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Abstract

We introduce Fine Grain Scheduling (FGS) as a post-
processing step to circuits classically designed as a data-
path controlled by a finite state machine (FSM). Such cir-
cuits may have timing errors, particularly if they are gener-
ated by High Level Synthesis (HLS) tools that make use of
crude temporal estimates during scheduling. FGS resched-
ules the FSM to ensure correct execution at a requested fre-
quency on the data-path.

The proposed algorithm takes into account all the elec-
trical constraints of the data-path, namely propagation
times, set-up and hold times of memorization elements, and
even delays due to the interconnects if the data-path is
placed and routed. Like HLS algorithms, FGS supports
multi-operators cells, multi-cycle operators and chaining.
However, it also makes use of mutli-cycles chaining to al-
low the chaining of several operators over several cycles
without intermediate memorizations.

Experimentation of FGS on an MPEG2 Variable Length
Decoder and a full MJPEG decoder has demonstrated that
the approach is particularly well suited for the design of
asynchronous coprocessors. Synchronous processors can-
not be scheduled by FGS because the inputs and outputs
dates are modified.

1 Introduction

High Level Synthesis is expected to play a major rôle
for embedded coprocessor design. Therefore, several HLS
systems have been proposed in the last decade ([18, 7, 3]
and many others). In these systems, the design is obtained
automatically from high level description based on mainly
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two requirements: speed of execution of the target circuit
and/or layout size. Unfortunately, most synthesis tasks are
intractable in nature, hence the solutions found by the tools
may not respect the design constraints. Due to the complex-
ity of the problem, and in order to use designer insights, in-
teractive synthesis environments have been devised[10, 9].

However, these tools are unable to cope with the delays
induced by the physical wirering within the data-path, be-
cause it is a result of the synthesis. With the current tech-
nologies, the propagation time can only be roughly esti-
mated by high level tools, as even in now well established
0.5µm technologies, more than 40%[19] of the delays lies
in the interconnect. Furthermore, the setup, hold and prop-
agation times of the sequential resources are generally not
taken into account. Ignoring these delays in a design mix-
ing long and short timing paths induces race conditions for
sampling the data, leading to possibly non-functioning cir-
cuits, independently of the clock period.

Likewise, the frequency of use of the target design is of-
ten a result of the synthesis [18, 4, 9, 16, 17] even though the
running frequency of an ASIC is related to its environment
and the other components with the which it communicates.

To ensure correct execution of the synthesized circuit,
[11, 12] suggest to retime the data-path. It can unnecessarily
retime false pathes and such approaches, especially the one
based on procrastination, are costly in area.

In similar way, we introduce Fine Grain Scheduling
(FGS) that reschedules the FSM.

Coarse

Grain FSM
Fine

Data−Path

Grain FSM

FGSCK

1



Figure 1. FGS inputs and outputs.

As shown Figure 1, the input of FGS are:

1. The data-path with all timing informations, namely
propagation times, set-up and hold times of memo-
rization elements, and even delays due to the inter-
connects if the data-path is placed and routed,

2. The Coarse Grain FSM (CG-FSM) in the which only
the sequence of operations is respected, not the pre-
cise timings. The states of this FSM correspond to
the control-step in HLS,

3. The desired frequency for the rescheduled FSM.

Its output is a Fine Grain FSM (FG-FSM) that behaves like
the CG-FSM but taking into account the timing information
to run at the given frequency.

2 Related work

In [16], Parameswaran et al. share the concern of resyn-
thesizing the controller of a circuit for a physically available
data-path. Their work however mainly focuses on how to
find an optimal clock for a given data-path, which we be-
lieve should be an input of the tool and not an output. They
do not take the setup and hold times of the registers into ac-
count, leaving open the possibility of race conditions, and
unfortunately do not detail their rescheduling algorithm.

Monahan and Brewer[14] have also noticed the impor-
tance of the interconnect delay problem in HLS. They start
from an existing data-path at the RT level for the which they
derive delay estimations, and allow the rebinding of con-
nections. They propose a two phase approach in the which
the automata is reevaluated to take estimated delay into ac-
count. However, the data-path is not hardened like in [16]
or the current work, leading to possibly dreadful inaccura-
cies.

Juan et al. [9] present a environment that assist the HLS
task. They still have the notion of critical path, and cannot
lower the period below it. FGS would simply take more
than a single cycle to execute the set of operation that lie
on the critical path, without modification of the data-path.
Also their work is not resource constrained, and they use
a predictive floor-planning during refinement, that implies
only a rough estimation of the delays.

Van Meerbergen et al. [21] use a regular target architec-
ture template, that resemble much a VLIW processor, for
the which delays can be more easily estimated. This is well
suited for data intensive applications but is less useful for
control dominated circuits because they are not dedicated
to a given application domain.

The FGS algorithm is based on the notion of elementary
transfers between registers. This notion is well known to
processor designers [8], the only difference in HLS being
that several operators can be chained between memoriza-
tions. However, unlike in [20] that also uses this notion,
chaining can occur over several cycleswithout intermediate
memorizations.

3 Fine Grain Scheduling

We show the algorithm on a small example. The Fig-
ure 2 presents the inputs of Fine Grain Scheduler: 1) a data-
path with known electrical characteristics –Figure 2.a– , 2)
the Figure 2.b gives the RTL instructions directly extracted
from the CG-FSM control-steps. Those are called transfers,
and their order matters. 3) a running frequency. The idea
behind FGS is to reorganize the basic-blocks of the CG-
FSM, moving instructions from one control-step to either a
close control-step or to an added control-stepto begin with,
and finally to suppress the useless control-steps.
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a) Data-path
t0: r0=f(x0, y0) t2: r0=f(x0, c0)
t1: y =h(c1, g(y0, r0)) t3: x =h(c1, r0)

b) Ordered list of transfers

Figure 2. inputs of the FGS algorithm

FGS deals with the scheduling of basic-blocks.
Nevertheless it is different from the HLS scheduling
algorithms[6] because the data-path of the operative part is
completely defined. This fact induces that:

• Latency times are well known, and expressed in time
units (e.g: tenths of nanosecond),
• The variables (respectively operators) have already been

allocated to registers (respectively functional resources),
• And finally the knowlegde of the instructions reduces the

set of execution pathes to the ones actually used.

Definitions

Transfer: A transfer is the motion of data from the outputs
of a set of registers to the input of a target register. A transfer
t is represented as a DAG,Dt(V t, At), whose vertices are
operations and arcs are data dependencies as realized on the
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Figure 3. DAG representation of the t0 transfer

data-path. The Figure 3 shows the DAG of thet0 transfer of
Figure 2. In this DAG, the rectangles represent the output of
the control unit (memorized inMIR , the micro-instruction
register), and the circles represent functional operations. A
vertex is of three kinds:
COP: Concurrent OPerations do not modify the state of the
data-path. For instance, changing the selection command
of a multiplexer in a control-step only assignsMIR . The
following control-step may restore the previous value and
so restore the circuit in the previous state. They correspond
to a value on bit fields ofMIR . Two COPs are equivalent if
they match the same bit field,

POP: Permanent OPerations always perform the same
task and are associated to a single functional resource,

SOP: Sequential OPerations modify the state of the data-
path. They perform memorization operation: once done,
the overwritten value is lost. They usually correspond to a
data-path register, and a bit field ofMIR . Two SOPs are
equivalent if they match the same bit field.

A transferDt(V t, At) has the following structural prop-
erties:

• V tsource the set of vertices that have no predecessors.
V tsource only containsCOP andSOP.

• V tsink the set of vertices that have no successors.
|V tsink | = 1 and its element is aSOP.

• V toperator = V t − (V tsource ∪ V tsink ). All elements of
V toperator arePOPs.

Transfer Graph: A transfer graph is a directed acyclic
graph,D(V,A), that represents the set of transfers that oc-
cur in the data-path for a given top level FSM transistion.
The transfer graph is the concatenation of all transfers of
the input list in the list order (Figure 2.b). The transferDt is
added to the graph, and the verticesv ∈ V jsource are merged
to most recently added equivalent vertices. Figure 4 shows
the transfer graph resulting of the example of Figure 2.
Characterized Transfer: A characterized vertex is a vertex
annotated with delays – see Figure 5.

m

y0 S=0 x0 S=1

r0 r0

m

f

c0

f

g c1

h

y

h

x

c1

T3T1

T2

T0

Figure 4. The transfer graph of Figure 2
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Figure 5. Characterized vertex

A POP vertex has a value associated to each couple of
incoming and outcoming arc of the vertex. These values
represent the set of propagation times of the corresponding
physical cell.

A COP vertex has only one value associated to the out-
coming arc, it corresponds to the propagation time from the
clock to theMIR output bits associated to theCOP.

A SOPvertex has 2 values associated to each incoming
arc and 1 for each outcoming arc. They represent the set-
up and hold times from the input relative to the clock and
the propagation time from the clock to the output from the
corresponding physical cell.

These values are delays extracted from the physical
placed and routed data-path, so wire delays are taken into
account.

The characterized transfer is obtained by replacing the
original transfer vertices by characterized vertices. Figure 6
shows the characterized transfer of the transfer presented
Figure 3. The values of the characterized vertices are graph-
ically represented by the plain arrows.
Characterized Transfer Graph: It is obtained from the
transfer graph by replacing transfers with characterized
transfers. Nevertheless other arcs must be added to cor-
rectly model the behavior of the initial transfer sequence.
These arcs implement the WAR (Write After Read) and
WAW (Write After Write) precedence relations [15].
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• The RAW relation denotes the data dependencies.

• The WAR relation express the fact that 2 equivalent
COPs are used with different values. In our example this
occurs for S=0 in thet0 transfer S=1 in thet2 transfer.
S can be set to 1 only when this will not disturb thet0
transfer. This gives the arc from the r0 hold time to S=1
propagation time.

• The WAW relation indicates that two equivalentSOPs
are used within two different transfers. In the example,
r0 is used simultaneously int0 and t2. The SOP of t2
must be performed after theSOP of t0, is because the
same register cannot be loaded twice in the same cycle.

The resulting graph is plotted in Figure 7, with the previous
relations outlined.
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Scheduling the Characterized Transfer Graph

The scheduling rules are:

R1 Load a given register only once in a given cycle,

R2 Loading a register must respect its set-up time,

R3 Loading a register must not violate the hold time.
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Figure 8. Scheduled transfer graph

The clock period defines a grid on the which theSOPs
and theCOPs must besnapped. A simple ASAP [13]
algorithm with the constraint that all arcs points down-
wards (Figure 8) produces a scheduling that verifies all the
scheduling rules. Thispointing downwardsrelation is ei-
ther combinational when concurent operations are involved
or sequential when a permanent operation is involved.

RuleR1 is enforced by the arcs implementing the WAW
relations. RuleR2 is enforced by RAW relations (data de-
pendencies: the plain arrows). RuleR3 is enforced by the
the arcs implementing the WAR relations.

This scheduling allows all kinds of chaining and espe-
cially multi-cycles chaining without intermediate memo-
rizations.

The only delays not taken into account are: a) the prop-
agation time from the FSM state register to the data-path,
and b) the propagation time from the data-path to the FSM
state register. Point a) is solved because the control unit
is a Moore FSM with aMIR that synchronizes the control
signals and that we assume that the delays due to routing
capacitances between theMIR and the operator command
inputs are similar. This can be ensured by increasing the
fan-out of theMIR buffers. Point b) is only due to the
conditional branches of the FSM. We solve it by setting an
upper bound on the FSM transition function. This upper
bound becomes the timing constraint of the FSM synthesis
tool.



4 Experimental results

We have experimented FGS in the User Guided High
Level Synthesis (UGH) tools [1]. Figure 9 shows the UGH
synthesis scheme. The specification is given by a behavior
(either C or VHDL subset) and a draft data-path that mainly
defines the allowed functional (apart from the multiplexers)
and memorization ressources. UGH-CGS produces a struc-
tural synthesizable data-path and a CG-FSM. The structural
data-path is built from the draft data-path by adding mul-
tiplexers and defining the size of each resources. The CG-
FSM is build by paralellizing the behavior on the resources
defined in the draft data-path. This CG-FSM corresponds to
the initial behavior assuming that all resources have propa-
gation times smaller than the cycle period.
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Figure 9. UGH synthesis scheme

The structural data-path is then synthesized using Syn-
opsys. All delays (propagation, set-up and hold times) are
extracted. These delays are used by FGS to retime the CG-
FSM. The complete circuit is the synthesized data-path and
the result of the synthesis of the FG-FSM.

We have experimented FGS with aMotion JPEGappli-
cation. It contains five blocks that covers application kind
from control-dominated to data-dominated. The results pre-
sented here are issued from a MPEG2 VLD decoder that we
have developed in the COSY project[5] It performs Huff-
mann decoding and is very control dominated.

The C behavioral description is 300 lines long (the
equivalent VHDL is 400 lines long), the draft data-path is
200 lines. We run GCS with this specification. We get the
CG-FSM with 136 states and the structural data-path with
approximatively 50 components. These components are 8
arithmetic operators (from 16 to 6 bits wide), one 32 bit
shifter, 33 muxes (from 12 to 2 inputs), and 4 ROMs.

The structural data-path is synthesized on a 0.25µm
standard cell library using Synopsys in 4440 gates with a
critical path of 15.8ns.

We run FGS for a frequency range from 20 MHz to 200
MHz. The Figure 10.a plots the number of states as a func-

tion of the frequency. When the frequency increases, the
number of states increases too to fit the data-path delays.
Up to 40 MHz, the number of states is constant because the
data dependencies constraints are stronger than the timing
constraints.

We simulate the circuit made of the FG-FSM and the
synthesized data-path using a MPEG2 stream containing
a few images. The Figure 10.b represents the execution
time as a function of the frequency. We can see that we
don’t have an hyperbolic curve but a succession of hyper-
bolæ. This is due to the more often executed algorithmic
sequences. Those sequences contain pathes that require 1,
2 or more cycles to be executed depending on the given fre-
quency.

These results show that there are two solutions to support
the 20-200MHz range.

1. A single circuit: the one that runs at 200MHz. This
will be lesser and lesser efficient for the lower fre-
quencies, as shown on Figure 10.b. For instance, the
200 MHz scheduled VLD running a 20 MHz is three
times slower than the 20 MHz scheduled one,

2. Six different circuits per frequency range: 0-50, 50-
60, 60-80, 80-100, 100-120, and 120-200 MHz.

Furthermore, the curve shows that the fabrication pro-
cess induces unsecure frequencies, for example around 80
MHz. So it is advised to fine schedule at 100 MHz to get a
80 MHz circuit.

The same kind of curves can be observed also when
scheduling data-dominated circuits, such as the inverse dis-
crete cosine transform also used in MPEG decoding.

5 Conclusion

We have defined and developped the retiming of finite
state machines to control hardened data-path as a post pro-
cessing of the UGH tool suite.

However, it can also be useful for other HLS tools, to
tune the synthesized circuit to the electrical constraints.
Also, it can used after RTL synthesis, like Synopsys de-
sign_compiler, especially when it did not achieve the fre-
quency constraint. FGS also permits to adapt an existing
design to a higher or lower frequency. Moving to higher
frequencies, it allows to have a correct circuit. Moving to
lower frequencies, it allows to optimize execution times.

The main advantage of this approach is to preserve the
area of the circuit when the frequency gap is reasonnable,
because at worst FGS add a few states and transitions to the
FSM.
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Figure 10. FGS experimentations on the VLD example

The main restriction is that FGS can only be used to re-
time processors with asynchronous interfaces to their en-
vironments, since the communication dates are determined
by FGS as a function of the data-path delays and the clock
period.

Finally, our FGS implementation is distributed under
GPL licence within the Disydent framework[2].
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