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ABSTRACT

In this paper we present CESTAC, a method to con-
trol round-off errors in floating-point scientific compu-
tation, based on stochastic arithmetic. The real time
use of this method suffers from bottleneck software
calculation. This paper gives a hardware alternative
that would significantly accelerate the computation.
The proposed hardware architecture has two parts :
a standard floating-point unit (FPU) and a unit ded-
icated to the control of round-off errors.

1. INTRODUCTION

Arithmetic operations in scientific computations in-
crease with computers speed. But using floating-point
numbers garbles the results of these operations, due
to a round-off error propagation. At the end of the
computation, the result can be totally different of the
expected result. The aim of the stochastic arithmetic
is to estimate the loss of accuracy of elementary op-
erations.
Different methods to control this round-off error, such
as interval arithmetic, stochastic arithmetic, variable-
precision arithmetic, already exist in software imple-
mentation. Only variable-precision arithmetic has al-
ready been implemented in hardware [1][2].
The aim of this paper is to propose a hardware im-
plementation of the stochastic arithmetic. A soft-
ware implementation already exists but costs a lot of
CPU load. The proposed architecture accepts stan-
dard floating-point operators and has a block that
performs the stochastic arithmetic. Section 2 is ded-
icated to a short review of the stochastic arithmetic.
Section 3 details our hardware implementation. Sec-
tion 4 presents the performance of the complete hard-
ware architecture. The conclusion is given in the sec-
tion 5.

This paper presents the hardware point of view of the global
stochastic arithmetic project. We acknowledge the collabora-
tion of J. Vignes, J.-M. Chesneaux and J.-L. Lamotte for the
complete definition of the theoretical method aspects.

2. THE STOCHASTIC ARITHMETIC

The CESTAC method was developed by M. La Porte
and J. Vignes [3][4][5]. The validity and the efficiency
of the method were extensively proven in [6][7]. The
idea behind this method is to execute the same com-
putation several times with different round-off error
propagation. At the end of the computation, several
results are available, each with a different round-off
error propagation. CESTAC gives the number of sig-
nificant digits of the result and the value of the true
result.
A stochastic number has several floating-point compo-
nents. A stochastic operation is performed by the ex-
ecution of the corresponding floating-point operation
on each component of the stochastic operands. Each
result is rounded by using the random arithmetic. So
the least significant bit of the mantissa is randomly
disrupted. The theory of the CESTAC method resides
on the study of the propagation of these disruptions.
The CESTAC method is detailed in the following.

2.1. Random arithmetic

Each result in exact arithmetic is surrounded by two
consecutive floating-point numbers, one rounded down
F− and the second rounded up F+, each of them rep-
resenting the exact arithmetical result. The random
round-off consists in randomly choosing either F− or
F+ as result with the same probability of 1

2 .

2.2. Estimation of the accuracy

The result R̄ of the N executions of the same com-
putation, is the average of each result (Ri) obtained
with the CESTAC method :

R̄ =
1
N

N∑
i=1

Ri



The number of significant digits of the true result is
defined in [4] by :

CR̄ = log10

√
N.|R̄|
σ.τβ

(1)

Where σ is the standard duration :

σ2 =
1

N − 1

N∑
i=1

(Ri − R̄)2

And τβ is the value of the Student’s distribution for
N−1 degrees of freedom and a probability level 1−β.
In practice we take N = 3, and then τβ = 4.303. In-
creasing the value of N is useless, because to increase
of one the number of significant digits, it would be
necessary to multiply the number of executions by
100 for the same probability.

2.3. Stochastic zero

Mathematically a result of a floating-point computa-
tion can be null, but due to the round-off error prop-
agation it is not. So the concept of stochastic zero
was introduced in [8]. A result is a stochastic zero
if all the results of the N executions (with different
round-off error propagation) are null or if the num-
ber of significant digits is negative. So a result is a
stochastic zero if one of these conditions is true :

1. ∀ i, Ri = 0,
2. CR̄ ≤ 0

(2)

2.4. CADNA software

A software implementation of the CESTAC method
has been developed with a library named CADNA
(Control of Accuracy and Debugging for Numerical
Applications). This library permits to estimate the
round-off error in scientific computations and a real
debug [9][10].

Computation example

A program calculates the roots of the second degree
equation : 0.3x2−2.1x+3.673 = 0. This equation has
a double root x = 3.5. When the program is executed
on computer, the discriminant is negative and then
there are two conjugated complex roots. The CADNA
library detects that the discriminant is a stochastic
zero and then the equation has a double root that is
x = 3.5.

So to perform a computation with the CESTAC method,
we have to :

• execute three times the floating-point operation
on each component of the stochastic operands
with a different round-off

• choose randomly the round-off

• calculate the number of significant digits

• detect the stochastic zeros

• calculate the average result

3. HARDWARE IMPLEMENTATION

We have seen how to perform a computation with
the CESTAC method. So all the steps have to be
implemented.

3.1. Floating-point unit

A library of floating-point operators has to be devel-
oped according to the IEEE-754 standard. In partic-
ular all operators should be able to perform operation
on special numbers such as infinity or NaNs. Further-
more these operators should detect all the standard
floating-point exceptions.
All operators are developed as parameterizable gen-
erators. Their parameters are the width (32 bits, 64
bits or other), the number of pipeline stages (1, 2 or
3) and some architectural parameters that depend of
the operator.

3.2. Random round-off

The random round-off was definite in 2.1. This pseudo-
random number generator is implemented with a Lin-
ear Feedback Shift Register (LFSR) that generates
a sequence of pseudo-random 32 bits numbers. The
least significant bit of the generated 32 bits number
is the round-off. So this generator is used to choose
either R−i or R+

i (i = 1, 2) where i is the number of
the running execution. For i = 3, the round-off is the
opposite of round-off chosen for i = 2.

3.3. Number of significant digits

The number of significant digits is defined in (1). A
hardware implementation requires a simplification of
this formula. The number of significant digit is the
number of common digits to the different Ri. The
number of significant digits is therefore the position of
the first no null digit of the different results Ri. Two
close numbers could have no common digits (0.9999
and 1.0000 for example), so we prefer to search the
position of the first no null digit on the absolute value
of the Ri differences. So other method to calculate
the number of significant bits is done by :

1. calculation of the distances d1 = |R1−R2|, d2 =
|R1 −R3|, d3 = |R3 −R2|



Cycle
FPU

Cestac
stage 1 stage 2 stage 3

1 A1 Op B1
- store A1, B1

2 A2 Op B2 A1 Op B1
- store A2, B2

3 A3 Op B3 A2 Op B2 A1 Op B1
- store A3, B3 and R1
- NSB(A)

4 C1 Op D1 A3 Op B3 A2 Op B2
- store C1, D1 and R2
- NSB(B)

5 C2 Op D2 C1 Op D1 A3 Op B3
- store C2, D2 and R3
- NSB(R)

Table 1. Operations scheduler

2. for each distance di we search the position of
the first true bit (pi)

3. the number of significant bits is the minimal po-
sition min(p1, p2, p3)

We have compared the results obtained by this new
method with those obtained with the CESTAC method
(1) and the results are the same. It’s easy to imple-
ment in hardware with three operators of distance
that calculate the absolute value of the difference, a
comparator to obtain the greatest difference and a pri-
ority encoder to search the position of the first true
bit. Figure 1 presents the hardware implementation
of the number of significant bits calculation.

Fig. 1. Calculation of the number of significant bits

3.4. Average result

The calculation of the average result is not done with
a dedicated hardware because only one calculation is
necessary at the end of the computation. So this cal-
culation is assigned to the software.

3.5. Stochastic zero

The stochastic zero has been defined in (2). So in
hardware we test if all results are null or if the number
of significant bits is null. Then have a stochastic zero.
Figure 2 presents the implementation of the detection
of stochastic zero.

Fig. 2. Detection of stochastic zero

3.6. Putting it all together

Figure 3 presents the architecture of the stochastic
floating-point unit. Every three cycles, the numbers

Fig. 3. Stochastic unit architecture

of significant bits of each operand and the result can

be obtained. These three cycles are due to the com-
putation of the three components of the stochastic
number. The unit permits to :

• compute the floating-point operation

• setup the rounding mode

• calculate the number of significant bits of the
operands and the result

• indicate if there is a sudden loss of accuracy that
means that the difference between the number
of significant bits of the operands and the result
falls under the precision given by the accuracy
signal

• signal if the result is a stochastic zero

The operations are scheduled as explain with table 1.
This unit could be used in replacement of a standard
FPU. It is necessary to modify the compiler so that
it uses the stochastic numbers (three floating-point
components) and the stochastic zero as a mathematics
zero. Then the computation runs like a floating-point
computation.

4. RESULTS

Width Techno Area (mm2) Frequency (MHz)
(bits) (µm) FPU Cestac FPU Cestac

32 0.35 0.84 0.84 59 60
64 0.35 1.22 1.18 52 57
32 0.25 0.10 0.09 187 214
64 0.25 0.14 0.13 167 202

Table 2. Stochastic unit performances

Table 2 presents the performances of the actual
stochastic FPU with addition/subtraction, compari-
son and conversions.
The target standard cells library is Sxlib of the Al-
liance CAD system [11]. The unit has been placed and
routed with the Silicon Ensemble tool of Cadence and
the timing analyzing was done with the timing ana-
lyzer Tas of Avertec1.

1http://www.avertec.com



Furthermore a comparison of the number of signif-
icant bits calculation between the software and our
hardware implementation has been done. Table 3
presents the performances in number of cycles of the
two methods.

Min Max Average
(cycles) (cycles) (cycles)

CADNA library 856 46381140 1083
our method 133 1321980 280

Table 3. Comparison between software and hardware
implementation

5. CONCLUSION

We have developed a stochastic FPU that implements
addition/subtraction, test of two floating-point num-
bers, float to integer conversion and vice-versa. In
a technology of 0.25 µm, this 32 bits unit represents
0.18 mm2 of silicon and has a frequency of 187 MHz
with two stages of pipeline. The CESTAC block is
not limiting in term of critical time, but its area is
the same as the FPU area. The area of the CESTAC
block will not increase with more operators then that
the area of the standard FPU will increase.
Furthermore, our implementation of the number of
significant digits calculation is faster than the soft-
ware. So the computation of the CESTAC method
would be faster with our hardware implementation.
To use this stochastic FPU, we have to integrate it
into a processor and to map it on a FPGA. Other op-
erators, such as multiplication, division and square-
root, are in development. A full comparison on the
entire system between hard and soft implementations
is also in progress.
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