
CTL May Be Ambiguous when Model Checking

Moore Machines

C�edric Roux and Emmanuelle Encrenaz

UPMC { LIP6 { ASIM
12, rue Cuvier, 75252 Paris CEDEX 5 { France
fCedric.Roux, Emmanuelle.Encrenazg@lip6.fr

Abstract. The model checking problem is de�ned over Kripke struc-
tures. However, hardware designers often handle other models, such as
Moore machines. When model checking their designs using CTL as a
logic, they must translate them into Kripke structures. A given CTL
property may be believed to be true (conversely false) over the Moore
machine and in fact be false (conversely true) on the derived Kripke
structure. This may lead to ambiguities if the designer does not fully
understand the translation scheme he uses, which may be the case if he
uses automatic tools. We present iCTL, a logic speci�cally designed to
work with Moore machines, which extends CTL to help the designer re-
moving possible ambiguities when model checking Moore machines. We
show that it is strictly more expressive than CTL.

1 Introduction

While developing a symbolic model checker to verify hardware systems described
as a composition of synchronous Moore machines, we came across an interesting
problem. We use CTL [2] as logic and the formulae we want to verify may include
values of input signals of the Moore machines. These input signals do label the
transitions of the Moore machine. Since CTL is de�ned over Kripke structures
and not Moore machines, and because the transitions of Kripke structures are
not labelled, when translating a Moore machine into a Kripke structure, one
has to integrate the input signals in the states of the Kripke structure. Several
choices are possible. Depending on the translation chosen, the truth value of a
given property may either be true or false over the derived Kripke structure.
This introduces an ambiguity that the designer must be aware of when verify-
ing his designs. He has to know how his model is translated into the one used
by the model checker, and has to write properties with this in mind, so not
to get confused by the answer of the tool. Not doing so could even lead to a
counter-intuitive situation, where the designer might view his model as being
buggy where in fact he simply wrote wrong formulae, thinking them over Moore
machines and not over the derived Kripke structures.

In [3] the authors translate a Moore machine into a Kripke structure by
incorporating the input con�gurations in the source state of the transitions.
And they de�ne the truth value of a CTL property over a Moore machine as

2 C�edric Roux and Emmanuelle Encrenaz

being the truth value of this property over the Kripke structure. We think that
such an approach leads to ambiguities.

In SMV [5], one directly writes Kripke structures and CTL formulae over
these structures. It is possible to create free variables (that may represent input
signals of Moore machines incorporated into the current state of the Kripke
structure). This leads to exactly the same situation as [3].

The VIS model checker [1] accepts, among others, systems described in a
Verilog subset, in which collections of Moore machines can be represented. It
supports modularity and the concept of input and output signals is present.
However, an input signal can appear in a CTL formula only if it is declared
of type reg, which forces its assignment in guarded blocks. As a consequence,
depending on the way this assignment is done, input signals of a Moore machine
will be included into the source or target state of the transitions in the Kripke
structure, which in
uences the results of the veri�cation of a given formula.

The purpose of this article is to suggest to add two new operators to CTL
to bring together the intuitive idea one can have regarding the truth value of a
formula over the Moore machine and the one obtained by the veri�cation algo-
rithm over the Kripke structure. These two operators are speci�cally designed to
handle Kripke structures derived from Moore machines and are meaningless in
other cases. We hope that their utilization will facilitate the writing of formulae
and the understanding of the results produced by the model checker.

2 Translating a Moore Machine into a Kripke Structure

Several translation schemes from a Moore machine into a Kripke structure are
possible. The simplest one is to remove the inputs labelling transitions. Since we
want to express properties including input signals, we abandoned such a scheme.
Another way is to put the input signals into the target state of a transition. Since
we plan to compose Moore machines, this solution can't be retained because the
outputs of one machine which are inputs of one other have to have the same
temporal behavior as the other inputs of the second machine. So, we have to put
the inputs into the source state of a transition.

Here follows the formal de�nitions of Kripke structures, Moore machines,
and the translation scheme we adopted.

De�nition 1. A Kripke structure is a �ve-tuple hS; S0; P;L; Ri where

1. S is a �nite set of states,
2. S0 � S is the set of initial states,

3. P is a �nite set of atomic propositions (we de�ne nP = jP j),
4. L = fl0; : : : ; lnP�1g is a vector of nP functions, each function de�ning the

value of exactly one atomic proposition; for all 0 � i � nP � 1 we have
li : S ! B ; for all s 2 S, we have that li(s) is true i� the atomic proposition
associated to li is true in s,

5. R � S � S is the transition relation.

CTL May Be Ambiguous when Model Checking Moore Machines 3

De�nition 2. A Moore machine is a structure hS; S0; I; O;L; Ri where

1. S is a �nite set of states,
2. S0 � S is the set of initial states,
3. I is the �nite set of input symbols,
4. O is the �nite set of output symbols (we de�ne nO = jOj),
5. L = fl0; : : : ; lnO�1g is a vector of nO functions, each function de�ning the

value of exactly one output symbol; for all 0 � i � nO�1 we have li : S ! B ;
for all s 2 S, we have that li(s) will be true i� the output symbol associated
to li is true in the state s,

6. R � S � 2I � S is the transition relation.

The Moore machines we handle are complete and deterministic. Complete
means that each state has one successor for any input con�guration. Determin-
istic means that for a given input con�guration, a state s will always lead to the
same state s0.

De�nition 3. Translating a Moore Machine by Putting the Inputs in

the Source State Given a Moore machine hSM ; SM 0; IM ; OM ;LM ; RM i, we
deduce the Kripke structure hSK ; SK0; PK ;LK ; RKi where:

{ SK = SM � 2IM ,
{ SK0 = SM 0 � 2IM ,
{ PK = IM [OM (we de�ne nIM = jIM j and nOM = jOM j),
{ LK = flO0; : : : ; lOnOM�1g : flI0; : : : ; lInIM�1g; for all 0 � i � nOM � 1,

we have lOi : SK ! B ; for all i, for all s = (s1; c1) 2 SK , we have that
lOi(s) is true i� lMi(s1) is true; for all 0 � i � nIM � 1, we have lI i :
SK ! B (each lI i is associated to one and only one input signal); for all i,
for all s = (s1; c1) 2 SK , we have that lI i(s) is true i� the component of c1
corresponding to the input signal associated to lI i is true,

{ RK � SK �SK and 8 (s; ci) 2 SK ;8 (s
0; c0

i
) 2 SK , we have ((s; ci); (s

0; c0
i
)) 2

RK i� (s; ci; s
0) 2 RM .

An example of a trivial Moore machine and the derived Kripke structure is
shown in �gure 1.

3 A disturbing example

We could simply state that a CTL formula is true in a Moore machine if and
only if it is true in the corresponding Kripke structure as done in [3] but the
veri�cation results obtained may disturb the designer.

As an illustration, we propose to check the CTL property (EX p) ^ (EX
:p) over the Moore machine depicted on �gure 1.

This formula would be true on a Kripke structure obtained from the Moore
machine by removing the inputs, but it is false on the Kripke structure shown on
�gure 1 (which is the one obtained with the translation of de�nition 3), because
neither A0 nor A1 has a successor verifying :p and a successor verifying p.

In fact, the formula (EX p) ^ (EX :p) is ambiguous over the Moore machine:
do we mean that both successors are selected by the same input con�guration
or by di�erent input con�gurations?

4 C�edric Roux and Emmanuelle Encrenaz

i

p
pp

p p

:p :p :p

:i

A

B

A0

B0

A1

B1

:p:p

:p

:p :p

s1

s2 s3

s4 s5 s6 s7

:i:i

:i

i i

i

Fig. 1: A trivial Moore machine

and its derived Kripke structure

Fig. 2: A Moore machine illustrating

the use of 9I and 8I

4 iCTL { CTL Model Checking with Input

Con�gurations

We introduce two new operators to CTL. These two operators are 8I and 9I .
This de�nes a new logic, that we call iCTL. Given �, an iCTL formula (that
may contain 8I and 9I operators), 8I� stands for \for all input con�guration, �
holds" and 9I� stands for \there is an input con�guration for which � holds".

Here follows the formal de�nition of iCTL.

4.1 Syntax and Semantics of iCTL

The syntax is the same as the one of CTL, with the following added rule for
state formulae.

{ if f is a state formula, then 8If and 9If are state formulae.

The semantics remains the same, with the following added rules.
As the two new operators deal with input con�gurations, the Kripke structure

they apply on are the ones given by our translation from Moore machines. The
symbols are thus the same than those from de�nition 3.

M; s j= 8If , s = (sM ; cM) and for all c0
M
2 2IM , s0 = (sM ; c0

M
) and we

have that s0 j= f ,
M; s j= 9If , s = (sM ; cM) and for one c0

M
2 2IM , s0 = (sM ; c0

M
) and we

have that s0 j= f .

Since our Moore machines are complete, for all input con�gurations, the state
s0 exists in the Kripke structure, thus s0 j= f is sound.

Using iCTL, we now can de�ne when a Moore machine validates a logical
formula.

De�nition 4. A Moore machine M validates a formula f of iCTL if and only
if the formula is true in the corresponding Kripke structure, as given by the
transformation of de�nition 3.

CTL May Be Ambiguous when Model Checking Moore Machines 5

This de�nition is the same as in [3], but we expect the designer to remove
the ambiguities of CTL by using 9I and 8I in the places where they are needed.

4.2 Examples

The Moore machine of �gure 2 will be used as example.

On the Kripke structure derived from it by the translation of de�nition 3,
we've got that the formula AX EX p is false in s1:i and s1:i. Looking at the
Moore machine, one might think that this formula is true in s1, since all its
successors have a successor where p is true (states s4 and s6). The formula
AX (9I (EX p)) is true in s1:i and s1:i on the derived Kripke structure. This
corresponds to the intuition one might have about the truth value of AX EX p

over the Moore machine. We see here that to capture this intuition, 9I is neces-
sary.

Similarly, the formula EX AX p is true in s1:i and s1:i in the derived Kripke
structure while EX (8I(AX p)) is false in s1:i and s1:i. This latest interpretation
seems to be consistent with the intuition that one might have for the truth value
of EX AX p in the state s1 of the Moore machine.

4.3 iCTL Is More Expressive than CTL

Given a formula f 2 iCTL and a formula g 2 CTL, we say that f is equivalent
to g if and only if for all Kripke structure K derived from a Moore machine M
using the translation of de�nition 3, for all state s of K, we have that K; s j= f

i� K; s j= g. (This is the global equivalence of [4].)

:p:p :p

:p :p:p p pp

s1

s2 s3

s1:i s1:i

s2:i s2:i s3:i s3:i

EX p

9I EX p9I EX p

:i i

A Moore machine Its corresponding Kripke structure

Fig. 3: An example showing the better expressiveness of iCTL

On the Kripke structure of �gure 3, we can prove (by induction over its size)
that any CTL formula won't see its truth value changed in s1:i, s2:i and s2:i if
we change the labelling of s3. But the iCTL formula \9I EX p" distinguishes
both cases. Since all CTL formulae are in iCTL, we have that iCTL is more
expressive than CTL (for Kripke structures coming from de�nition 3).

6 C�edric Roux and Emmanuelle Encrenaz

4.4 iCTL and Other Logics

Modal �-calculus is a logic dealing with labelled transition systems (thus, able
to handle Moore machines), which contains the h�i and [�] operators. h�i p is
true in a state s if p is true in at least one of its successor, reachable by any
transition. [�] p is true in a state s if p is true in all the successors of s, reachable
by any transition. We think that h�i in the �-calculus is equivalent to 9I EX
in iCTL and that [�] is equivalent to 8I AX. Formulae 9I AX p or 8I EX p

are in iCTL and have a meaning over Kripke structures obtained from Mealy
machines. We didn't �nd equivalent formulae to those in the �-calculus.

LTL does not present the same ambiguities than CTL since it only captures
a set of in�nite sequences and the sets of sequences of the Moore machine and
of the derived Kripke structure are equivalent. So, something like \iLTL" would
be useless.

5 Conclusion

The paper discusses the consequences of placing input con�gurations labelling
transitions in Moore machines into the source states in the derived Kripke struc-
ture built to perform CTL model checking. This translation has an impact on
the veri�cation since a given CTL formula believed to be true or false on the
Moore machine can have a di�erent truth value on the obtained Kripke struc-
ture. This is due to the lack of expressiveness of CTL that does not take into
account labelled transitions, as we �nd in Moore machines. To overcome this
ambiguity, we introduce two operators, 9I and 8I . We show that the obtained
logic, named iCTL, is more expressive than CTL. We have implemented these
operators in our model checker and it is our intention to verify complex systems
with this logic.

References

1. R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz,
S. -T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K.
Ranjan, S. Sarwary, T. R. Shiple, G. Swamy and T. Villa, VIS: a System for

Veri�cation and Synthesis, Proceedings of the Eighth International Conference on
Computer Aided Veri�cation CAV, pp. 428{432, 1996.

2. EdmundM. Clarke, E. Allen Emerson, and A. Prasad Sistla, Automatic veri�cation

of �nite-state concurrent systems using temporal logic speci�cations, ACM Trans.
on Programming Languages and Systems, 8(2):244{263, 1986.

3. E. M. Clarke, D. E. Long, and K. L. McMillan, Compositional Model Checking,

Proceedings of the Fourth Annual IEEE Symposium on Logic in Computer Science,
pp. 353{362, 1989.

4. E.A. Emerson, Temporal and modal logic, in Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, ed., J. van Leeuwen, chapter
16, pp. 995{1072, Elsevier, 1990.

5. K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

