Hardware implementation of a method
to control round-off errors

ROSELYNE CHOTIN and HABIB MEHREZ
LIP6/ASIM Laboratory
University Pierre et Marie Curie
4 place Jussieu - 75252 PARIS cedex 05
FRANCE
Roselyne.Chotin@lip6.fr

Abstract: - This paper describes the hardware implementation of CESTAC, a method to control round-off errors
in floating-point scientific computations. To overcome the speed limitation of CESTAC’s software implemen-
tation, a hardware design has been developped. The proposed architecture is compliant with the IEEE-754
standard on floating-point arithmetic. It is described as a generator to take account of different designs, data-

width, target library.

Key-Words: - Stochastic arithmetic, round-off errors, floating-point computation, floating-point architecture.

1 Introduction

Arithmetic operations in scientific computations in-
crease with computers speed. But using floating-point
numbers warps the results of these operations, due
to a round-off error propagation. At the end of the
computation, the result can be totally different of the
expected result. So it is important to control errors in
floating-point computations. The aim of the stochas-
tic arithmetic is to estimate the loss of accuracy of
elementary operations.

Different methods to control this round-off error, such
as interval arithmetic, stochastic arithmetic, variable-
precision arithmetic, already exist in software imple-
mentation. Only variable-precision arithmetic has al-
ready been implemented in hardware [1][2][3].

The aim of this paper is to propose a hardware im-
plementation of the stochastic arithmetic. A soft-
ware implementation already exists but costs a lot of
CPU load. The proposed architecture accepts stan-
dard floating-point unit (FPU) and has a bloc, which
performs the stochastic arithmetic. Section 2 is ded-
icated to a short review of the stochastic arithmetic.
Section 3 presents the architecture of some floating-
point operators. Section 4 details our hardware im-
plementation of CESTAC and section 5 our stochastic
FPU. Section 6 presents the performance of the com-
plete hardware architecture. The conclusion is given
in the section 7.

This paper presents the hardware point of view of the global
stochastic arithmetic project. We acknowledge the collabora-
tion of J. Vignes, J.-M. Chesneaux and J.-L. Lamotte for the
complete definition of the theoretical method aspects.

2 The stochastic arithmetic

The CESTAC method was developed by M. La Porte
and J. Vignes [4][5][6]. The idea behind this method
is to execute the same computation several times with
different round-off error propagation. At the end of
the computation, several results are available, each
with a different round-off error propagation. CES-
TAC gives the number of significant digits of the re-
sult and the value of the true result.

A stochastic number has several floating-point com-
ponents. A stochastic operation is performed by the
execution of the corresponding floating-point opera-
tion on each component of the stochastic operands.
Each result is rounded by using the random arith-
metic.

For example a stochastic operation on two stochas-
tic numbers with three components A = (A4, A, A3)
and B = (By, Bs, B3) is done by :

Ay op By, round to + oo
Aj op B, round to + oo
As op Bz, round to — oo

AopB=

The CESTAC method is detailed in the following.

2.1 Random arithmetic

Each result in exact arithmetic is surrounded by two
floating-point numbers F'~ and Ft. The round-off
determines toward which number F~ or F'* the result
will be rounded. The random arithmetic permits to
select F~ or F* with the same probability of ;.

2.2 Estimation of the accuracy

The result R of the N executions of the same com-
putation, is the average of each result (R;) obtained
with the CESTAC method :

The number of significant digits of the true result is
defined in [5] by :

VN.|R|

0.7

Cr =logy,

Where o is the standard duration :

1 X
2 _ D2
S e Il
i=1
And 73 is the value of the Student’s distribution for
N —1 degrees of freedom and a probability level 1 —f.
In practice N = 3, 753 = 4.303

2.3 Stochastic zero

Mathematically a result of a floating-point computa-
tion can be null, but due to the round-off error prop-
agation it is not. So the concept of stochastic zero
was introduced in [7]. A result is a stochastic zero
if all the results of the N executions (with different
round-off error propagation) are null or if the num-
ber of significant digits is negative. So a result is a
stochastic zero if one of these conditions is true :

1. Vi, Ri=0,
2. Cr<0
(2)

2.4 CADNA software

A software implementation of the CESTAC method
has been developed with a library named CADNA
(Control of Accuracy and Debugging for Numerical
Applications). This library permits to estimate the
round-off error in scientific computations and a real
debug [8][9][10][11].

Computation example

A program calculates the roots of the second degree
equation : 0.3z%2 — 2.1z + 3.673 = 0. This equation
has a double root x = 3.5. When the program is
executed on computer, the discriminant is negative
and then there are two conjugated complex roots.
The CADNA library detects that the discriminant is
a stochastic zero and then the equation has a double
root, which is x = 3.5.

So to perform a computation with the CESTAC
method, we have to :

e execute three times the floating-point operation
on each component of the stochastic operands
with a different round-off

e choose randomly the round-off
e calculate the number of significant digits
e detect the stochastic zeros

e calculate the average result

3 Floating-point operators

3.1 Floating-point unit

A library of floating-point operators has to be devel-
oped according to the IEEE-754 standard. In partic-
ular all operators should be able to perform operation
on special numbers such as infinity or NaNs. Further-
more these operators should detect all the standard
floating-point exceptions.

All operators are developed as parameterizable gen-
erators. Their parameters are the width (32 bits, 64
bits or other), the number of pipeline stages (1, 2 or
3) and some architectural parameters which depend
of the operator.

Actually only adder/subtracter, comparator and con-
version between integer and float have been imple-
mented because all are based on the floating-point
adder, which is the most important and complex op-
erator in a FPU. So most of the efforts have been
devoted to develop an adder with good performances.

3.2 Floating-point adder/subtracter

An algorithm of the floating-point addition is given
in [12]. Tt consists on : exponent substraction, align-
ment of the significand, significand addition, conver-
sion, leading one detection (LOD), normalization and
rounding. To reduce the delay, this algorithm can be
split in two paths based on the exponent subtraction
such in [13][14].

The main idea of this algorithm is that the align-
ment and normalization of the significand are mu-
tually exclusive as well as rounding and conversion.
Furthermore the LOD can be made in parallel with
the significant adder as seen in [15]. Those architec-
tural improvements are parameters of the generator,
because they depend of the designer purposes. The
adder architecture is given in the figure 1.

3.3 Floating-point comparator

The comparison operation is made with the same ar-
chitecture as the addition. The two operands are sub-
tracted and the sign of the result gives the result of
the comparison.

. .

,,,,, | R I

Significand addition 3 Leading One Detection |

Significand alignement I
Comversion
Significand addition .
Leading One Detection |
Rounding | | T [__________________ i

e ml m2

Fig. 1: Adder architecture

3.4 Format conversion

The float/integer and integer/float conversions are
computed with the same architecture as the addition
except an increase of the width of the normalization
shifter in order to perform the integer/float conver-
sion.

4 CESTAC in hardware

We have seen in 2 how to perform a computation with
the CESTAC method. So all the steps have to be
implemented.

4.1 Random round-off

The CESTAC method demands to choose a random
round-off between -infinity (—o0) or +infinity (+o0)
for the first and second execution. The third round-
off is the opposite of the second. In order to choose

randomly a round-off between +o00, we use a Linear
Feedback Shift Register of 32 bits.

4.2 Number of significant digits

The number of significant digits is defined in (1). A
hardware implementation requires a simplification of
this formula. Another method to calculate the num-
ber of significant bits has been developed :

1. calculation of the distances d; = |R; — Ry, dy =
|R1 — R3|, d3 = |R3 — Ry

2. for each distance d; we search the position of the
first true bit (p;)

3. the number of significant bits is the minimal po-
sition min(p, p2, p3)

Calculation validation

To validate the new calculation of the number of sig-
nificant digits, we compare its results with the results
given by the CADNA library [16].

R1

Distance ——~| Encoder

R2 —l
ﬁ
Distance —=| Encoder Comparator

RSL

Fig. 2: Calculation of the number of significant bits

Distance —~ Encoder L

To do this we generate a random number R; in an
interval [j, 10 % j]. Then R» is obtained with a pertur-
bation € of Ry and R3 with a random perturbation in
[0,€]. j and £ are integer variables.

So we compare the number of significant digits of
Ry, Ry and Rj3 given by our calculation and by the
CADNA library.

The algorithm of validation is given by :

While j < interval
While e; > ¢
For i=1to N
We generate randomly R; € [j, 7 * 10]
Ry=Ri+e
We generate randomly €3 € [0, £1]
R3 = R1 + €2
¢l = our_calculation(R1, R2, R3)
¢2 = cadna_calculation(R1, R2, R3)
If (c1 # ¢2) Then error
End If
End For
€1 =€1/10
End While
€1 =100
7=7%10
End While

Where :

e interval is the interval where the numbers (R,
R and R3) are randomly generated

e ¢ is the minimal perturbation
e N is the number of iterations

For these values our calculation gives the same results
as the CADNA library. Furthermore our calculation
has been tested in some examples of computation with
the CADNA library and the results are the same. So
on these samples, we have validated another method
to calculate the number of significant digits.

Hardware implementation

It’s easy to implement this calculation in hardware
with three operators of distance, three priority en-
coders to search the position of the first true bit and a
comparator to obtain the minimum. Figure 2 presents
the hardware implementation of the number of signif-
icant bits calculation.

FPU
Cycle stage 1 stage 2 stage 3 Cestac

1 A, Op By - store Ay, By

2 A2 Op B2 A1 Op B1 - store A27 B2
- store A3z, Bz and R
3 | A;OpB; | A, OpB, | A; Op B, _NSB(Z) s !
- store Cy, D d R
4 |CLOpD; | A3OpBs | Ay Op By |~ jv(;fg(é) Lane
- store Cy, Dy and R
5 | C20pD, | Cy OpD; | A3 Op Bs _NSB(]% ? °

Table 1: Operations scheduler
R1[30:0] R2[30:0] R3[30:0] Cr[4:.0] Ai Bi round

il L

zero

Fig. 3: Detection of stochastic zero

4.3 Average result

The calculation of the average result is not done with
a dedicated hardware because only one calculation is
necessary at the end of the computation. So this cal-
culation is assigned to the software.

4.4 Stochastic zero

The stochastic zero has been defined in (2). So in
hardware we test if all results are null or if the number
of significant bits is null. Then have a stochastic zero.
Figure 3 presents the implementation of the detection
of stochastic zero.

5 The stochastic FPU

Figure 4 presents the architecture of the stochastic
floating-point unit. Every three cycles, the numbers
of significant bits of each operand and the result can
be obtained. These three cycles are due to the com-
putation of the three components of the stochastic
number. The unit permits to :

e compute the floating-point operation
e setup the rounding mode (round signal)

e calculate the number of significant bits of the
operands and the result (signal NSB)

o

exceptions S

it |

| O

T
Number of
Significant
Bits
Detection of
informatics zero

zero NSB warning

Fig. 4: Stochastic unit architecture

e indicate if there is a sudden loss of accuracy
(warning signal), which means that the differ-
ence between the number of significant bits of the
operands and the result falls under the precision
given by the accuracy signal

e signal if the result is an stochastic zero (zero sig-
nal)

The operations are scheduled as explain in table 1.
The A; and B; inputs are the components i of the
stochastic numbers A and B and R; is the result of
the floating-point operation chosen by the signal Op.
The exceptions are those of the IEEE-754 floating-
point standard.

6 Results

A comparison of the number of significant bits calcu-
lation between the software and our hardware imple-
mentation has been done. Table 2 presents the per-

Table 2: Comparison between software and hardware
implementation

Width | Techno | Area Critical
(bits) (um) | (mm?) | Time (ns)
32 0.35 0.67 15
64 0.35 0.97 16
32 0.25 0.08 3.9
64 0.25 0.11 4.2

Table 4: Performances of the CESTAC unit

formances in number of cycles of the two methods.
Our new method of calculation is significantly more
efficient than the CADNA library. So our hardware
implementation of CESTAC would be much more per-
formant than the software.

The different hardwares have been placed and routed
with the Silicon Ensemble tool of Cadence. The tar-
get standard cells library is Sxlib of the Alliance CAD
system [17]. The timing analysis was done with the
Tas tool of Avertec!.

The table 3 presents the performances of the actual
FPU with addition/subtraction, comparison and con-
versions. The chosen algorithm is to split the addition
in two paths. Having a leading one detection in paral-
lel with the significand addition is interesting in delay
only if the FPU has no pipeline.

The table 3 presents the performances of the CES-
TAC unit. The area of the CESTAC unit represents

Lhttp://www.avertec.com

Without LOD With LOD
in parallel in parallel
Width | Pipeline | Techno | Area Critical Area Critical
(bits) | stages (um) | (mm?) | Time (ns) (mm?) Time (ns)
32 1 0.35 0.71 48 084 +18% | 39 -19%
32 2 0.35 0.77 24 090 +17% | 24 - 0%
32 3 0.35 0.84 17 096 +18% | 16 -6%
64 1 0.35 1.05 53 1.23 +17% | 43 -19%
64 2 0.35 1.12 28 1.30 +18% | 26 - 7%
64 3 0.35 1.22 19 1.38 +17% | 19 - 0%
32 1 0.25 0.08 15 0.10 +18% | 13 -13%
32 2 0.25 0.09 8 011 +17% | 7 -12%
32 3 0.25 0.10 5 011 +18% | 5 -0%
64 1 0.25 0.12 17 0.15 +17% | 14 -18%
64 2 0.25 0.13 9 015 +18% | 9 -0%
64 3 0.25 0.14 6 016 +17% | 6 -0%
Table 3: Performances of the IEEE-754 FPU
Min Max Average between 30% and 50% of the stochastic FPU total
(cycles) | (cycles) | (cycles) area and the critical time is lower than the critical
CADNA library 856 46381140 1083 time of the FPU with three stages of pipeline. Then
our method 133 1321980 280 the CESTAC unit isn’t a limiting factor for a delay

consideration in the computation of floating-point op-
erations, but represents an area increase.

7 Conclusion

We have developed a stochastic FPU which imple-
ments addition/subtraction, test of two floating-point
numbers, float to integer conversion and vice-versa. In
a technology of 0.25 ym, this 32 bits unit represents
0.18 mm? of silicon and has a frequency of 187 MHz
with two stages of pipeline.

Furthermore, our implementation of the number of
significant digits calculation is faster than the soft-
ware. So the computation of the CESTAC method
would be faster with our hardware implementation.
To use this stochastic FPU, we have to integrate it
into a processor and to map it on a FPGA. Other op-
erators, such as multiplication, division and square-
root, are in development. A full comparison on the
entire system between hard and soft implementations
is also in progress.

References:

[1] Michael J. Schulte and Earl E. Swartzlander Jr.,
“Hardware Design and Arithmetic Algorithms
for a Variable-Precision, Interval Arithmetic Co-
processor,” Proceedings of the 12th Symposium
on Computer Arithmetic, pp. 163-171, 1995.

M.S. Cohen, T.E. Hull, and V.C. Hamarcher,
“CADAC A Controlled-Precision Decimal
Arithmetic Unit,” IEEFE Transactions on Com-
puters, vol. C-32, pp. 370-377, 1983.

[3]

[10]

[11]

[12]

[13]

[14]

[15]

D.M. Chiarulli, W.G. Rudd, and D.A. Buell,
“DRAFT : A Dynamically Reconfigurable Pro-
cessor for Ingeger Arithmetic,” Proceedings of
the 7th Symposium on Computer Arithmetic, pp.
309-318, 1985.

M. Pichat and J. Vignes, Ingénierie du controle
de la précision des calculs sur ordinateur, Tech-
nip edition, 1993.

J. Vignes, “Review on stochastic approach to
round-off error analysis and its applications,”
Math. Comp. Simul., vol. 30, pp. 481-491, 1988.

J. Vignes and M. La Porte, “Error analysis
in computing,” in Information Processing 7/,
North-Holland, 1974.

J. Vignes, “Zéro mathématique et zéro informa-
tique,” in La vie des Sciences, C.R. Acad. Sci.,
number 1 in 4, pp. 1-13. Paris, Jan. 1987.

R. Alt and J. Vignes, “Validation of results of
collocation methods for ODEs with the CADNA
library,” Applied Num. Math., vol. 20, pp. 1-21,
1996.

S. Guilain, “Validation of thermodynamical
computations using CADNA library,” Proc.
CESA’96 IMACS Multiconference, vol. 2, pp.
1139-1144, 1996.

Jean-Marie Chesneaux and B. Troff, “Computa-
tional stability study using the CADNA software
applied to the navier-stokes solver PEGASE,”
Scientific Computing and Validated Numerics,
pp. 84-90, 1996.

Jean-Luc Lamotte, “A new approach for the
study of surface interpolation with uncertain
data using CADNA software,” workshop Reli-
able Computations and Interval, 1999.

John L. Hennessy, David Goldberg, and David
A. Patterson, Computer Architecture : A quanti-
tavtive Approach, 2nd edition edition, Jan. 1996.

S. F. Oberman and M. J. Flynn, “A Variable La-
tency Pipelined Floating-Point Adder,” in Pro-
ceedings of Euro-Par’96, Springer LNCS, Aug.
1996, vol. 1124, pp. 182-192.

D. Matula and A. Nielsen, “Pipelined Packet-
Forwarding Floating Point: I Foundation and a
Rounder,” in Proceedings of the 18th Symposium
on Computer Arithmetic, July 1997, pp. 140-147,
IEEEE Computer Society Press.

E. Hokenek and R. Montoye, “Leading-Zero An-
ticipator (LZA) in the IBM RISC System/6000
Floating-Point Execution Unit,” IBM Journal
of Research and Development, vol. 34, no. 1, pp.
71-77, Jan. 1990.

[17] A. Greiner and al ALLIANCE,

[16] J.-M. Chesneaux, “CADNA, an ADA tool for

round-off error analysis and for numerical de-
bugging,” Proceedings Congress on ADA in
Aerospace, 1990.

“A complet
set of CAD Tools for teaching VLSI Design,”
Third EuroChip Workshop, 1992, http://www-
asim.lip6.fr /alliance.

