
NOE : A PROGRAMMABLE NETWORK CONTROLLER
J.L. DESBARBIEUX, A. ZERROUKI, F. WAJSBÜRT, C. SPASEVSKI, A. GREINER

University P. & M. Curie, Laboratoire LIP6, ASIM Team
4 Place Jussieu 75252 Paris Cedex 05 France

Tel : (+331) 44 27 52 53 Fax : (+331) 44 27 72 80
E-mail : Jean-lou.Desbarbieux, Amal.Zerrouki, Franck.Wajsburt, Cyril.Spasevski, Alain.Greiner }@lip6.fr

Web : http://mpc.lip6.fr

ABSTRACT

This paper presents NOE, a programmable network controller designed to allow the implementation and the evaluation
of a variety of message passing protocols. Such a component is adapted to build PC-clusters since it interfaces any CPU
board offering a connection to the PCI bus to the high speed HSL network defined by the IEEE 1355 standard. NOE offers a
32/64 bit, 33/66 MHz PCI interface allowing a throughput of up to 520Mbytes/s. NOE includes also a set of programmable,
parallel and asynchronous operators controlled by an external micro-controller. The paper describes also the micro-
controller firmware named "BEE executive". This micro kernel provides the programmer with communication primitives as
well as synchronization mechanisms necessary when implementing a specific message passing protocol on NOE.

NOE is a VLSI ASIC. It contains 1,3M transistors and its area is 45,3mm2. It has been fabricated in a 0.25µm
process. It is 33/66 MHz PCI compliant and can operate internally at up to 160 Mhz.

KEYWORDS : network controller, VLSI, HSL networks, low-level protocols, parallel processing.

1. INTRODUCTION

NOE has been designed in the frame of the MPC
project whose objective is the design of low cost and high
performance parallel computers. The MPC parallel
computer[2] is currently available and used by several
universities. It offers 16 processing nodes connected
through HSL links. A specific board has been designed to
connect the nodes to the HSL network. It includes the
RCUBE router[3] which realizes the routing function in
the HSL network and PCI-DDC a dedicated network
controller implementing the Direct Deposit State Less
Receiver Protocol (DDSLRP) [4]. This specific protocol
uses the remote-write primitive : at the emitter end, the
processor adds a message descriptor (start address, size,
remote address, …) in the list of messages to be sent.
Then, through DMA reads, PCI-DDC fetches data to be
transmitted from the local memory, and handles data
transfers to the remote node memory without any
intervention of the processor. At the receiver end, PCI-
DDC writes the incoming data in memory through DMA
accesses before notifying the processor.

Such a protocol is efficient and reduces significantly
the processor overhead and transfer latency. Classical data
transfer protocols usually require several data copies in
intermediate buffers before and after transmission through
the network. However, PCI-DDC introduces some

limitations that forbids any hardware optimization. As an
example, PCI-DDC requires physical addresses. Virtual to
physical address translation has still to be performed by
the processor. Moreover, no programmability is available
since the DDSLR protocol is hardwired in the PCI-DDC
chip.

A new network controller, named NOE, has been
designed to address theses limitations. NOE brings
programmability and allows thus protocol optimizations
at the hardware level and new low-level protocol
evaluation.

2. THE NOE-HSL BOARD

Figure 1 presents the NOE-HSL board built using the
NOE network controller. It consists of NOE, a micro-
controller, and some memory (RAM and ROM). The
board is connected to the processing node (e.g.: a PC)
through the PCI bus. NOE offers a 32/64 bit, 33/66 MHz
PCI interface. The PCI registers of NOE can be mapped
into the processor memory space, allowing thus the
configuration of the network controller directly by the
processes.

To enable load-balancing on the network, two bi-
directional HSL serial ports are provided by NOE. Each
link allows a throughput of 1.5Gbit/s.

32/64 bits
33/66 Mhz

N O E

µC o n t r o l l e rR A M

R O M

P C I

H S L 1 1 , 5 G b i t s / s

125 M B y t e s / s * 4H S L 2

520 Mbytes/s

Figure 1 : NOE-HSL board

In this architecture, versatility is partly brought by the
on-board micro-controller. NOE handles data transfers,
DMA accesses to and from the host memory, and packet
emission (and reception) on (and from) the HSL network.
The communication protocol is programmed by the on-
board micro-controller. The Command and Status
registers of NOE are mapped into the micro-controller
memory space. By reading the status and writing
commands in these registers, the micro-controller controls
the NOE operation to implement a specific
communication protocol.

3. NOE ARCHITECTURE OVERVIEW

Figure 2 presents the internal architecture of NOE[5].
It includes 12 operators, 14 fifos, 2 bi-directional HSL
ports and a 32/64bit, 33/66 MHz PCI interface.

Figure 2 : NOE internal architecture

NOE operators are connected together through a PI-
BUS[6]. This bus is connected to the micro-controller
through an SSRAM interface. NOE operators can be seen

as independent blocs. Each of them includes Command
and Status registers. Setting the command register of an
operator starts the operator. As soon as finished, the
operator sets its status register to notify the operation
completion to the micro-controller.

4. PCI OPERATORS

4.1 PCI controller

The PCIC block implements the PCI protocol and is
not controlled by the micro-controller. It manages the PCI
accesses in both master and target modes.

4.2 PCI target

MEMRW handles the PCI target requests. Through
the PCI bus, NOE offers two distinct memory spaces:

− NOE command/Status registers (4Kbytes) : this
space includes two 32-bit interrupt registers to
generate interrupts from/to micro-
controller/processor and vice-versa, two register
files of 32 registers each, and the NOE configuration
registers.

− Micro-controller space (4KBytes to 4GBytes) : this
space is provided to receive the processor requests
whose destination is the micro-controller. The size
of this space is programmed by the micro-controller
at boot time.

Thanks to its internal fifo, MEMRW allows up to 16
read/write posted requests targeting the micro-controller.
A single register is provided within MEMRW to return
the result of each posted read targeting the micro-
controller space.

4.3 DMA operators

DMAR and DMAW allow NOE to act as a master on
the PCI bus.

DMAR reads the host memory through DMA
accesses. This operator accepts up to two requests posted
by the micro-controller. This last indicates to DMAR the
DMA start address in host memory, the data size, the PCI
command, and the destination fifo of NOE in which data
should be written.

Three destination fifos are possible. Each packet
builder is connected to DMAR through a fifo to solve
synchronization discrepancies. These fifos are used to
store temporarily data coming from the PCI bus and going
to the HSL network. A third fifo connects DMAR to the
micro-controller. This fifo stores data coming from the
host processor and going to the micro-controller, such as a
new descriptor of a message to be sent.

HSL1

DMAW

PCI

IT

SSRAM interface

HSLM2

PI Bus

DMAR

PX1

PX2

PB2

PB1

HSLM1

MEM
RW

Datapath

If any fifo gets full during a PCI transaction, DMAR
can stop the transaction and resume it as soon as the
destination fifo gets ready. It also handles misalignment
and is 32/64 bit capable.

DMAW writes data into the host memory through
DMA accesses. It accepts up to 2 DMA requests posted
by the micro-controller thanks to its internal request fifo.
A micro-controller request consists of the start address in
the host memory at which data should be written, the data
size, the PCI command, and the source fifo from which
data should be read.

Here again, three source fifos in NOE are possible.
Each packet extractor writes data extracted from the HSL
link into a fifo. A third fifo connects the micro-controller
to DMAW. As an example, when a message has been
fully received, the micro-controller pushes the message
descriptor so that DMAW writes the descriptor into the
host memory to notify the message reception to the host
processor.

As for the DMAR operator, if any source fifo gets
empty during a PCI transaction, DMAW can stop the
transaction. It will resume the transaction as soon as new
data is detected in the fifo. It also handles misalignment
and is 32/64 bit capable.

5. PACKET HANDLING OPERATORS

Two independent and parallel data-paths can be
identified in this architecture, one per HSL port. Each
path includes a packet builder (PB), a packet extractor
(PX), and an HSL interface (HSLM). These operators are
interlaced with buffering resources made of fifos to solve
synchronization discrepancies. Both data-paths share the
same and unique PCI resource.

5.1 Packet builder

The packet builder, PB, assembles data and control
characters to generate packets to be transmitted on the
HSL link. Basically, PB reads the header provided by the
micro-controller, and the data brought by DMAR from the
related fifos. A packet consists of one or more sections
separated by the ES special characters (End of Section) to
allow building various packet formats.

The packet builder is programmable. It reads
instructions posted by the micro-controller in the PB
instruction fifo. Assigning the micro-controller the charge
of providing headers and building instructions to PB
brings the flexibility necessary to adapt the packet format
to the protocol under evaluation. The only constraint on
the NOE packets is that they must consist of sections
separated by the special character ES so that headers
and/or data can be properly extracted by the receiver
packet extractor.

5.2 Packet extractor

The packet extractor, PX, handles packets coming
from the network and identifies the data in an incoming
packet. PX operates independently. Interaction with the
micro-controller is not necessary when receiving packets
delivered by the network. Thanks to the use of ES
characters, PX can identify different packet formats.

Each section of a packet corresponds to a destination
fifo. There are two possible destination fifos. As a general
rule, the first section of a packet contains always the
header. This last is pushed by PX into a fifo (PX2LP) read
by the micro-controller that will interpret the header to
program the DMAW operator. The second section starts
when an ES character is identified. This section generally
corresponds to the data itself. It is stored in a second fifo
(PX2DMAW) to be read by the DMAW operator. Each
new ES character defines an new section, and the
destination fifo switches alternatively from PX2LP to
PX2DMAW.

5.3 HSL operators

The HSLM block is dedicated to the communication
on an HSL link. It is specific to the HSL network. NOE
includes 2 instances of this block, one per link. It
computes CRC to guaranty packet integrity, detects errors
in incoming packets and notifies errors to the packet
extractor.

NOE offers 2 serial ports allowing the connection to
the HSL network. Each serial port is actually controlled
by a specific HSL core[1] communicating with HSLM.
This core has been developed at UPMC in collaboration
with BULL. The core performs serialization/de-
serialization and symbol coding of data according to the
1355 HSL standard, clock recovery, and parity generation
and comparison.

6. SIGNALLING HANDLING

Given that the micro-controller can implement various
protocols, NOE offers two different signaling policies:
polling and interrupts. Although they are rarely used
because of their cost, NOE can generate hardware
interrupts that might be necessary in protocols having real
time constraints.

Polling is preferred to interrupts because in this
architecture, the micro-controller is dedicated to NOE
control. It issues commands to NOE operators and waits
for their completion while polling the NOE status register.

The IT block in NOE contains the general status
register which indicates the status of each operator. It also
implements a programmable priority mechanism to speed
up the interpretation of the status register by the micro-

controller. A mask register is also provided to select or
disable interrupts.

7. NOE-HSL FIRMWARE

As described above, NOE consists of a set of
programmable operators. As a consequence, the
performances of this architecture depend directly on the
micro-controller firmware. Such a firmware must be
capable of reacting to the various hardware events
generated by NOE (arrival of a new packet header on an
HSL link, detection of a host processor request in
MEMRW, …).

Basically, the firmware should be able to handle
simultaneously four activities : two emissions (one per
HSL link) and two receptions. This firmware must be
optimized as much as possible to take advantage of the
parallel feature of the operators of NOE.

To satisfy these requirements, a micro-kernel has been
developed. BEE (Best Effort Executive) allows the
execution of several tasks simultaneously.

It is non pre-emptive, and all the tasks share the same
address space. Each NOE activity (message emission,
message reception,…) is implemented as a task. All the
tasks are statically allocated at boot time. Synchronization
among tasks uses queued semaphores. A specific
scheduler implementing circular priority has been
developed. It assigns the micro-controller to one of the
ready-to-run tasks.

In order to evaluate the performance of a specific
protocol on the NOE-HSL board, a software environment
has been developed on a Linux PC-platform. It allows the
description of protocols under the forms of tasks and
offers a simulation environment and debugging facilities.

The DDSLR protocol hardwired in the PCIDDC [4]
network controller has been implemented on this plate-
form and encouraging results have been obtained : less
than 6µs latency and a full PCI throughput. This
implementation demonstrates BEE efficiency : only 26
micro-controller cycles are necessary for a context switch.
When two emissions and two receptions are performed
simultaneously, penalty on latency du to BEE is of 20%.

Figure 3 : NOE layout

8. CONCLUSION

This paper presented the architecture of NOE, a
programmable network controller designed to interface a
standard PC CPU board to the HSL network. NOE
contains 12 operators for data transfer, 14 buffering fifos
to solve synchronization discrepancies, 2 1,5 Gbits/s full-
duplex and bi-directional serial HSL ports and a 32/64bit,
33/66 MHz PCI interface.

NOE is an ASIC. It contains 1.3 M transistors and the
chip area is of 45,3 mm². It has been fabricated in the ST
microelectronics 0.25 µm process and is encapsulated in a
QFP 208 package.

A micro-kernel has also been presented in this paper.
BEE (Best Effort Executive) allows the execution of
several tasks by the micro-controller. Although it has been
designed in the frame of NOE project, this micro-kernel
can still be used in any embedded system using a
processor core.

The differentiating feature of this architecture resides
in fact that NOE operators are programmable. A micro-
controller is connected to NOE and is assigned the charge
of programming the operators to implement a specific
low-level communication protocol. Buffering resources
included in NOE added to autonomous operators reduce
considerably timing requirements on the micro-controller
firmware. BEE takes advantage of this feature to provide
protocol programmers with a set of primitives for sending
and receiving messages using NOE.

As a conclusion, programming a new protocol on the
micro-controller using BEE and NOE does not require
specific knowledge of the internal architecture of the
network controller. Programmability is made compatible
with performances.

9. REFERENCES

[1] IEEE 1355, IEEE1355 Standard for Heterogeneous
Interconnect (HIC) Low Cost Low Latency Scalable
Serial Interconnect for Parallel System Construction,
(IEEE Standards Department, Aug. 1994).

[2] A. Zerrouki, O. Gluck, J.L. Desbarbieux, A. Fenyö, A.
Greiner, C. Spasevski, F. Wajsbürt, F. Silva, E. Dreyfus,
The MPC parallel computer : hardware, low-level
protocols and performances, in Proc of IASTED Parallel
and Distributed Computing and Systems (PDCS 2000),
Las Vegas, Nov. 2000, pp. 87-92.

[3] V. Reibaldi, Conception et réalisation d’un router de
paquets à hautes performances, PhD thesis of University
Pierre et Marie Curie, France, 1997.

[4] F. Wajsbürt, J.L. Desbarbieux, A. Greiner, C.
Spasevski, S. Penain, An Integrated PCI component for
IEEE 1355 Networks, In Proc. of EMMSEC’97, Florence,
Italy, 1997.

[5] JL. Desbarbieux, Conception et réalisation d’un
contrôleur réseau programmable pour machine parallèle
de type “grappe de PC”, PhD thesis of University Pierre
et Marie Curie, France, 2000.

[6] Open Microprocessor systems initiative, OMI 324 :
PI-Bus, April-May 1996. Available at
www.omimo.be/public/data/_indstan.htm#OMI324.

