+1−1,d

R2d+1,d

P1,d

R2d−1,d

R2d−2,d

Figure 2: Basic generic element of the arbitration tree

2. A priority that is the maximum of the priorities of the
preceding stage.

At depthd, there are four possible cases.

(1) S0,d = 0 andS1,d = 0 ⇒ Ri,d+1 = 0 for 0≤ i < 2d+1,
and the value computed forP0,d+1 is unused afterwards.

(2) S0,d = 1 andS1,d = 0 ⇒ P0,d+1 = P0,d, Ri,d+1 =
0, for 2d ≤ i < 2d+1, andRi,d+1 = Ri,d for 0≤ i < 2d−
1.

(3) S0,d = 0 andS1,d = 1 ⇒ P0,d+1 = P1,d, Ri,d+1 =
0, for 0 ≤ i < 2d − 1, andRi,d+1 = Ri,d for 2d ≤ i <
2d+1.

(4) S0,d = 1 andS1,d = 1⇒ P0,d+1 = max(P0,d,P1,d), and
if C0,d = 1, case (2) applies, otherwise case (3) applies.

From these, the properties that ensure the proper logical
implementation of Algorithm 1 can be shown by induction.

(a) If there is at least oneRi,d = 1, there is one and only
oneRi,d+1 = 1. This proves that at the output, because
we always have at least oneReqline activated, one and
only oneGntwill be activated,

(b) Pi/2,d+1, when used by a later stage, is max(Pi,d,Pi+1,d).
This in fact proves that at depthd + 1, Pi/2d,d+1 =
max(Prio0, . . . ,Prio2d).

Figure 3 illustrates the architecture for an 8 master ar-
biter.

Multi-media arbitration[7] can be build using two such
arbiters. The primary idea behind this approach is to chose
to serve either random requests, such as the one generated
by cache misses, or continuous ones, such as the one issued
by digital signal processing engines. The choice to serve
either a random or a continuous request doesn’t influence
the design of the arbiter, and we direct the interested reader
to [7] for details on this choice.

We have two independent sets of requests, random,R ,
and continuous,C . We perform arbitration within both sets
to elect the granted master, that we callGntR and GntC .
Then, eight cases are possible to obtained the bus master. It
depends on the current choice between the random,r/c= 1,
or continuous,r/c = 0, masters and the fact that a granted
master is granted by default or not.

GntR GntC Choice Decision
Default Default Random GntR
Default Request Random GntC
Request Default Random GntR
Request Request Random GntR
Default Default Continuous GntC
Default Request Continuous GntC
Request Default Continuous GntR
Request Request Continuous GntC

This algorithm is quite simple, but needs to know if a
granted master has been granted by default. This informa-
tion is also required by the Bus Control Unit controller, so
we shall now explain how to obtain it.

GntdmC

r/c

1

Gntc0

GntR

Gntc1

Gntr0

Gntr1

DefR

GntC

GntdmR

Reqc1

DefC

Reqc0

Reqr1

Reqr0

Figure 4: Random/continuous arbitration example

We need to compute through combinational logic the
default master random master,dmR , and the default con-
tinuous master,dmC . They are computed using Algo-
rithm 1 when no requests are pending because then we
haveGntdm = 1. We cannot share the same hardware, but
we can use the same module in the which we set allReqi
lines to ’1’. The result are the vectorsGdmR and GdmC .
We now check if the unique bit set inGntR (in GntC) is
equal to the unique bit set inGdmR (in GntC), by perform-
ing

∨
0<i<nGntiR ∧GdmiR (and identically for continuous).

Such an arbiter with 2 random and 2 continuous masters is
presented Figure 4.

4. RESULTS

The programmable fixed priority arbiter has been imple-
mented in generic VHDL. It is under the form of a soft IP
block whose parameter is the number of masters.

We have synthesized the arbiter using Synopsys for 2,
4, 8 and 16 masters. We have extracted the critical path

Req7
Req6

Req5
Req4

Req0
Req1
Req2
Req3

Req

Gnt4Gnt5Gnt7 Gnt6 Gnt0Gnt3 Gnt2 Gnt1

Req3 Req2Prio2Prio31 111 Prio7 Prio6 Req6Req7 Req1 Req0Prio0Prio11 1011 Prio5 Prio4 Req4Req5

Figure 3: Example arbiter tree: 8 request lines

and area of the placed and routed circuits for a 0.5µm tech-
nology using 3 levels of metal, 75oC, worst case transistor
parameters. The following table details the delays and areas
as a function of the number of masters.

Nb of masters 2 4 8 16
Delay (ns) 0.56 2.17 5.87 7.54
Area (µm2) 63 7308 15120 118944
Gates 7 58 120 569

With this implementation, and assuming theReqi sig-
nals are available within 20% and theGnti signals must be
available within 20% of the bus period, the arbiter runs at

109

7.54+0.4×7.54 ≈ 95 Mhz for 16 masters.
This still leaves room for driving long grant line to

achieve around 80 MHz, which is the target frequency of
industrial systems based on the PI-Bus, for example.

Busses running at 133 MHz, as required for exam-
ple in the new PCI specification, are within the reach of
this approach. If only 8 masters are necessary, the run-
ning frequency, computed with a 40% guard as above, is
≈ 120 Mhz. Scaling down the technology to 0.35µm makes
it possible to increase this number significantly.

5. CONCLUSION

In this paper, we have detailed the design of an arbiter im-
plementing a programmable fixed priority scheme, also able
to handle a default master grant. This study is of practical
interest, as shown firstly by the requirements of real-time
application and secondly by the current bus standardiza-
tion initiative: arbitration is centralized and depends only
on well agreed upon signals.

The architecture is generic, and allows to achieve
around 110 MHz for 16 masters, a large upper bound on the
acceptable number of masters on a single bus. We have also
shown that handling a default master is costly in area for the
Bus Control Unit, because an identical comparator tree has
to be used to generate the signal that indicates that the cur-
rent requesting master is the default master. This however
doesn’t incur a delay penalty, making this solution suitable
for high performance systems.

6. REFERENCES

[1] Open Microprocessor systems Initiative,DRAFT STANDARD OMI
324: PI-Bus Rev. 0.3d, 1994.

[2] S. B. Furber,ARM System Architecture, ch. 8, pp. 234–238. Addison
Wesley Longman, 1996.

[3] N. Thorne, “On-chip buses enable block based asic / fpga designs,”
in Proceeding of IP’97 Europe, (Bracknell, UK), Oct. 1997.

[4] VSI Alliance, On Chip Bus Development, June 1995.http://
www.vsi.org/library/specs/summary.htm#ocb .

[5] PCI Special Interest Group,PCI Local Bus Specification, Rev. 2.1,
June 1995.

[6] C. Liu and J. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,”Journal of the Association
for Computing Machinery, vol. 20, pp. 46–61, Jan. 1973.

[7] S. Hosseini-Khayat and A. D. Bovopoulos, “A simple and efficient
bus management scheme that supports continuous streams,”ACM
Transactions on Computer Systems, vol. 13, pp. 122–140, May
1995.

[8] T. Shanley and D. Anderson,PCI System Architecture, ch. 5, pp. 59–
72. PC System Architecture, MindShare, Inc, fourth ed., 1999.

[9] NCR Corporation,SCSI: Understanding The Small Computer Sys-
tem Interface. Prentice Hall PTR, Dec. 1989.

[10] Digital Equipment Corporation,Writing VMEbus Device Drivers,
June 1997. http://www.unix.digital.com/faqs/
publications/dev_doc/DOCUMENTATION/HTM%L/
AQ0R7GTE/TITLE.HTM.

[11] Intel Corporation,i960. RM/RN I/O Processor Developer’s Man-
ual, July 1998. http://www.intel.it/design/iio/
manuals/techinfo/80960rmrn/17_arb.htm#25%58 .

