
A FAST AND LOW-POWER DISTANCE COMPUTATION UNIT DEDICATED TO NEURAL
NETWORKS, BASED ON REDUNDANT ARITHMETIC

Yannick Dumonteix, Yann Bajot and Habib Mehrez

LIP6 / ASIM Laboratory, UPMC,
Tour 55-65 2̀emeétage, 4, Place Jussieu

75252 Paris Cedex France
E-mail : Yannick.Dumonteix@lip6.fr, Yann.Bajot@lip6.fr and Habib.Mehrez@lip6.fr

ABSTRACT

This paper presents the design of a fast and low power consump-
tion distance computation unit :

∑
i(Ai −Bi)

2. It is dedicated to
the digital RBF neural network implementation.
The proposed architecture is composed of two parts. The first com-
putes the distance(Ai − Bi)2, and the second performs the sum
of these distances. It is based on an efficient squarer in redundant
arithmetic. Thank to this operator, the distance measure circuits
developed offer better performances than those based on classical
arithmetic. The average gain is equal to 11% in delay and 18% in
power consumption.

1. INTRODUCTION

Today, with the advent of sub-micron technologies, it is possible
to integrate a complete RBF neural network on a chip. This allows
the development of embedded applications using a neural network
such as face or voice recognition. In this case, the important crite-
ria are real-time processing and power consumption.
A RBF network [1, 2] is composed of three layers (figure 1). The
first distributes the inputs to the hidden layer neurons. These neu-
rons constitute the heart of the network. A vector prototype is
associated to each hidden neuron.
To evaluate a hidden neuron output, the first step is to compute
the distance between the input vector and the prototype associated
with the neuron. The second step is to apply to the computed dis-
tance a non-linear function like a Gaussian (figure 1). The output
layer computes the decisions according to the weighted sum of the
outputs of the hidden layer.

Hidden layer

Output layer

(prototypes)

(Input vector)
Input layer

HN HN HN HN

A A A

S S1

321

21 p

n

m

Prototype

A

V

Hidden neuron

i
vi =

∑
i(Ai − Bi)

2 e

−Vi
λ

Figure 1: Radial Basis Function (RBF)

In this paper we are interested in the distance computation :∑
i(Ai − Bi)

2. The aim of this work is to propose a fast and
low power consumption implementation. Considering the excel-
lent performances of the fundamental operators (the adder [3] and
the multiplier [4]) in redundant arithmetic we propose to use this
arithmetic to increase the performances in delay and power con-
sumption of the distance computation.
The first section is dedicated to the presentation of the redundant
arithmetic notations. In the second section we detail the design of
the distance computation unit (DCU) and the squarer in redundant
arithmetic. The third section describes the implemented DCU and
squarer performances.

2. NUMBER REPRESENTATIONS

In this section we summarize the various notations used in redun-
dant arithmetic.

2.1. Carry Save notation (CS) :

In this system the digits are elements of{0, 1, 2} coded in two
bits of equal weight, such thatcsi = cs0

i + cs1
i . Similarly the

numbers are composed of two termsCS = CS0 + CS1. This
representation allows the coding of signed and unsigned numbers.
TheCS coding onN digits allows the representation of unsigned
numbers in the range{0, ..., 2N+1−2} and signed numbers in the
range{−2N , ..., 2N − 2} in two’s complement.

2.2. Borrow Save notation (BS) :

The digits are elements of{−1, 0, 1} coded in two bits, such that
bsi = bs+

i − bs
−
i . Similarly the numbers are composed of two

termsBS = BS+ − BS−. This representation is inherently
signed.
The two terms are in two’s complement. ABS onN digits allows
the representation of integers in the range{−2N + 1, ..., 2N − 1}.

2.3. Notice that

The common use of classical and redundant arithmetic, requires
the compatibilty of various representations. ACS can be the sum
of two conventional numbers (NR) : CS0 andCS1, which will
be coded in unsigned binary notation. In signedCS notation ,
CS0 andCS1 will be in 2’s complement. With a number inBS
notation,BS+ andBS− will be in 2’s complement.

3. ARCHITECTURE

3.1. Distance computation unit (DCU) :
∑
i(Ai −Bi)

2

The figure 2 presents the corresponding architecture of the distance
computation unit (DCU) :

∑
i(Ai − Bi)

2. It is composed of two
parts. The first computes the distance(Ai −Bi)2, and the second
performs the sum of these distances by accumulation / storage.
The figure shows that the first part corresponds to a squarer with an
input in Borrow-Save notation. Its output is in classical notation.
In order to reduce more the hardware the accumulation is included
directely in the squarer (real implementationin figure 2). Thus,
the architecture is essentialy composed of a redundant squarer. As
the redundant operator ouput is in redundant notation (CS), it is
necessary to convert it in classical notation : ouput adder in the
real implementation.

3.2. Squaring unit : X2

Any standard multiplier can be used for computingX2 = X ∗X.
That is also true for redundant arithmetic.

3.2.1. Full redundant multiplier :

In [4] the authors give a solution to implement a full redundant
multiplier : ACS ∗ BCS . This multiplier architecture performs
shift operations on rows and columns, in order to take into account
digit values (Ai,CS = 2 andBj,CS = 2) used in the computation
of partial products.
Thus, each intersection i,j generates 3 subproducts. The first
corresponds to the multiplication without a shift(Ai,CS =
1)AND(Bj,CS = 1), the second to a shift according to i
(Ai,CS = 2)AND(Bj,CS 6= 0) and the third to a shift according
to j (Ai,CS 6= 0)AND(Bj,CS = 2). Their sum is equal to the
intersection product :PP ∈ {0, 1, 2, 4}.
To reduce the numbers of terms to sum, the set of sub-products is
recombined in groups of three according to their shift and weight.
The number of partial products is one per intersection i,j. Since
the two shifted sub-products are not exclusive, the partial product
being coded in one bit, the result is wrong. To correct this, it is
necessary to modify input properties. Both inputs are recoded with
the property : ifEi,CS = 2 thenEi−1,CS = 0; the three sub-
products at the intersection of two shifts are zero.

3.2.2. Squarer : partial product computation

In classical arithmetic, a special-purpose squarer can be build in
hardware, in order to reduce significantly delay, area and power
consumption [3]. The partial products matrix can be considerably
simplified before performing multi-operand addition. A termai ∗
ai is reduced toai and a pair of termsai∗aj aj∗ai can be replaced
by 2 ∗ ai ∗ aj . The partial product number is almost reduced by
two.
The figure 3 presents the general architecture of a redundant squar-
ing unit, after application of this method on a redundant multiplier.
We show the described input recoding and the modified partial
product matrix.

Partial product matrix :

Each black arrow corresponds to a shift according to the

X2

PP
W

BS +Acc2Real
implementation

BS=A-B

W : Partial product sum
PP: Partial product Matrix

 Notation

CS

Acc

B

A

0

S

Accumulation / storage

Reset Select CkCk

Acc

22X with an BS input : (A-B) =BS 2

Figure 2: Distance computation unit architecture (DCU)

row or the column. Since specific partial productsai ∗ ai are
element of{0,1,4}, shifts are equal to two.
In order to limit the size of the partial products matrix elements, the
structure is decomposed into two blocks. The first block (generic
header recodingin figure), groups the parts common to each row
or column. It generates a signalEi,CS ≥ 1 and two exclusive
signalsEi,CS = 1 andEi,CS = 2. The second block (generic
cell of partial product matrixin figure), computes the sub-products
(AND gates) and their recombination according to shifts (3 inputs
OR gate).

Input recoding :

In [4], the recoding architecture corresponds to two rows of
half adders which compute the addition of two terms without
carry propagation :generic recoding cellin figure 3.
In addition to the input property modification, the recoding reduces
the value set of digit to{0,1}. It is true for the two firstLSB digits
and theMSB digit. This property allows to reduce the partial
products matrix and the matrix cell in many cases : only one or two
sub-products by partial product (zero or only one shift in figure 3).
In order to reduce more the matrix hardware, we have developed
a new input recoding (figure 4). The architecture is composed of
two stages. The first ensures that two consecutive digits of the
recoded number never have the value 2, and that one on two digits
is defined by only one bit. The second implies that if the digitdi
equals 2, the digitdi−1 equals 0. That is true because the sum and
the carry of a half-adder are exclusive. This is the desired recoding
property.
The particularity of this input recoding is that half of the digits are
defined by a single bit. It allows to increase the number of matrix
cells which recombine only one or two sub-products, and in the
same time to reduce the hardware of the matrix.

Notice that :

1. To take into accountBS input, we use the first stage of re-
coding to carry out a 2’s complement of the negative term
BS−.

2. In classical arithmetic, the partial product matrix is the same
except the partial products 7x. These ones are due to shifts.

X1 jX2jOUj
X2i

X1 i

OUi

Generic cell
of partial product matrix

Row_Dec
i,j-1

Line_Dec
i,j

i,j
Row_Dec

i,j
PP

Line_Dec
i-1,j

iCS input Digit

X1iX2iORi

HA

HA

iCS input Digit recoded

{0,1,2}{0,1} {0,1} {0,1}

20305060

213141

40 10 00

22

33

44

55

5161

324252

66

43536373

74 64

6575

11

6272

{0,1,2}

54

Header : digit decomposition in X1, X2 and OR signals

{0,1}

{0,1}

{0,1}

{0,1,2}

Input recoding

iCS Digit recoded

cell

header cell
Generic

Generic recoding

INPUT
 (redundant notation)

In
pu

t R
ec

od
in

g
Pa

rt
ia

l P
ro

du
ct

 M
at

ri
x

(6 digit input)

Figure 3: Redundant squarer architecture : example with a 6 digit input

HA

FA HAHAFA

HA

HAFA

Generic
recoding

cell

CS5
0

CS
1
4

CS4
0

CS
1
3

CS3
0

CS
1
2

CS2
0

CS
1
1

CS
0

1

CS
1
0

CS
0

0
1
5CS

CS5
0

CS4
0

CS3
0

CS2
0

CS
0

1
CS

0

0
CS5

0

1
5CS

Sign
cell

input

CS
recoded

CS

1
5CS CS

1
4 CS

1
3 CS

1
2 CS

1
1 CS

1
0

=0 =0 =0 =0 =0

Figure 4: Example of a 6 digit Carry-Save recoding

3.2.3. Partial product sum

The addition of the partial products is achieved by a Wallace re-
ductor [3]. The result is in Carry Save notation. This square unit
carries out shifts according to both rows and columns. With a re-
dundant multiplier, this characteristic implies a sign bit at the end
of each row and column. For the square unit, the partial product
matrix modification reduces the sign bits only to column (or row).

Direct sign extension being costly, we have generalized the sign
extension technique presented by Fadavi-Ardekani [5]. The tech-
nique is as follows : all sign bits are considered negative when
added. In this case, the sum of the sign extensions can be com-
puted.

This result will be added to the partial products (without sign ex-
tension) in the form of a constant (K). When a sign bit is positive,
it is sufficient to assign it a value ’1’ to eliminate its effect inK. In
practice, the value of each sign bit is complemented. For the figure
3 example, the sign bits are : 60, 61, 72, 73, 74 and 75.

4. PERFORMANCES

This part focuses on the performances analysis of the proposed
architectures. The design features of the square unit and the dis-
tance computation unit, are presented in classical and redundant
arithmetic : table 1.
To situate the performance gains, the various circuits are compared
with a classical multiplier :NR ∗NR → NR, used as the refer-
ence. Classical and redundant implementation are then compared.
For each real value corresponding to delay, consumption, or sur-
face, we indicate the gain in % of the reference result (ref). The
percentage limited by brackets given for the redundant circuits,
corresponds to the gain of this circuits face to classical circuits.
All the circuits presented have been placed and routed with the Ca-
dence CAD system, using the Alliance Standard Cell Library [6] in
0.35µm. This library associated to the Alliance CAD, permits to
have area, delay and power consumption estimations. The power
consumption computation is based on a tool presented in [7].

4.1. Squaring unit : X2

Comparison with the reference :

Following the input size the gains are from 36% to 46% in
area, from 26% to 15% in delay and 58% to 48% in power
consumption for the classical squarer. For the redundant squarer,
the gains are better : 45% in area, 31% in delay and from 65% to
46% in power consumption.
Important gains in area, delay and power consumption have been
introduced by the choice to develop specific architecture for the
squarer. That is true in classical and redundant arithmetic.
Comparison between classical and redundant implementations :

Classic arithmetic redundant arithmetic
Operator input Area Delay Consumption Area Delay Consumption

size µM2 ns µW/Mhz µM2 ns µW/Mhz
A ∗ B 8 6890 (ref) 8.7 (ref) 119 (ref) - - -
A ∗ B 16 26288 (ref) 12.9 (ref) 399 (ref) - - -
A ∗ B 24 65929 (ref) 15.2 (ref) 809 (ref) - - -
A ∗ B 32 137886 (ref) 17.0 (ref) 1448 (ref) - - -

A2 8 4410 -36% 6.4 -26% 50 -58% 3773 -45% (-14.4%) 6.0 -31% (-6.3%) 42 -65% (-16.0%)
A2 16 15092 -43% 9.6 -26% 197 -51% 14822 -44% (-1.8%) 8.5 -34% (-11.5%) 171 -57% (-13.2%)
A2 24 36027 -45% 12.5 -18% 433 -46% 37515 -43% (+4.1%) 10.2 -33% (-18.4%) 397 -51% (-8.3%)
A2 32 74130 -46% 14.5 -15% 759 -48% 77175 -44% (+4.1%) 12.0 -30% (-17.2%) 785 -46% (+3.4%)

(A− B)2 8 6259 -9% 10.7 +23% 147 +23% 7166 +4% (+14.5%) 9.9 +14% (-7.5%) 130 +9% (-11.5%)
(A− B)2 16 19293 -27% 14.3 +11% 478 +20% 22491 -14% (+16.6%) 13.0 +1% (-9.0%) 386 -3% (-19.2%)
(A− B)2 24 44222 -33% 16.9 +11% 961 +19% 51480 -22% (+16.4%) 14.8 -3% (-12.5%) 760 -6% (-20.9%)
(A− B)2 32 86350 -37% 20.4 +20% 1713 +18% 99849 -28% (+15.6%) 17.5 +3% (-14.2%) 1426 -2% (-16.8%)

Table 1: Squarer and distance calculation unit performances

Globally area and power consumption are the same for the
classical and redundant squarer. Following these criteria and
up to 24 bits, the redundant squarers are more interesting. The
difference between the two implementations concerns delay
results. The gains introduce by the redundant squarers are from
7% to 19%. The average is equal to 14%. The redundant squarer
appears as more interesting than the classical squarer.

4.2. Distance computation unit (DCU) :
∑
i(Ai −Bi)

2

Comparison with the reference :

The interest of this comparison is to situate the DCU per-
formances. In classical arithmetic, the delay and power
consumption are superior, respectively from 11% to 23%, and
from 18% to 23%. In the same time, the area is inferior by 30%.
For the redundant DCU, delay and power consumption are almost
equal to the performances of the multipliers. In the same time, the
area decrease from -4% to 28%.

Comparison between classical and redundant implementations :

The DCU in redundant arithmetic offers superior perfor-
mances in delay : from 10% to 15%, and from 12% to 21% in
power consumption. In the same time, the area overhead is limited
to 17%.
The difference between the DCU architecture and the squarer is
essentially the input adder in classical arithmetic, and the output
adder in redundant arithmetic. The gain evolution between the two
implementations (squarer and DCU) is due to this difference. Note
that both adders are implemented with a Sklansky Architecture [3].
The area overhead is due to the difference of the input sizes of
these both adders (2 times), the squarer areas are the same. The
modification in the delay gain is also due to the input size differ-
enceO(log2(size)).

5. CONCLUSION

In this paper, we have presented the design of a fast and low power
consumption distance computation unit (DCU) :

∑
i(Ai − Bi)

2.
This computation unit is very important for the RBF neural net-
work implementation. It is composed of two parts. The first com-
putes the distance(Ai − Bi)2, and the second performs the sum
of these distances.

The proposed architecture is based on a squarer in redundant arith-
metic. This operator offers better results than a squarer in classical
arithmetic : according to the input size, from 10% to 20% in time
and from 16% to -3% in power consumption for the same area.
Compared to conventional implementation based on classical
arithmetic, the DCU circuits implemented offer superior perfor-
mances in delay : from 10% to 15%, and from 12% to 21% in
power consumption. In the same time, the area overhead is limited
to 17%.

Using the redundant arithmetic permits to increase the timing per-
formances and to reduce the power consumption with a small area
overhead.

6. REFERENCES

[1] B. Granado et al. ”An embedded system for the real time ex-
ecution of GRBF networks”.”Seventh International Confer-
ence on Microelectronics for Neural, Fuzzy and Bio-Inspired
Systems”, 1999.

[2] M. Aberbour et al. ”Architecture and design methodology of
the RBF-DDA neural network”.”International Symposium on
Circuits and Systems (ISCAS)”, 1998.

[3] B. Parhami. ”Computer Arithmetic, Algorithms and Hard-
ware Designs”. ”Oxford University Press”, 1999.

[4] Y. Dumonteix et al. ”A family of redundant multipliers ded-
icated to fast computation for signal processing”.”Interna-
tional Symposium on Circuits and Systems (ISCAS)”, May
2000.

[5] J. Fadavi-Ardekani. ”MxN Booth Encoded Multiplier Gen-
erator Using Optimized Trees”.”IEEE Transaction On VLSI
Systems, vol.1,No 2” , 1993.

[6] A. Greiner et al. ”A complet set of CAD Tools for teach-
ing VLSI Design”. ”Third EuroChip Workshop”, 1992.
http://www-asim.lip6.fr/alliance/.

[7] J. Dunoyer. ”Modèles et Ḿethodes Probabilistes Pour
L’ évaluation de la Consommation des Circuits Intégŕes
VLSI”. PhD thesis, Université Pierre et Marie Curie Paris,
1999. http://asim.lip6.fr/publications/1999/.

	 Introduction
	 Number representations
	 Carry Save notation (CS) :
	 Borrow Save notation (BS) :
	 Notice that

	 Architecture
	 Distance computation unit (DCU)
	 Squaring unit
	 Full redundant multiplier :
	 Squarer : partial product computation
	 Partial product sum

	 Performances
	 Squaring unit
	 Distance computation unit (DCU)

	 Conclusion
	 References

