
An Example of Practice Based Engineering Education : the Design of a
Microprogrammed MIPS Processor with the Alliance CAD System

Marie-Martine PAGET
E-mail: Marie-Martine.Paget@lip6.fr

Pirouz BAZARGAN SABET
E-mail: Pirouz.Bazargan-Sabet@lip6.fr

Alain GREINER
E-mail: Alain.Greiner@lip6.fr

University of Paris 6, LIP6-ASIM Laboratory, http://www-asim.lip6.fr
BP 167, 4 Place Jussieu, F75252 Paris Cedex 05, France

ABSTRACT
This paper describes a VLSI project that aimed at the
design of a microprogrammed Mips R3000 microprocessor.
The project starts from the functional specifications of the
circuit and goes through several design steps to end with
the obtaining of the factory masks to be send to the
foundry. The project has been defined in the framework of
a postgraduate course of VLSI design at the University of
Paris 6 (Pierre et Marie Curie) and uses the public domain
Alliance CAD System developed at the same university.
Each team of five students, advised by a researcher, was in
charge of designing a processor within a period of three
weeks. This project comes after a set of four courses during
which a design methodology and the usage of the Alliance
CAD System has been detailed.

KEYWORDS: Computer Tools for Engineering Education,
Computer Aided Teaching, MIPS R3000 Processor

INTRODUCTION
Teaching Computer Science and Computer Architecture
covers a great number of fields ranging from artificial
intelligence, data base management, networks to domains
more closely related to electronic design such as VLSI or
integrated analog design. In University of Paris 6 (Pierre et
Marie Curie), the courses of Computer Science and
Computer Architecture are proposed to students within a
formation of two years for Master graduation and an
additional specialized year for post graduation. A great
effort has been carried out in the Department of Computer
Science to preserve a global coherence between the
difference courses all along the 3-year formation.

The Mips R3000 processor has been chosen as the practical
support of several courses within the Computer Science and
Computer Architecture formation. The architecture of the
Mips R3000 is simple enough for teaching the basic
concepts of computer architecture and still enough
complete and realistic to introduce more advanced features
such as pipelining, caching, operating system development,
performance versus complexity and etc. In university of

Paris 6, this processor is used for teaching compiling
techniques, microprogrammed processors’ architecture,
computer architecture and VLSI design. As mentioned by
Waldron in [6] “Mips is the preferred choice for teaching
computer architecture in 2000’s, just as the Motorola 68000
was during the 1980’s”.

In this paper, we describe a project proposed to post
graduate students in Computer Design. The projects
consists in the implementation of a microprogrammed
version of the Mips R3000 using a CMOS technology.
Since the main objective of the project was to provide a
practical example of VLSI design to the students, a
microprogrammed version of the processor has been
preferred rather the a pipeline version with higher
performance but much more complex to understand and to
lay down on silicon.

The project is an example of practice based engineering
education. It represents the result of the experiences
accumulated by the staff members during several years of
computer aided education in the field of microelectronic
design. Its goal is to complete the traditional teaching by
giving the students the possibility of playing an active role
in the learning process. The overall objective is to “educate
students in design competence and give the knowledge,
skills and attitudes leading to relevant professional
competence” as explained by Aas [1] or, to “help students
to understand the most up-to-date technologies together
with the methods and tools they will use in their future
industrial positions” as reported by Tchoumatchenko [5].

We will first present a short summary of the Mips internal
architecture and then focus on the methodology followed
by the students for the design of the processor. At each step,
we have tried to involve the learner in a creative task to
increase his motivation and to stimulate his thinking
capacity by an active participation to a real team work
associating analysis and synthesis.

MIPS INTERNAL ARCHITECTURE
The internal architecture of the chip is depicted in Figure 1.
The core is composed of a data path and a control part. The
data path includes registers and operating units and
performs elementary data transfers between source and
destination registers in one clock cycle. The data path is
controlled by the control part.

oriented approach. The design starts from the specifications
of the circuit and goes through several steps to end with the
description of the masks send to the foundry.

The project follows the methodology and the design tools
provided by the public domain Alliance CAD System [4].
Alliance is a complete set of CAD tools and portable

Sequencer Status

Data Path

Control Part
Processor’s Core

Commands
Flags

Figure 1: Mips Processor’s overview

The control part is split into two separate blocks: the
sequencer and the status block. At each cycle, the sequencer
(a finite state machine) goes to a new state. The state
calculated by the sequencer can be seen as a micro
instruction that defines all the operations that must be
performed at the next cycle. A part of the same micro
instruction is used by the sequencer to determine the next
state. An other part is send to the data path. The status
block is mainly in charge of managing the interrupt and
exception mechanisms during the execution of instructions.
It receives external events such as reset, interrupt requests,
etc. and informs the sequencer through a set of flags.

The interface between the data path and the control part is
composed of two sets of signals. A decoded micro
instruction word calculated by the sequencer provides all
the commands to the data path. In turn, a set of flags such
as overflow are calculated by the data path and notified to
the sequencer. These flags are used by the sequencer to
define the next state in regard of the particular situation that
has happened in the data path.

A set of pads are placed around the chip’s core to drive the
external signals.

THE DESIGN METHOD
The design methodology of the processor is a top-down

libraries for VLSI design developed at the Computer
Science Department of the University of Paris 6. A detailed
description of Alliance CAD Sytem can be found in
Alliance [2].

The VHDL language is used to write the specifications of
the processor at the RT level (Register Transfer Level).
Again the VHDL language is called, at the different steps
all along the design, to build the description of the circuit at
the structural level (interconnection of blocs or cells).

The design of the circuit is based on a standard cell
approach. Three separate libraries are provided by the
Alliance CAD System. SXLIB is used for random logic
design (control part). DP_SXLIB contains a set of cells and
operating unit’s generators that can be placed and routed in
regular blocks (data path). PADLIB provides a set of input-
output pads to connect the core to the external signals.

DESIGNING THE CONTROL PART
The design of the control part and the data path does not
follow the same scheme. When designing a circuit, the first
step is to split the circuit into several parts. Each part, is
then designed separately following a given scheme. The
partitioning is done manually. The design hierarchy of the
Mips processor is presented in Figure 2.

In our project, given the shortness of the time, a first
partition of the circuit into control part (composed of the
sequencer and the status block) and data path has been
given to the students.

The sequencer is written as a FSM (Finite State Machine).
A specific design tool (FSM Synthesizer) translates the
description of the finite state machine into an RTL
description by giving a binary code to each state. The
resulted RTL code is the reduced by a Boolean optimizer
and synthesized into a netlist of gates using the SXLIB
standard cells library. The design of the status part follows
the same scheme.

The place and route represent the last step. First the two
netlists are merged. Then, a scan path is inserted to increase
the testability of the block. Finally, the gates that compose
the resulted netlist are placed and routed using a standard
cells place and route tool.

Functional Description

Partitioning

Status Sequencer Data Path Pads

Layout

FSM Synth.

Merging

Logic Synth.
Place & Route Place & Route

Floor Planning

Core-Pad Routing

Backend Verifications

Figure 2: Mips Processor’s Design Flow

DESIGNING THE DATA PATH
Once again, because of the shortness of the project time, the
RTL description of the data path is provided. This RTL
description is used as the specifications of the data path.
But unlike the control part, the implementation of the data-
path is manually designed by the students. Therefore, the
first step consists in writing a structural description (a
netlist) using the generic components available in
DP_SXLIB library. Each component is build by calling a
given operating unit generator provided by the library.
Then, in the next step, the resulted netlist is placed and
routed.

CHIP LAYOUT
The last step to obtain the physical design of the chip
consists in assembling the different blocks. First, the
control part and the data path are placed and routed using a
router to obtain the processor’s core. Then, the different
input-output pads are placed and connected to the core.

LOGIC SIMULATION ENVIRONMENT
At each step of the design, a logic simulator is called to
achieve the functional verification of a VLSI. Usually, the
input interface of the circuit is excited through specific test
patterns and the output interface is observed to check the
relevance of the calculation realized by the circuit. In the
case of the Mips processor, such functional verification
method is unrealistic since a close interaction with the
processor is needed to control its interface and to feed it
with the correct instruction at the correct cycle.

In our project, the functional verification is achieved by
placing the processor on a simple CPU board surrounded by
its natural environment: a set of memory components
(Figure 3). This logic simulation environment is described
in VHDL language. This verification approach has been
detailed in [3]. Briefly, a functional test consists in writing
an assembly program. This program is assembled and the
resulted executable code is loaded into a ROM (Read Only
Memory) and put on the CPU board. Then, a simulation
session starts simply by resetting the processor which
begins to execute the program loaded into the memory. If
the description does not contain any functional error, the
program is executed till the end.

BACKEND VERIFICATIONS
The backend verifications represents an important step
before sending the layout to the foundry. It consists in
checking that the resulted layout does not contain any error
and is conform to the initial specifications. Here we focus
on the timing analysis. The Alliance CAD System includes
a static timing analysis tool. The input of the tool is a netlist
of transistors and capacitors extracted from the layout. This
netlist is analyzed to identify the critical paths inside the
chip. If the propagation through the longest path of the chip
cannot be obtained within the clock period, then the design
must be revisited, some part of the circuit must be modified
to reduce the propagation delay.

RESULTS
The project of implementing a simplified
microprogrammed version of the Mips R3000 processor has
been proposed to postgraduate students since three years.
Each year five teams have designed their own
implementation of the processor starting from the same
specifications. Thanks to a coherent set of CAD tools
provided by the Alliance System, most of the time, the
projects have been achieved successfully within three
weeks. The resulted circuit comprises approximately
50 000 transistors and uses a 0.35 micron CMOS
technology.

In addition, this project represents a unique opportunity to
improve the reliability of the Alliance tools and to check, in
a life size experience, the availability of new features and
tools. To increase the interaction between CAD tool
developers and the students, a Web based bug report system
has been developed.

Mips R3000 Address Decoder

RAM RAM RAM RAM RAM

Figure 3: Logic Simulation Environment

CONCLUSION
The project of implementing the 32-bit Mips R3000
processor covers nearly all the aspects of a real VLSI
design. Even if a real chip cannot be fully implemented
within three weeks, the students’ work by a learning-in-
doing approach help them in understanding what working
in a small design team means. Moreover, it learns them the
design methodology of VLSI circuits and the constraints of
an industrial project, in other terms, the respect of a given
specifications within a limited time.

ACKNOWLEDGMENTS
A great number of the members of the Department of
Computer Science of the University of Paris 6 has been
involved in this project. This acknowledgments is to thank
them all for their participation.

REFERENCES
1. Aas, E. J. On the design of Microelectronic Design

Projects to fulfill given Learning Objectives, CAEE’99,
5th International Conference on Computer Aided
Engineering Education (Sofia, September 22-24, 1999),
pp. 11-12

2. Alliance http://www-asim.lip6.fr/alliance - Email
alliance-support@asim.lip6.fr

3. Bazargan Sabet, P., Dunoyer J., Greiner A., Rosset-
Louerat M. M. A system level teaching environment for
designing the 32 bit DLX Microprocessor, in World
Scientific, editor, Proceedings of the 1st European
Workshop Microelectronics Education (Grenoble,
February 1996), pp. 197-200

4. Greiner, A. et al. Alliance : A complete set of CAD tools
for teaching VLSI Design, Proceedings of the Third
EuroChip Workshop on VLSI Design Training
(Grenoble, September 1992), pp. 230-237

5. Tchoumatchenko, V. and Vassileva, T. Rapid Prototyping
Methodology in ASIC Design Education, CAEE’99, 5th

International Conference on Computer Aided
Engineering Education (Sofia, September 22-24, 1999),
pp. 320-325

6. Waldron, J. Introduction to RISC Assembly Language
Programming, Addison-Wesley, 1998, ISBN 0-201-
39828-1, pp. 1-180

