
Using Symbolic Simulation to Exhibit Worst Case Crosstalk
Noise Configuration

Pirouz Bazargan-Sabet, Patricia Renault
LIP6 – University of Paris 6, 4 Place Jussieu – 75005 Paris – France

pirouz.bazargan-sabet@lip6.fr, patricia.renault@lip6.fr

Abstract
Crosstalk noise is due to the effect of the transition of a
signal - called aggressor - on its neighbours - called
victims. A lot of analytical methods propose to evaluate
crosstalk noise without taking into account the fact that
all the neighbour signals are not making a transition in
the same time. Thus, the crosstalk noise is overestimated.
We propose a novel approach to evaluate crosstalk
effects. Unlike previous approaches, we try to determine
the active and passive aggressors of each victim at a
given time. In this paper, we present an event-driven
approach for crosstalk noise analysis. Based on the
evaluation of instability periods, this event-driven
algorithm determines the maximal noise configuration.
For each victim, this configuration identifies the set of
aggressors that may effectively commute in the same
time and which produces the maximal crosstalk noise.

1. Introduction

As integrated circuits and systems are designed with
smaller feature sizes, crosstalk capacitance effects have a
more dominant impact on signal propagation than ever
before. Thus, the crosstalk noise is one of the emerging
problems in submicron design that may cause timing
and, in some extreme cases, functional failures in the
circuit. In a crosstalk coupling, a noise is injected on a
wire whenever a signal in its near environment makes a
transition. This noise is due to a parasitic capacitor that
appears between two wires routed one near the other.
The signal that makes the transition is called the
aggressor, and the signal affected by the noise the
victim.

Let’s consider two signalsA (aggressor) andV
(victim) driven by two inverters (Fig. 1). During the
transition ofA, if V is in a steady state, the noise has the
form of a spike and is absorbed by theV’s driver after
some delay. On the contrary, ifV is making its transition
in the same time, the crosstalk noise leads to a shorter or
a longer transition delay.

V

A

Fig 1: Two signals in crosstalk coupling

In a real circuit, the coupling scheme is much more
complex. A given signal may be coupled with several
thousand signals. However, at a given time, all the
aggressors are not making a transition. The aggressors
that are in a steady state and do not contribute to the
noise produced on the victim are calledsilent
aggressors. The others areactive aggressors. In turn,
each aggressor may have many other couplings. When a
given signal is considered as a victim, all the other
victims of its aggressors are referenced assecondary
victims.

In this paper, we detail the effective implementation
of a crosstalk noise evaluation model inside a
verification tool. The next section gives an overview of
our noise estimation model already published in a
previous paper. In the section 3, we focus on the problem
of the static crosstalk analysis and the method used to
determine the active aggressors of a victim signal. This
static analysis method represents the main contribution
of this paper. Section 4 presents the software architecture
of the tool and some experimental results. The last
section exposes the concluding remarks and the future
works.

2. Crosstalk Noise Model

Many models have been proposed to estimate the
peak value of the noise produced on a victim. Some of
them take into account the resistance-capacitance of the
interconnect, others focus on studying the noise
produced by the simultaneous transition of several
aggressors [1] [2] [3] [4].

In a previous paper [5] we have proposed a model
that ignores the RC of the interconnect but gives a
satisfying estimation of the peak produced by several
aggressors using a simple approach. This model takes
into consideration some second order effects such as the
existence of silent aggressors and secondary victims and
is composed by three successive approximations:

� replacing signal’s drivers by a simple resistance
� replacing silent aggressors and secondary

victims by equivalent capacitors
� replacing active aggressors by an equivalent

current source

Then, the victim’s waveform is expressed:

)()(
1

kv ct
n

k

t

kv

k

kv ee
c

c
cIRtv

ττ

ττ
τ −

=

−
� −

−
=



3. Static Crosstalk Noise Analysis

As we have seen, for each victim, determining which
of its aggressors may commute in the same time is a key
point in the noise analysis. In this section, we detail a
technique that aims to make the distinction between
active and silent aggressors. Through this technique the
noise configurations of each victim are calculated. For a
signal, anoise configurationis defined as a subset of its
aggressors that may commute in the same time. The
falling transition of active aggressors produce a negative
noise on the victim. Thus, such noise configuration is
called a negative noise configuration. A noise
configuration composed of aggressors that receive a
rising transition represents apositivenoise configuration.

An obvious way of determining the noise
configuration is to consider that all the aggressors of a
given victim are active aggressors. This elementary
method is far the most efficient since it doesn’t require
any computation. However, in a multi-million-transistor
circuit, a signal may have several thousands of
aggressors. Thus, the assumption that all these
aggressors could make their transition in the same time
is far to be realistic. Therefore, considering the noise
configuration as the entire set of the aggressors leads to
an overestimated worst case.

A further analysis is required to determine the noise
configurations that can actually be produced on a signal.
This analysis relies on timing concerns.

3.1 Instability Periods

Given the propagation delay through the gates, it is
possible to compute the time, in the clock period of the
circuit, at which a signal makes its transition. Yet, this
calculation depends on the logic configuration of the
inputs and on the internal state of the circuit. As it is not
reasonable to examine all the logic combination of the
inputs and the internal states to obtain the worst noise
configuration, a static approach must be used. Like in
static timing analysis, in static crosstalk noise analysis,
the configurations of the inputs and the internal state of
the circuit are not considered. The analysis consists in
examining a typical clock cycle, assuming that,
regardless of the logic configuration, all potential
transitions are effective.

Let's consider a signalS driven by a gate that has
I1,…,In as input. According to the Boolean function of
the gate, up to four propagation delays may be computed
for each input:

� FRDi: Falling edge ofIi to the rising edge ofS
� FFDi: Falling edge ofIi to the falling edge ofS
� RFDi: Rising edge ofIi to the falling edge ofS
� RRDi: Rising edge ofIi to the rising edge ofS
Besides, these propagation delays are not constant

values and depend on the configuration of the other
inputs. However, they can be restricted inside a lower
and an upper bound. Then, given the transition time of
an input, a transition interval, also calledinstability
period, can be attributed to the output. In turn, this

information can be used to calculate the transition
interval of the signals that depend onS.

In detail, each signal may have several instability
periods depending on the transition intervals of its
inputs. Moreover, two kinds of instability must be
considered: the instability due to a falling transition of
the signal and the instability due to its rising transition.
Figure 2 gives the example of a 2-input Nand gate. The
rising transitions of the inputs induce two falling
instability periods on the output. The falling transitions
of the inputs are merged to a unique rising instability
period onS.

I1

I2

S

rising transition
falling transition

time

Fig 2: Instability periods

Several techniques with variable degree of
complexity may be used to obtain the instability periods
of signals. Our approach consists in using a symbolic
event-driven simulation to compute the transition
intervals. An event-driven simulator can be seen as
composed of two independent parts. A first part, the
simulation engine, includes the propagation mechanism
and insures the coherence of the simulation. In an event-
driven simulator, this part is a loop containing two main
functionsUpdate()andExecute()also called theδ-loop.
During the Update phase, the simulation time is
advanced and all the transactions for the current time are
extracted from the scheduler. Then, the current values of
signals are updated. If an event is detected on a signal
during this update, all the processes that depend on that
signal are resumed. During the Execute phase resumed
processes are executed and transactions are send to the
scheduler.

The set of values a signal can take, the notion of
transaction and event are defined in the second part. This
second part, theevaluation engine, also describes the
evaluation function. This function determines how the
value of a process's output is calculated from its inputs.

In our approach, this second part is set to compute
the instability periods. An instability period is
characterized by two time bounds: the beginning of the
instability and its end.

The value attributed to a signal represents its state:
stable or unstable. This value is coded on two natural
integers. A first integer, RS (rising stability), gives the
stability in regard of rising edges. The second, FS
(falling stability), concerns the stability in regard of
falling edges. The value 0 means that the signal is stable.
Positive non null integers denote the unstability.

A transaction consists in incrementing or
decrementing one of these two integers. An event is
detected when the signal's current value becomes null
(when the signal switches from unstable to stable) or



when this value changes from 0 to a non null value
(when the signal switches from stable to unstable). In
other terms, there are 4 types of event:

� beginning of a rising instability period;
� end of a rising instability period;
� beginning of a falling instability period;
� end of a falling instability period.
The last point consists in setting the evaluation

function. Whenever an input of a gate receives an event,
the execution of the evaluation function creates one or
two transactions on the gate's output. The produced
transactions depend on the Boolean function of the gate.
If the event is the beginning of a rising instability period,
the transaction consists in incrementing the value of RS
and/or FS. If a rising edge of the input is able to cause a
rising edge of the output, RS is incremented. In the
same way, FS is incremented if the Boolean function is
such that a falling transition can be produced on the
output from a rising edge of the input. The transaction
delay is the minimum value of RRD or RFD for the
corresponding input. For a "end of rising instability
period" event the transaction decrements the value of RS
and/or FS and the transaction's delay is the maximum
value of RRD or RFD.

Figure 3 shows the example of an Xor gate followed
by an inverter. The beginning of rising instability ofI1
induces two transactions onS since a rising edge on an
xor's input may generate a rising or a falling edge on the
output. In the same manner, the beginning of the falling
instability of I1 creates two new transactions onS.
However,S is already in an instability period and these
two transactions do not generate any event.

I1

I2

S T

I1

S

time

0 1

2

0

0 1 0
0 1 1 0

20 1 1 0

T

0 1 0

0 1 0

Fig 3: Simulation of instability periods

The simulation starts with initializing the simulator’s
scheduler with the instability periods of the circuit's
inputs. These data are given by the designers. For a
sequential circuit, the instability periods of the clock are
defined from the clock frequency and take into account
the clock skew. Then, the simulation begins with the
Update phase. The clock input receives a first event :
"beginning of rising instability period". In the next
Execute step, all the registers of the circuit are resumed.
These evaluations produce a set of transactions on the
registers' output. Then, the simulation continues through
the nextδ-cycle propagating the instability of registers'
output through the combinatory logic.

3.2 Noise Configurations

The calculation of instability periods is the first step
to determine the signals' noise configurations.

Let's consider a victimV having m aggressors
A1,…,Am. Let R1,…,Rm be the rising andF1, …, Fm the
falling instability periods ofA1, …, Am.

The subset {Ai1,…,Aip } represents a

� positive noise configuration� ∅≠
=
�

p

k
ikR

1

.

� negative noise configurations� ∅≠
=
�

p

k
ikF

1

.

Figure 4 shows the example of a signal coupled to 4
aggressors A1, …, A4.

A1

A2

A3

A4

time

Fig 4: Noise configurations

In this example, 11 noise configurations can be
detected: {A1}, {A 2}, {A 3}, {A 4}, {A 1,A2}, {A 1,A3},
{A 2,A3}, {A 2,A4}, {A 3,A4}, {A 1,A2,A3} and {A 2,A3,A4}.

Nevertheless, it is unnecessary to compute the noise
produced by each of these configurations. Actually, it is
obvious that the peak generated by the first
configurations will be less than the 2 last since each of
the 9 first sets is included either in {A1,A2,A3} or in
{A 2,A3,A4}. These two configurations are called
Maximal Noise Configuration (MNC).

A maximal noise configuration is a noise
configuration that is not included in any other
configuration. Although the instability periods are useful
for a static noise analysis, the main objective in our
analysis is to determine the set of maximal noise
configurations for each signal.

In our proposed approach, the set of maximal noise
configurations is calculated inside the same event-driven
simulation process that determines the instability
periods.

From the simulator's point of view, a circuit is seen
as a directed graph where the vertices are the gates and
the edges the signals that connect the output of a gate to
the input of another one. This connection is called
functional forward dependencyor link.

To set the simulator for the crosstalk noise analysis,
this graph is extended with crosstalk links. A crosstalk
coupling between two signals X and Y creates two
crosstalk forward dependencies: one from X to Y and
an another from Y to X.

Figure 5a shows the example of a simple circuit
containing four gates and a crosstalk coupling. The
resulted graph is presented in Fig 5b.

First, four new data are added to the value of each
signal : current positive noise configuration (CPNC),
current negative noise configuration (CNNC), maximal



positive noise configurations (MPNC) and maximal
negative noise configurations (MNNC).

I1

I2

S T

I3
X Y

I1

I2

T

Y

S

I3 X

Functional link

Crosstalk link

(a) (b)
Fig 5: Simple circuit and its simulation graph

When a signal receives an event, the simulation
engine resumes all the processes that depend on that
signal. The processes resumed due to a functional link
are evaluated using the functional evaluation function as
defined in 3.1. Evaluations caused by a crosstalk link are
performed by the crosstalk evaluation function.

This last evaluation function operates on noise
configurations. A "beginning of instability" event on a
signal A makes A being considered as an active
aggressor and appends it to the current noise
configuration of the signal. An "end of instability" event
on A removesA from the current noise configuration. In
addition, before altering the current noise configuration,
this one is compared to the maximal noise
configurations. If it is not included in any maximal noise
configuration then, the current configuration is maximal
and is added to the maximal noise configurations.
Besides, appending the new configuration may remove
from the maximal noise configurations list a previous
configuration that has become non maximal.

4. Software Architecture & Results

A Static Crosstalk Noise Evaluation tool based on the
proposed technique has been implemented. A simplified
flow chart of this tool is given in Fig 6. The inputs are an
extracted transistor-capacitor netlist and the instability
periods. The output is a sorted list of signals with respect
of decreasing peak noise that they can receive.

functional abstraction

extracted layout

local delay calculation

elaboration of the extended graph

noise evaluation

instability periods & noise configurations

ordered list
of signals

instability periods

Fig 6: Simplified flow chart

First, a functional abstractor [6] [7] is used to convert
the transistor netlist into a gate netlist. A static timing
analysis module [8] [9] is called to calculate the delays
of each gate regardless of the crosstalk noise. Then, the
extended graph of the circuit is elaborated. This graph
includes the functional links as well as the crosstalk
links. Then, the instability periods and the maximal noise
configurations are calculated using the proposed event-
driven simulation technique. In the last step, for each
maximal noise configuration of a given victim, the peak
noise is estimated using the noise evaluation model.
Then, the maximal peak noise is kept and saved into the
output file.

This verification tool has been used to perform noise
evaluation on several circuits ranging from a few
thousands to up to 1.2 million transistors. Small circuits
where an electrical simulation is reachable, have been
used to assess the accuracy of the noise model. The
relevance of the proposed static analysis approach has
been experimented on larger circuits.

In Fig. 7, the number of active aggressors contained
in the maximal noise configuration is compared to the
total number of aggressors. The comparison concerns the
200 signals that show the highest peak in a 1.2 million-
transistor circuit designed with a 0.25µ process. As it
could be expected, the static analysis reveals that even if
a victim can presents several thousands of aggressors,
only a few number of them can be active in the same
time.

Fig 7 a: Total number of aggressors

Fig 7 b: Number of aggressors in MNC

Fig. 8 compares the peak noise produced by the
maximal noise configuration and the estimated noise
assuming that all the aggressors are active. Although the
number of active aggressors has been largely reduced
through the proposed approach, the same reduction is not
observed for the peak noise. This means that for several
victims, the major part of the noise is due to a few



number of aggressors coupled to the victim through a
strong crosstalk capacitance.

Fig 8: Peak noise

The performance of the tool in terms of computation
time is measured in Fig. 9.

Fig 9: Computation time

The experience shows that for real size designs the
total computation time remains linear with the
complexity of the circuit. This time can be divided into
three major parts. Over 50% of the time is spent in
reading the input file, making the functional abstraction
and preparing the data structures. Computing the
maximal noise configurations through the proposed
static analysis represents the second part. The last part is
devoted to the estimation of the peak voltage using the
noise evaluation model. As shown in the figure, the
static analysis requires only about 10% of the time and
does not impact in a significant way the global
performance of the tool. Yet, it brings a significant
improvement in the relevance of the estimated noise.

5. Conclusion

Signal integrity is becoming a major issue in the
verification process of high performance designs.
Crosstalk noise is one of the factors that may cause
timing and functional failure in the circuit. Crosstalk
noise evaluation is based on a model that tends to
estimate the peak noise voltage produced on a victim
when the signals in its environment make a transition.

However, considering that all the signals in crosstalk
coupling with a given victim may switch in the same
time is far to be realistic.

In this paper we have presented a static analysis
technique that determines the “maximal noise
configuration” that is likely to occur for a given victim.
This analysis is based on an adaptation of the classic
event-driven algorithm. The experience shows that this
static analysis can be performed within less than 10% of
the total computation time required by the crosstalk
verification tool. Moreover, for life size circuits, the
analysis reveals that, at a given time, the major part of
the aggressors are not active and only a few numbers of
a victim's aggressors participates to the production of
the noise. The proposed crosstalk verification tool can be
improved following two directions. First, determining
the maximal noise configuration may be refined through
a deeper analysis that takes into account the Boolean
function of gates and the correlation between signals.
However, this kind of analysis requires an important
amount of computation resource and time and may
compromise the global performance of the verification.
The second improvement concerns the noise model. For
deep submicron processes a more accurate model has to
be develop taking into consideration the RLC of the
interconnect.

6. References

[1] A.B. Kahng, S. Muddu, D. Vidhani, “Noise and
delay uncertainly studies for coupled RC
interconnects”, ASIC/SOC, IEEE, 1999, pp. 3.

[2] A.B. Kahng, S. Muddu, N. Pol, D. Vidhani, “Noise
Model for Multiple Segmented Coupled RC
Interconnects”, ISQED, 2001, pp. 145-150.

[3] P. Chen, K. Keutzer, “Towards True Crosstalk
Noise Analysis”, ICCAD, 1999.

[4] A. Devgan, “Efficient Coupled Noise Estimation
for On-Chip Interconnects”, ICCAD, 1997

[5] P. Renault, P. Bazargan-Sabet, D. Le Du, “A MoS
Transistor Model for peak voltage calculation of
crosstalk noise”, ICECS, 2002

[6] A. Lester, P. Bazargan-Sabet, A. Greiner, “Second
generation Functional Abstractor for CMOS VLSI
Circuits”, ICM, 1998

[7] A. Lester, “Abstraction Fonctionnelle des Circuits
Numériques VLSI avec une méthode formelle basée
sur une extraction de réseau de portes”, Ph.D.
dissertation, University of Paris 6, 1999.

[8] A. Hajjar, R. Marbot, A. Greiner, P. Kiani, “TAS: An
Accurate Timing Analyser for CMOS VLSI”, EDAC,
IEEE, 1991, pp. 261-265.

[9] A. Hajjar, “Modelisation des temps de propagation
et analyse temporelle statique”, Ph.D. dissertation,
University of Paris 6, 1992.


