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Abstract

This paper relates our experience in designing from
scratch a multi-threaded kernel for a MIPS R3000 on-chip
multiprocessor. We briefly present the target architecture
build around a VCI compliant interconnect, and the CPU
characteristics. Then we focus on the implementation of
part of the POSIX 1003.1b and 1003.1c standards. We con-
clude this case study by simulation results obtained by cycle
true simulation of an MJPEG video decoder application on
the multiprocessor, using several scheduler organizations
and architectural parameters.

1. Introduction

Applications targeted toSoCimplementations are often
specified as a set of concurrent tasks exchanging data. Ac-
tual co-design implementations of such specifications re-
quire a multi-threaded kernel to execute the parts of the ap-
plication that has been mapped to software. As the com-
plexity of applications grows, more computational power
but also more programmable platforms are useful. In that
situation, on-chip multiprocessors with several general pur-
pose processors are emerging in the industry, either for low-
end applications such as audio codec, or for high end ap-
plications such as video decoders or network processors.
Compared to multiprocessor computers, such integrated ar-
chitectures feature a shared memory access with low latency
and potentially very high throughput, since the number of
wires on chip can be much greater than on a printed card
board.

This paper relates our experience in implementing from
scratch the POSIX thread API for an on-chip MIPS R3000
multiprocessor architecture. We choose to implement the
POSIX thread API for several reasons:

• It is standardized, and isde factoavailable on many
existing computer systems,

• It is well known, taught in universities and many ap-
plications make use of it,

• The 1003.1c defines no more than 5 objects, allowing
to have a compact implementation.

All these facts make the development of a bare kernel easier,
because its relies on a hopefully well behaved standard and
API, and allows direct functional comparison of the same
application code on a commercial host and on our multipro-
cessor platform.

The main contribution of this paper is to relate the dif-
ficult points in developing a multiprocessor kernel general
enough to support the POSIX API on top of a generic inter-
connect. The problems that we have encountered, such as
memory consistency, compiler optimization avoidance, in-
terrupt dispatching, are outlined. We also want this kernel
to support several types of organization: Symmetric using
a single scheduler, Distributed using one scheduler per pro-
cessor, Distributed with centralized synchronization, with
or without task migration, etc, in order to compare them
experimentally.

2. Target architecture and basic architectural
needs

The general architecture that we target is presented on
Figure 1. It makes use of one or more MIPS R3000 as CPU,
and a Virtual Chip Interconnect [1] compliant interconnect
on the which are plugged memories and dedicated hardware
when required. The MIPS CPU has been chosen because it
is small and efficient, and also widely used in embedded
applications [2]. It has the following properties:

• two separated caches for instruction and data,
• direct mapped caches, as for level one caches on usual

computers,
• write buffer with write update and write through pol-

icy. Write back policy allows to minimize the memory
traffic and allows to build burst when updating mem-
ory, particularly useful for SD-RAM, but it is very
complicated to ensure proper memory consistency[3],

• no memory management unit (MMU), logical ad-
dresses are physical addresses. Virtual memory isn’t
particularly useful on resource constrained hardware
because the total memory is fixed at design time. Page
protection is also not an issue in current SoC imple-
mentations. Finally, the multi-threaded nature of the
software makes it natural to share the physical address
space.
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Figure 1. General VCI based SoC architecture

The interconnect is VCI compliant. This ensures that our
kernel can be used with any interconnect that has VCI wrap-
pers. This means:

• it is basically a shared memory architecture, since all
addresses that go through a VCI interface are seen
alike by the targets,

• the actual interconnect is not known: only the services
it provides are. VCI doesn’t say anything about cache
consistency or interrupt handling, cached or uncached
memory space and so on.

On the R3000, we do not distinguish betweenuserandker-
nel modes, and the whole application runs inkernelmode.
This allows to spare cycles whena) accessing the uncached
memory space (inkernel space in the MIPS R3000) that
contains the semaphore engine and hardware module,b) us-
ing privileged instructions, to set the registers of coproces-
sor 0, necessary mainly to mask/unmask the interrupts and
use the processor identifier. The number of cycles spared is
at least 300, to save and restore the context and analyze the
cause of the call. This is to be compared with the execution
times of the kernel functions given in Table 2.

The architecture needs are the following:
Protected access to shared data.This is done using a spin
lock, whose implementation depends on the architecture. A
spin lock is acquired using thepthread_spin_lock func-
tion, and released using thepthread_spin_unlock . Our
implementation assumes that there is a very basic binary
semaphore engine in uncached space such that reading a
slot in it returns the value of the slots and sets it to 1. Writ-
ing in a slot sets it to 0. Other strategies can make use of
the read modify write opcode of the VCI standard, but this
is less efficient and requires that each target is capable of
locking its own access to a given initiator, thus requiring
more resources per target.

Cache coherency. If the interconnect is a shared bus, the
use of a snoopy cache is sufficient to ensure cache coher-
ence. This has the great advantage of avoiding any proces-
sor to memory traffic. If the interconnect is VCI compliant
(either bus or network), an access to a shared variable re-
quires either to flush the cache line that contains this vari-
able to obtain a fresh copy of the memory or to have such
variables placed in uncached space. This is due to the fact
that VCI doesn’t allow the building of snoopy caches, be-
cause the VCI wrapper would have to know both the cache
directory entries and be aware of all the traffic, and that is
simply no possible for a generic interconnect. Both solu-
tions are not very satisfactory as the generated traffic eats-
up bandwidth and leads to higher power consumption, par-
ticularly costly for on-chip applications. However, this is
the price to pay for interconnect genericity. In any case,
synchronization for the access to shared data is mandatory.
Using caches is meaningful even for shared data only used
once because we benefit from the read burst transfers on the
interconnect.
Processor identification. The CPUs must have an inter-
nal register allowing their identification within the system.
Each CPU is assigned a number at boot time, as some
startup actions should be done only once, such as clearing
the bss area and creating the scheduler. Also, the kernel
sometimes needs to know which processor it runs on to ac-
cess processor specific data.

Compared to other initiatives, [4] for example, our ker-
nel is designed for multiprocessor hardware. We target a
lightweight distributed scheduler with shared data objects,
each having its own lock, and task migration.

3. Overview of the pthread specifications

The main kernel objects are the threads and the sched-
uler. A thread is created by a call to:

int pthread_create(
pthread_t *thread, pthread_attr_t *attr,
void *(*start)(void *), void *arg)

This executes the thread whose behavior is thestart func-
tion called witharg as argument. Theattr structure con-
tains thread attributes, such as stack size, stack address and
scheduling policies. Such attributes are particularly useful
when dealing with embedded systems or SoCs, in the which
the memory map is not standardized. The value returned in
the thread pointer is a unique identifier for the thread.

A thread can be in one of 5 states, as illustrated by
the Figure 2. Changing state is usually done using some
pthread function on a shared object. Exceptions to this
rule is going fromRUNNABLE to RUN, which is done by the
scheduler using a given policy, and backward fromRUN to
RUNNABLE usingsched_yield . This function does not be-
long to the POSIX thread specifications in the which there
is no way to voluntarily release the processor for a thread.
This function is usually called in a timer interrupt handler
for time sharing. In our implementation, the thread identi-
fier is a pointer to the thread structure. Note that POSIX, un-
like more specialized API such as OSEK/VDX[5], doesn’t
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Figure 2. Pthread states

provide a mean for static thread creation. It is a shortcoming
because most embedded applications do not need dynamic
task creation. A thread structure basically contains the con-
text of execution of a thread and pointers to other threads.

The scheduler manages 5 lists of threads. It may be
shared by all processors (Symmetrical Multi-Processor), or
exist as such on every processor (Distributed). The access
to the scheduler must be performed in critical section, and
under the protection of a lock. However, this lock can be
taken for only very few instructions if the other shared ob-
jects have their own locks, which allows for greater paral-
lelism.

Other implemented objects are the spin lock, mutex, con-
ditions, and semaphores. Spin locks are the low level test
and set accesses, that usually perform active polling. Mutex
are used to sequentialize access to shared data by suspend-
ing a task is the access is denied. Conditions are used to
voluntarily suspend a thread waiting for a condition to be-
come true. Semaphore are mainly useful when dealing with
hardware, becausesem_post is the only function that can be
called in interruption handlers.

4. Implementation

Our implementation is a complete redesign that doesn’t
make use of any existing code. Most of it is written inC.
This C is not particularly portable because it makes use
of physical addresses to access the semaphore engine, the
terminal, and so on. Some assembly is necessary for the
deeply processor dependent actions: access to coprocessor0
registers, access to processor registers for context saving
and restoring, interruption handling and cache line flushing.

To avoid abig lock on the scheduler, every mutex and
semaphore has its own lock. This ensures that the sched-
uler lock will be actually acquired only if a thread state
changes, and this will minimize scheduler locking time,
usually around 10 instructions, providing better parallelism.

In the following, we assume that access to all shared vari-
ables are a fresh local copy of the memory in the cache.

Booting sequence

Algorithm 1 describes the boot sequence of the multipro-
cessor. The identification of the processors is determined in
a pseudo-random manner. For example, if the interconnect
is a bus, the priorities on the bus will define this order. It
shall be noted that there is no need to know how many pro-
cessors are booting. This remains true for the whole system
implementation.

Two implementation points are worth to be seen. A weak
memory consistency model [6] is sufficient to access the
shared variableproc_id, since it is updated after a synchro-
nization point. This model is indeed sufficient for POSIX
threads applications. Thescheduler_createdvariable must
be declared with thevolatile type qualifier to ensure that
the compiler will not optimize this seemingly infinite loop.

The main thread is executed by processor 0, and, if the
application is multi-thread, it will create new threads. When
available, these threads will be executed on any processor
waiting for an available thread. Here theexecute() function
will run a new thread without saving the current context,
since the program will never come back at that point. The
thread to execute is chosen by theelect() function. Cur-
rently, we have only implemented a FIFO election algo-
rithm.

Algorithm 1 Booting sequence

Definition and statically setting shared variables to 0
scheduler_created⇐ 0 No scheduler exists
proc_id⇐ 0 First processor is numbered 0
mask interruptions Done by all processors
Self numbering of the processors
spin_lock(lock),set_proc_id(proc_id++),spin_unlock(lock)
set stack for currently running processor
if get_proc_id = 0 then

clear.bss

scheduler andmain thread creation
scheduler_created⇐ 1 indicates scheduler creation
enable interruptions
goto themain function

else
Wait until scheduler creation by processor 0
while scheduler_created= 0 end while
Acquire the scheduler lock to execute a thread
spin_lock(scheduler)
execute(elect())

end if

Context Switch

For the R3000, a context switch saves the current value
of the CPU registers into the context variable of the thread
that is currently executing and sets the values of the CPU
registers to the value of the context variable of the new
thread to execute. The tricky part is that the return address
of the function is a register of the context. Therefore, restor-
ing a context sends the program back where the context was



saved, not to the current caller of the context switching rou-
tine.

An important question is to define the registers and/or
variables that belong to the context. This is architecture and
kernel dependent: For example, a field of current compiler
research concerns the use of scratch pad memory instead
of data cache [7] in embedded multiprocessors. Assuming
that the kernel allows the threads to be preempted, the main
memory must be updated before the same thread is executed
again. If this is not the case, the thread may run on an other
processor and used stalled data from memory. On a Sparc
processor, the kernel must also define what windows are to
be saved/restored by context switches, and this may have an
important impact on performance and power consumption.

CPU Idle Loop

When no tasks areRUNNABLE, the CPU runs some kind
of idle loop. Current processors could benefit from this to
enter a low power state. However, waking up from such a
state is in the order of 100 ms[8] and its use would therefore
be very application dependent.

An other, lower latency solution, would be to launch an
idle thread whose rôle is to infinitely call thesched_yield

function. There must be one such thread per CPU, because
it is possible that all CPUs are waiting for some coprocessor
to complete there work. These threads should not be made
RUN as long as other threads exist in theRUNNABLE list.
This strategy is elegant in theory, but it uses as many threads
resources as processors and needs a specific scheduling pol-
icy for them.

Our current choice is to use a moread-hocsolution, in
the which all idle CPUs enter the same idle loop, that is
described in Algorithm 2.

This routine is called only once the scheduler lock has
been acquired and the interruptions globally masked. We
use thesave_context function to save the current thread
context, and update the register that contains the function
return address to have it point to the end of the function.
This action is necessary to avoid going through the idle loop
again when therestore_context function is called. Once
done, the current thread may be woken up again on an other
processor, and therefore we may not continue to use the
thread stack, since this would modify the local data area
of the thread. This justifies the use of a dedicated stack (one
for all processors in SMP and one per processor for dis-
tributed scheduling). The registers of the CPU can be mod-
ified, since they are not anymore belonging to the thread
context.

Thewakeupvariable is avolatile field of the scheduler.
It is needed to inform this idle loop that a thread has been
madeRUNNABLE. Each function that awakes (or creates) a
thread decrements the variable. Thego local variable enable
each CPU to register for getting out of this loop. When
a pthread function releases a mutex, signals a condition or
posts a semaphore, the CPU with the correctgo value is
allowed to run the awaken thread.

This takes places after having released the semaphore
lock to allow the other functions to change the threads

states, and also after having enable the interruptions in order
for the hardware to notify the end of a computation.

Algorithm 2 CPU Idle Loop

if currentthen
save_context(current)
current.return_addr_register⇐ end of function
stack⇐ scheduler stack
repeat

go⇐ wakeup++
spin_unlock(lock), it_global_unmask
while wakeup> goend while
it_global_mask,spin_lock(lock)
thread⇐ elect()

until threadexists
restore_context(thread)

end if
end of function

5. Experimental setup
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Figure 3. MJPEG application task graph.

The experiments detailed here use two applications. The
first one is a multimedia application, a decoder of a flow of
JPEG images (known as Motion JPEG), whose task graph
is presented Figure 3. The second application is made of
couple of tasks exchanging data through FIFO, and we call
it COMM. COMM is a synthetic application in the which
scheduler access occurs 10 times more often for a given
time frame that in the MJPEG application. This allows to
check the behavior of the kernel on a very system inten-
sive applications. COMM spends from 56% to 79% of its
time in kernel calls, depending on the number of proces-
sors. The architecture the applications run on is presented
Figure 4, but the number of processors vary from one exper-
iment to another. This architecture is simulated using the
CASS [9] cycle true simulator whose models are compati-
ble with SystemC. The application code is cross-compiled
with gcc and linked with the kernel. Non disturbing pro-
filing is performed to obtain the figures of merits of each
kernel implementation.

We now want to test several implementations of our ker-
nel. The literature defines several types of scheduler orga-
nization. We review here the three that we have retained for
implementation and outline their differences.

• Symmetric MultiprocessorSMP. There is a unique
scheduler shared by all the processors and protected
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by a lock. The threads can run on any processor, and
thus migrate. This allows to theoretically evenly dis-
tribute the load on all CPUs at the cost of more cache
misses,

• Centralized Non SMPNON_SMP_CS. There is a unique
scheduler shared by all processors and protected by a
lock. Every thread is assigned to a given processor and
can run only on it. This avoid task migration at the cost
of less efficient use of CPUs cycles (more time spend
in the CPU idle loop),

• Distributed Non SMPNON_SMP_DS. There are as
many schedulers as processors, and as many locks as
schedulers. Every thread is assigned to a given pro-
cessor and can run only on it. This allows a better
parallelism by replicating the scheduler that is a key
resource.

In both non SMP strategies, load balancing is performed so
as to optimize CPU usage, with a per task load measured on
a uniprocessor setup.

In all cases, the spin locks, mutex, conditions and
semaphores are shared, and there is a spin lock per mutex
and semaphore.

Our experimentation tries to give a quantitative answer
to the choice of scheduler organization.

6. Results

The table 1 indicate the code size for the three versions
of the scheduler. TheNON_SMP_DS strategy grows dynam-
ically of around 80 bytes per processor, whereas there is no
change for the other ones.

Organization SMP NON_SMP_CS NON_SMP_DS

Code size 7556 9704 10192

Table 1. Kernel code size in byte.

The Figure 5 plots the execution time of the MJPEG ap-
plication for 48 small pictures. TheSMP andNON_SMP_CS
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Figure 5. Execution times of the MJPEG ap-
plication

approaches are more than 10% faster than theNON_SMP_DS
one. The Figure 6 shows the time spent in the CPU Idle
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Figure 6. Cycles spent in the CPU Idle Loop.

Loop. We see that theSMP kernel spends more than an or-
der of magnitude less time in the Idle loops than the other
strategies. This outline its capacity to use the CPU cycles
more efficiently. However, task migration has a high cost in
terms of cache misses, and therefore, the final cycle count is
comparable to the other ones. It shall be noted that theSMP
interest might become less clear if shared memory latency
access increases too much. TheNON_SMP_DS strategy is
more complicated from an implementation point of view.
This is the reason why it is less efficient in this case.

Our second application does not exchange data between
processors, and the performances obtained are plotted on
Figure 7. The benefit of having one scheduler per proces-
sor is very sensitive here, and visible on theNON_SMP_DS
results. The only resource shared here is the bus, and since
the caches are big enough to contain most of the application
data, the application uses the processors at about full power.

The Table 2 shows the number of cycles necessary to
perform the main POSIX function using our SMP kernel on
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the target architecture. Theses values have been obtained by

Number of processors
Operations 1 2 4 6
Context Switch 172 187 263 351
Mutex Lock (acquired) 36 56 61 74
Mutex Unlock 30 30 31 34
Mutex Lock (suspended) 117 123 258 366
Mutex Unlock (awakes a thread) - 191 198 218
Thread Creation 667 738 823 1085
Thread Exit 98 117 142 230
Semaphore Acquisition 36 48 74 76
Semaphore Release 36 50 78 130
Interrupt Handler (†) 200 430 1100 1900

Table 2. Performance of some kernel func-
tions in numbers of cycle.

performing the mean for over 1000 calls. For the interrupts
(†), all processors were interrupted simultaneously.

7. Conclusion and future trends

This paper relates our experience in implementing the
POSIX threads for a MIPS multiprocessor based around a
VCI interconnect. Compared to kernels for on-board mul-
tiprocessors, that have been extensively studied in the past,
our setup uses a generic interconnect for which the exact in-
terconnect is not known, the CPUs use physical addresses,
and the latency to access shared memory is much lower.

The implementation is a bit tricky, but quite compact and
efficient. Our experimentations have shown that a POSIX
compliantSMP kernel allowing task migration is an accept-
able solution in terms of generality, performance and mem-
ory footprint for SoC.

The main problem due to the introduction of networks
on chip is the increasing memory access latency. One

of our goal in the short term is to investigate the use of
latency hiding techniques for these networks. Our next
experiment concerns the use of a dedicated hardware for
semaphore and pollable variables that would queue the ac-
quiring requests and put to sleep the requesting processors
until a change occurs to the variable. This can be effec-
tively supported by the VCI interconnect, by the mean of
its request/acknowledge handshake. In that case, the imple-
mentation ofpthread_spin_lock could suspend the calling
task. This could be efficiently taken care of if the processors
that run the kernel are processors with multiple hardware
contexts, as introduced in [10].

The SMP version of this kernel, and a minimal C library,
is part of the Disydent tool suite distributed under GPL at
www-asim.lip6.fr/disydent .
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