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Abstract

In hardware design, it is necessary to simulate the anticipated behavior of the inte-
grated circuit before it is actually cast in silicon. As simulation procedures are long
due to the great number of tests to be performed, optimization of the simulation
code is of prime importance. This paper describes two mathematical models for the
minimization of the memory access times for a cycle-based simulator.

An integrated circuit being viewed as a directed acyclic graph, the problem con-
sists in building a graph order on the vertices, compatible with the relation order
induced by the graph, in order to minimize a cost function that represents the
memory access time. For the two proposed cost functions, we show that the two
corresponding problems are NP-complete. However, we show that the special cases
where the graphs are in trees or out trees can be solved in polynomial time.

Key words: graph ordering, integrated circuit simulation, complexity.

1 Introduction

Simulation is a crucial challenge for the design of integrated circuits [13]. In
fact, the task involves the iteration of a design and simulation process before
tests on real chips are possible. In very few words, a simulator can be viewed
as a computer program that reads in input the physical description of an
integrated circuit | a VHDL �le for example | and produces, in a so-called
compilation phase, an executable simulation code that simulates the behavior
of the circuit. Then, the test phase consists in running the executable code on
a large number of benchmarks. Each benchmark consists of input data and
output data: the executable code is given the input data of the benchmark
and produces output data which is compared to the theoretical output of the
benchmark. If produced and theoretical output data are di�erent, the test fails,
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Fig. 1. Code generation for the simulation of a circuit

which means the circuit is not correct. As the executable code that simulates
the circuit is run a very large number of times | some test phases may last
several days | improving the compilation phase so that the produced code
runs faster is of practical interest to signi�cantly reduce the length of the test
phase. In this paper, we propose two theoretical graph problems to model the
optimization of the code production.

In this paper, an integrated circuit will be seen as a set of logical gates (such
as AND, OR, NOT. . . ) interconnected through wires represented through a
directed acyclic graph (see Figure 1(a) and 1(b)). The value of the output of a
gate is directly derived from its inputs so that the role of the code simulating
the circuit is to sequentially compute the values of all the wires in order
to compute the output. Clearly, since all the inputs must be computed in
order to compute the output, the values of the wires must be computed in a
topological order induced by the digraph (see Figure 1(c)). Conversely, any
topological order of the digraph yields a di�erent code so that our problem is
to �nd a topological order that produces the fastest code. The main diÆculty
in building the model is to �nd an estimate for the speed of the code.
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Therefore, the generated code has a very special structure. On the one hand,
there is no loop nor branching instructions. On the other hand, there are
a great number of instructions and of variables to deal with in each block
of code. Conventional compilers, such as gcc, are not devised to optimize
such a code. In fact, given the great number of variables induced by a large
integrated circuit, memory management is of key importance in order to use
di�erent cache levels at best. So the two models proposed in Section 2 aims
at minimizing total memory access time.

As the problem is to specify an order of the vertices of a graph, it is closely
related to graph layout problems whose goal is to number the vertices of an
input graph in such a way that a given objective function is optimized. The
reader is referred to the recent survey by D��az et al. [7] for a state of the
art of these problems which are also referred to as graph (linear) ordering,
(linear) arrangement, numbering or labeling problems. These problems are
known to be very useful to optimize the processing of large data: for example,
\bandwidth (minimization) had received much attention during the �fties in
order to speed up several computations on sparse matrices" [7]. However, most
research was devoted to non oriented graphs. Our model is based on a directed
graph. For such graphs, bandwidth, cut width and linear arrangement problem
are known to be NP-complete [11,9]. Approximation algorithms were proposed
by Even et al. [8] and improved by Rao and Richa [14]. Detti and Pacciarelli
proposed a branch-and-bound algorithm for a generalization of the directed
linear arrangement problem [5].

We show in Section 2 that one of the two models we proposed can be seen as
the minimization of the Directed Sum Cut, which generalized the Sum Cut,
an objective function that has been studied in the context of non-oriented
graphs [6]. To the best of our knowledge, the oriented version of this problem
has never been studied. We prove the problem is NP-complete and we present
to polynomial algorithms for in trees and out trees.

Our second model was initially born of the Register Allocation problem [16]. In
[4], the problem of code minimization for a k-register machine was proved to be
NP-complete for k = 1. Our model, called Uniform Cost Stack, is derived from
this model because it relies on a similar set of operators for memory access.
The main di�erence is that the memory is modeled by a stack structure, and
the cost function is linear. We prove that the problem is NP-complete even
for graphs of height at most 1, along again with two polynomial cases (in tree
and out tree).

The two models are introduced in Section 2. Section 3 is devoted to the the-
oretical study of the Directed Sum Cut and Section 4 presents analogous
theoretical results | but proofs are very di�erent | for the Uniform Cost
Stack model. In conclusion, some insights into the practical relevance of the
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two models are presented.

2 Models

This section mathematically introduces and discusses two combinatorial opti-
mization problems that model the cache optimization problem for the simu-
lation of circuits.

Let G = (V;A) be a directed acyclic graph, it represents the dependence
between the variables of the simulation code. The number of nodes of G is
denoted by n = jV j and the number of arcs is denoted by m = jAj. For each
u 2 V , �+(u) (resp. ��(u)) is the set of successors (resp. predecessors) of u
and let Æ+(u) = j�+(u)j and Æ�(u) = j��(u)j denote the out- and in-degrees.
The set of source nodes (i.e. nodes u such as ��(u) = ;) is denoted S.

Since any possible code is represented by a numbering of the nodes of G, the
feasible solutions of the problem are formally described by a bijection ' that
maps V to f1; � � � ; ng and satis�es the constraint 8a = (u; v) 2 A;'(u) <
'(v). ' is called a graph ordering function or a graph order. We will often use
the notation '�1(i) for some i 2 f1; � � � ; ng to refer to the node whose rank
is i in the order '.

Given a graph ordering function ' and an arc (u; v) 2 A, let C('; (u; v)) be
the loading cost of the variable u for the evaluation of v. This function will
depends on the cache model considered. Then, the total loading cost of a
variable u 2 A is de�ned as :

C('; u) =
X

v2�+(u)

C('; (u; v))

The total cost of the order ' on G will then be de�ned in the following way:

C(';G) =
X
u2V

C('; u)

The problem is to �nd the order ' that minimizes this objective function.
In the rest of this section, two models are proposed to evaluate by two dif-
ferent ways the cache access costs C('; u). In both these models, C('; u) is a
deterministic function that only depends on ' and u. This hypothesis can be
criticized because cache policies may be randomized and the real access times
depends of numerous other parameters such as the cache size, the operating
system (and its settings), the memory state when the simulation code is run,
the programs that are concurrently run and many others. However, as the sim-
ulation code is run many times | eventually on di�erent machines | we are
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interested in minimizing its average running time. So, we are going to assume
that the deterministic value C('; u) represents the average cache access cost.

We observe that the expression of the total cost C(';G) deliberately ignores
the time spent at computing the value of the output of the logical gate once the
input are read. In fact, this time is assumed to be constant. So, the total time
for running the simulation code is the sum of a constant computation time
and a cache access time depending on '. Only this second value is minimized.

In the �rst model, the estimation of C('; u) is based on the number of instruc-
tions executed between to successive use of the variable u. The second model
is more complex as it keeps track of all the memory moves.

2.1 Directed Sum Cut

This �rst model is based on the observation that ' induces a numbering
of the lines of the simulation code (see Figure 1(c)): '(vi) is the number
of the line at which vi is created. In order to introduce the cost function,
we consider the use of some variable u after its creation. The �rst access is
made in order to compute the �rst successor of u w.r.t. ', which is denoted
by s1('; u) or simply by s1(u). The cost for reading u is assumed to be a
function of the number of instructions executed since the creation of u, that
is C('; (u; s1(u))) = f('(s1(u))� '(u)). As discussed before, f is assumed to
be a deterministic function, which is non-decreasing to model the fact that a
variable that has been in memory for a longer time takes longer to be read.

After this computation, both variables u and s1(u) are supposed to be equiva-
lently cached in memory. So, when u is accessed by its second successor s2(u),
the access cost is C('; (u; s2(u))) = f('(s2(u)) � '(s1(u))) since '(s2(u)) �
'(s1(u)) is the number of instructions executed since the creation of s1(u).
Therefore, the total cost related to the access to variable u is

C('; u) =
Æ+(u)X
i=1

f('(si(u))� '(si�1(u))); if Æ
+(u) � 1; and 0 else

where Æ+(u) is the out-degree of u in G, s0(u) = u and s1(u); s2(u); � � � are the
direct successors of u numbered w.r.t. '. In order to simplify the model, we
will consider that the cache access cost function is simply the identity function
Id. The choice of such a simple function for f is motivated by the fact that
there is no hardware- or software-dependent parameters. Furthermore, this
choice yields an interestingly simple expression for the total cache access cost

C('; u) =

 
max
(u;v)2A

'(v)

!
� '(u) (1)
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and for the objective function of the problem

C(') = C(';G) =
X
u2V

  
max
(u;v)2A

'(v)

!
� '(u)

!
:

The following theorem shows that the expression of this objective function
can be linked to a classical criterion in graph layout problems. Namely, the
vertex cut at position i, denoted by Æ(i; ';G), is de�ned as jfu 2 V : '(u) �
i ^ (9v : '(v) > i ^ (u; v) 2 A)gj [7]. It represents the number of vertices
numbered before i that have at least one successor v numbered after i. In
terms of memory management, the interpretation of u =2 fu 2 V : '(u) �
i^ (9v : '(v) > i^ (u; v) 2 A)g is the following: either u is not used anymore,
or has not been created yet.

Theorem 1 We have the equality

C(';G) = DSC(';G)

where DSC is the Directed Sum Cut of G ordered by ' and is de�ned as
DSC(';G) =

P
1�i�n Æ(i; ';G).

PROOF. Let us consider the indicator Æ(u; v) that is equal to 1 if and only if
there is an arc (u; w) 2 A such that '(u) � '(v) < '(w) and equal to 0 oth-
erwise. By de�nition, we have Æ('(v); '; G) =

P
u Æ(u; v) so that DSC(';G) =P

v

P
u Æ(u; v) =

P
u

P
v Æ(u; v). The inner sum is equal to the number of ver-

tices v that are numbered in the interval f'(u); � � � ;max(u;w)2A '(w)�1g, that

is
�
max(u;v)2A '(v)

�
� '(u). So we have proved the equality.

This result is the counterpart of the equality between the pro�le and the
reversed sum cut for undirected graphs [7, Observation 2.2 citing [12]]. In the
rest of this paper, this �rst objective function will be referred to as DSC.

Notations introduced for C are directly adapted to the DSC cost function :
DSC('; (u; si(u))) = '(si(u))�'(si�1(u)) and DSC('; u) = max(u;v)2A '(v)�
'(u).

2.2 Uniform Cost Stack

The UCS model (for Uniform Cost Stack) is intended to represent the load
costs of variables which are stored during the execution of a program. This
model is an extension of the well-known model of Sethi presented in [16] for
the register allocation problems.
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(b) Stack evolution

Fig. 2. UCS computation

The memory is seen as a stack, on which three operators are available:

� RD(�) reads the value of the input for the variable � and push it to the top
of the stack. The duration of this operation is assumed to be a constant so
that its cost in the model is 0.
� LD(�) moves the variable � stored in the stack to the top of the stack.
The cost of this operation is proportional to the number of variables stored
between � and the top before the move.
� OP(�1; � � � ; �k) applies an operator | generically denoted by OP | to the
values of the variables �1; � � � ; �k. It is supposed that �1; � � � ; �k have been
previously moved (with LD-operations) to the �rst k levels of the stack but
these k variables can be in any order inside these �rst k levels of the stack.
This assumption can be justi�ed by the fact that, in a real processor, the
parameters of the operators are stored in registers and the order in which the
registers are initialized has no importance. The result of the computation
of OP is then moved to the top of the stack, the order between the input
values staying unchanged. Since the cost of an operation is supposed to be
constant, we set it equal to zero.

For example, let us consider a graph G = (V;A) pictured by Figure 2(a). The
ordering function corresponds to the numbers printed inside the nodes. For
this ordering function, we can derive the list of RD, LD and OP operations
that are executed to evaluate the vertices of the graph. Figure 2(b) represents
these operations for our example with the successive states of the stack |
LD(i) means \load variable '�1(i)". The total cost of an execution is then
the sum of the costs of the LD-moves : each of them is associated with an arc
(u; v) 2 A. In Figure 2(a), the arcs are valued with the corresponding cost. In
this way, we get a total UCS cost equal to 9.

For general graphs, the code generation associated with graph order ' is more
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computation of
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Fig. 3. Two di�erent stacking orders to evaluate '�1(4)

complicated: indeed, if a vertex u 2 V has several predecessors, we have to
decide in which order they will be loaded in the stack before u to minimize
the cost.

2.2.1 Optimal execution of an order

For a given execution order ', the UCS model as it has been de�ned so far
does not guarantee the unicity of the score, because an order between the
LD-operations, called stacking order, has to be de�ned for nodes which have
several predecessors. Indeed, let us consider the example pictured by Figure 3.
The total cost of an execution depends on the loading order of the variables
'�1(1) and '�1(2) for the evaluation of '�1(4). If '�1(1) is loaded before
'�1(2), the cost is 4, while if the order is reversed, the cost is equal to 3.

In the following, we present an optimal simple | that is algorithmic and
polynomial | stacking policy. With this policy added to our model, the UCS
cost becomes unambiguously de�ned.

De�nition 2 (Stacking order) The stacking order �u of a vertex u 2 V
(which is not a source of G) is a permutation of the elements of ��(u). It rep-
resents the order in which the predecessors of u must be loaded before the com-
putation begins. The total staking order is the set � = f(u; �u); u 2 V g. The
cost of � for the graph order ' is denoted by UCS�(';G) or shortly UCS�(').

For the example pictured by Figure 3, '�1(1), '�1(2) and '�1(3) have no
stacking order. The stacking order of '�1(4) is ('�1(1); '�1(2)).

Let us consider a vertex u that has to be evaluated. If a subset W of ��1(u)
is stored in the �rst jW j levels of the stack, these variables need not to be
loaded. So, only the variables x 2 ��1(u) such that there is some y 62 ��1(u)
with y closer to the top of the stack than x have to be loaded. Such a variable
x is called a TBL (to be loaded) variable.
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LD(vi)LD(vj) LD(vi)
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vj
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LD(vi) LD(vj )

vi vj

vi

vj
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vj

qj

qi

qi + 1

qj
qj

�

�0

Fig. 4. Comparison between the stacking orders � and �0

Lemma 3 The predecessors of any vertex u 2 V must be loaded according the
following rule: load �rst the TBL-variable that is the closest to the top for the
evaluation of u.

PROOF. Let p = j��(u)j and let v1; � � � ; vp be the TBL-predecessors of u
ordered from the top of the stack. Let q1; � � � ; qp be their respective distance
to the top of the stack just before the execution of u. Let us suppose that
there exists an optimal stacking order � di�erent from the order of the lemma.

Let us now consider the minimal integer k 2 f1; � � � ; p�1g such as �u(k) = vi,
�u(k + 1) = vj and j < i (the �rst inversion). Let �0u be the stacking order
de�ned by the inversion of �u(k) and �u(k+1) and let �0 be the total stacking
order derived from � after changing (u; �u) into (u; �

0
u).

We prove now that UCS�0(') � UCS�('). Let us compare the successive stack
states for the two executions corresponding to � and �0, as it is illustrated by
Figure 4. Before the program arrives at the pair of operations \LD(vj); LD(vi)"
of � (which corresponds to \LD(vi); LD(vj)" for �

0) the �-stack and the �0-stack
are identical at each step. Afterwards, vj and vi are swapped in the stack
until an operator LD(vi) or LD(vj) is met. So, clearly, the cost di�erence
between UCS�0(') and UCS�(') are due to the three LD operations we have
just emphasized. Let q0 be the height of vi in the �-stack before the third LD,
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q0 is also the height of vj in the �0-stack at the same time. So, we have

UCS�(')� UCS�0(') = (qj + qi + 1)� (qi + qj) +

8><
>:
q0 � (q0 + 1)

(q0 + 1)� q0

according that the third operation is LD(vi) or LD(vj). Clearly, in any case,
UCS�0(') � UCS�(').

For the following, we will suppose that the TBL-variables are always loaded
in the optimal order �?, so the cost of a graph order can be denoted with-
out ambiguity by UCS(') = UCS(';G) = UCS�?(';G). UCS('; (u; v)) will
denote the load of u in order to compute v.

2.3 Remarks

The DSC cost function can be trivially computed in O(m) time. The UCS cost
function can be naively computed in O(mn) by using a linked list to represent
the stack. However, by using AVL trees [1] instead, the computation time can
be improved to O(m logn) [15].

For both the DSC and UCS cost functions, the problem can be naturally
decomposed when the precedence graph has several connected components.
Formally, for C � DSC or C � UCS, if the graph G has k connected compo-
nents G1; � � � ; Gk, then min' C(';G) =

Pk
i=1min'i C('i; Gi).

3 The DSC model

This section is dedicated to the DSC model. Firstly, we prove that the problem
is NP-complete, even for graphs with depth equal to 2. Then, we prove that
the problem is polynomial for in trees and out trees.

3.1 Complexity

We did not �nd in the literature any proof of the complexity of the directed
sum cut problem. We prove in this section that the problem is unsurprisingly
NP-complete. The problem is NP-complete even for the digraphs of depth 2
| the depth being the length in number of arcs of the longest path from a

10



ÆG
max

= 3

G0(V;E0)G(V;E)

Fig. 5. Transforming MinLA to MinMaxEdge

source to a sink. We consider the following decisional variant of the problem
of the minimization of the directed sum cut.

Minimum Directed Sum Cut (MinDSC)
INSTANCE : An acyclic digraph G = (V;A) and an integer K.
QUESTION : Is there an order ' of G such that DSC(';G) � K ?

In order to prove that MinDSC is NP-complete, we will consider the following
intermediate problem : Minimum Max Edge (MinMaxEdge)
INSTANCE : A multi-graph G = (V;E) and an integer K
QUESTION : Is there an order ' of G such that

P
fu;vg2E max('(u); '(v)) �

K?

We will start from Minimum Linear Arrangement [10]: Minimum Linear
Arrangement (MinLA)
INSTANCE : G = (V;E) a graph, an integer B.
QUESTION : Is it possible to �nd a bijective function f : V ! f1; :::; jV jg
such that X

fi;jg2E

jf(i)� f(j)j � B?

Lemma 4 There exists a polynomial transformation from MinLA to Min-
MaxEdge.

PROOF. Let us consider an arbitrary graph G = (V;E) given as an input
of MinLA. Let ÆG(u) denote the degree of the vertex u 2 V in G and let
ÆGmax = maxu2V Æ

G(u) be the maximum degree. We build the (multi)graph
G0 = (V;E 0) by doubling each arc in E and adding ÆGmax � ÆG(u) loop-edges
fu; ug. Therefore, the degree of u in G0 is 2ÆG(u) + 2(ÆGmax � ÆG(u)) = 2ÆGmax
(see Figure 5). Since max(i; j) = (i+ j)=2 + ji� jj=2,

11
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Fig. 6. Transforming MinMaxEdge to MinDSCX
fu;vg2E0

max('(u); '(v))= ÆGmax
X
u2V

'(u) +
X

fu;vg2E0

j'(u)� '(v)j=2

= ÆGmaxjV j(jV j+ 1)=2 +
X

fu;vg2E;u 6=v

j'(u)� '(v)j

= ÆGmaxjV j(jV j+ 1)=2 +
X

fu;vg2E

j'(u)� '(v)j

In the right side of the �nal equality, the �rst member of the sum is a constant
while the second one is the linear arrangement of G. So a solution ' for
MINIMUM MAX EDGE with a cost ÆGmaxjV j(jV j+ 1)=2 +K is a solution for
MINLA with a cost K and vice versa.

Lemma 5 There exists a polynomial transformation from MinMaxEdge to
MinDSC restricted to the digraphs of depth 2.

PROOF. LetG = (V;E) be an arbitrary multi-graph (input of MinMaxEdge).
We build the graph G0(V 0; E 0) with V 0 = E[f?g[V (note that E is a multiset
and may contain duplicate values corresponding to parallel arcs, V 0 is however
a set: the multiple occurrences of an element of E are di�erentiated from each
other in V 0). E 0 is the union of the three following sets (see Figure 6) :

- f(e; ?)j8e 2 Eg
- f(?; u)j8u 2 V g
- f(fu; ug; u)j8fu; ug 2 Eg [ f(fu; vg; u); (fu; vg; v)j8fu; vg 2 Eju 6= vg

Clearly, for any order '0 of G0, '0(E) = f1; � � � ; jEjg, '0(?) = jEj + 1 and
'0(V ) = fjEj + 2; � � � ; jEj + jV j + 1g. Since, in G0, there is no outgoing arc
from the nodes in V , the cache function for any order '0 is :

DSC('0; G0) =
X

fu;vg2E

(max('0(?); '0(u); '0(v))� '0(fu; vg))+max
u2V

'0(u)�'0(?)

Since '0(?) < '0(u) for any u 2 V ,
P

fu;vg2E '
0(fu; vg) is the sum of the

integers 1; � � � ; jEj, and maxu2V '
0(u) is the last number of the order, that is

12



jEj+ jV j+ 1, we �nally have:

DSC('0; G0) =
X

fu;vg2E

max('0(u); '0(v))� jEj(jEj+ 1)=2 + jV j

So, when we have a directed order '0 for G0, we can build an undirected order
for G by taking for any u 2 V '(u) = '0(u)� '0(?). The above equality be-
comes DSC('0; G0) =

P
fu;vg2E max('(u); '(v))+ jV j. Therefore if the directed

sum cut of '0 is less than jV j+K, the cost of the constructed order ' is less
than K. Conversely, if we have an order ' for G with cost less than K, we can
easily build an order with a directed sum cut less than jV j+K by taking, for
any u 2 V , '0(u) = '(u) + jEj+1, '0(?) = jEj+ 1 and by randomly ordering
the elements of E.

Now, since MinLA [10] is NP-complete, we deduce the following theorem :

Theorem 6 MinDSC is NP-complete for digraphs of depth 2

The approximation techniques of Rao and Richa [14], based on the Divide-and-
Conquer approximation method presented by Even et al. [8], can be directly
adapted to give an O(logn)-approximation algorithm for MINDSC.

3.2 Polynomial cases

3.2.1 In tree

Here the precedence graph G = (V;A) is an in tree, i.e. each node v 2 V has
at most one outgoing arc. With this property, the expression of the directed
sum cut is greatly simpli�ed

DSC(';G) =
X

(u;v)2A

'(v)� '(u):

This expression shows that when the precedence graph is an in tree, the di-
rected sum cut is equal to the directed linear arrangement. The latter problem
has been shown to be polynomial [2].

It can also be observed that the problem is equivalent to the scheduling prob-
lem 1jintree; pi = 1j

P
wiCi, in which each task i corresponds to a node in

v 2 V , the precedence graph is equal toG, and the task weights are wi = Æ�(v).
This problem is of course polynomial (see for example [3]).
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Fig. 7. Renumbering the order of an out tree

3.2.2 Out tree

The precedence graph G = (V;A) is now an out tree, i.e., each node v 2 V
has at most one ingoing arc. From Section 2.3, we assume w.l.o.g. that G is
connected so that m = n � 1. We present an algorithm that computes the
optimal ordering of the nodes in linear time. This algorithm is based on the
following lemma.

Lemma 7 There exists an optimal order in which all the nodes in some sub-
tree T of the root node of G are ordered after all the nodes that are in GnT .

8u 2 T; 8v 2 GnT; '(u) > '(v)

PROOF. Let us consider an order ' that does not verify this property. By
the way of the transformation depicted in Figure 7, we are going to construct
a new order '0 such that DSC(';G) � DSC(';G). The root node r clearly
satis�es '(r) = 1, let T denote the subtree of r that contains the \last-ordered"
node '�1(n) and let rT be the root of T . From our initial assumption, we have
that '(rT ) < n�jT j+1, which means that at least one node of GnT is ordered
in between the nodes of T . The new order '0 (see Figure 7) is build such that

(1) the relative order between the nodes in T is not modi�ed,
(2) the relative order between the nodes in GnT is not modi�ed,
(3) '0(T ) = [n� jT j+ 1; n] and, consequently, '0(GnT ) = [1; n� jT j].

These three rules clearly de�ne the construction of a unique order '0. This
order is compatible with the topological order because (r; rT ) is the only arc
between T and the rest of G and, after the transformation, we still have
'(r) = 1 < '(rT ).

In order to show that DSC('0; G) � DSC(';G), we consider an arc (u; v)
such that u 6= r | the case u = r is studied afterwards. Let �(u; v) =
('(v) � '(u)) � ('0(v) � '0(u)). �(u; v) is the decrease of the cost of (u; v)
by re-ordering ' in '0. By construction, �(u; v) is positive. Indeed, if (u; v)
is in the subtree T , �(u; v) is equal to the number of nodes w =2 T such that
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'(u) < '(w) < '(v). Symmetrically, if (u; v) is not in the subtree T , �(u; v) is
equal to the number of nodes w 2 T such that '(u) < '(w) < '(v). Therefore,
the access cost of each node u 6= r has decreased, that is, with the formulation
of the cache cost given in (1), C('0; u) � C('; u).

However, the access cost C('; r) of the root node r generally increases. The
increase is equal to C('0; r) � C('; r) = max(r;v)2A '

0(v) � max(r;v)2A '(v) �
'0(rT )�'(rT ). Let �(rT ) denote the value of the right side of this inequality.
We observe that �(rT ) is equal to the number of nodes w 62 T such that
'(w) > '(rT ).

We complete the proof that DSC('0; G) � DSC(';G) by showing that the
decrease of the total access cost of all the nodes u 6= r is at least �(rT ).
'�1(T ) is a subset of f1; � � � ; ng so that it can be seen as the union of integer
intervals I1 < I2 � � � < Ik. Clearly, ' is a bijection between the nodes of T
and

Sk
i=1 Ii. Let us consider the arc (u1; v1) of T such that '(u1) 2 I1 and

'(v1) is maximum. Since T is connected, '(v1) is in some interval Ik1 with
k1 > 1. v1 is by construction the last successor of u1 according the order '
so that the access cost of u1 is '(v1) � '(u1). If k1 < k, we can iterate the
construction: let (u2; v2) be the arc such that u2 2 Ik1 and '(v2) is maximum.
Let Ik2 be the interval that contains '(v2). At the end, we construct a sequence
of arcs (u1; v1); � � � ; (ul; vl) and intervals I1 = Ik0 ; Ik2; � � � ; Ikl = Ik such that
'(ui) 2 Iki�1 and '(vi) 2 Iki. We also have C('; ui) = '(vi) � '(ui) and
C('0; ui) = '0(vi) � '0(ui). So C('0; ui) � C('; ui) is equal to the number of
nodes w 62 T such that '(ui) < '(w) < '(vi). Therefore, since vi and ui+1 are
in the same interval Iki, the sum

Pl
i=1(C('

0; ui)� C('; ui)) is equal to �(rT ).
Therefore DSC('0; G) � DSC(';G), which completes the proof.

Let us call the subtree T that is ordered after all the other nodes in GnT
the terminal subtree of the order. In order to derive new properties for the
optimal ordering, let us assume that one of the subtree of r, again denoted by
T , has been selected to be the terminal subtree of an order '. We are going
to show that this assumption decompose the problem into Æ+(r) independent
problems. Since T is the �nal subtree, we have that the order of the root node
rT of T is '(rT ) = n� jT j+ 1. From the order ' of G, an order of T can be
clearly derived by setting for any node u of T , '0(u) '(u)� (n� jT j). So,
C('; u) = C('0; u) for any node u of T , and therefore an optimal order of G
correspond to an optimal order of T . Similarly, we show that an optimal order
of G also correspond to an optimal order of GnT . Since GnT is a forest, the
optimal order is obtained by computing the optimal order of each tree of the
forest and concatenating these orders.

Let us now determine how to select the terminal subtree. For each direct
descendant u of r, let T (u) denotes the subtree rooted at u. If T (u?) denoted
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the �nal subtree, we have C('; r) = n� jT (u?)j, so

DSC(';G) = n� jT (u?)j+
X

(r;u)2A

DSC('; T (u))

Therefore, in order to minimize the directed sum cut, u? must be selected such
that T (u?) is the largest subtree of r.

So, the decomposition shows that the ordering of an in tree G is given by
calling the following recursive algorithm with the root of G as �rst parameter
and 1 as second parameter.

proc orderouttree(r,i) :
'(r) i
if r is not a leaf then
let u? be one descendant of r such that T (u?) = max(r;u)2A jT (u)j
for each direct descendant u 6= u? of r do
orderouttree(u,i+ 1)
i i+ jT (u)j

endfor
orderouttree(u?, i + 1)

endif

We �nally prove the complexity of this algorithm.

Theorem 8 The minimal directed sum cut of an out tree can be computed in
O(n) time.

PROOF. In a preprocessing phase, all the sizes jT (u)j of the subtrees for all
the nodes u of G can be computed in O(n) time. The recursive procedure is
called once for each node and selecting u? at a given node r takes O(Æ+(r))
time, so the total time for the algorithm is O(n).

Let us now consider the variant of the DSC cost function where C(') =P
u

PÆ+(u)
i=1 f('(si(u))� '(si�1(u))). If we assume that f is concave and non-

decreasing, we can prove, by using the inequality f(x + y) � f(x) + f(y) for
any x; y � 0, that the lemma and the algorithm to solve the problem both
hold. If the function f is convex, the lemma is not true anymore.
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4 The UCS model

4.1 Complexity of UCS for a bipartite graph

We prove here that the decision version of UCS is NP-complete even for bi-
partite graphs. The problem is de�ned as follows:
Minimum Bipartite uniform cost stack (BipUCS)
INSTANCE : G = (V;A) a bipartite directed acyclic graph, an integer K.
QUESTION : Is it possible to �nd a bijective function ' : V ! f1; :::; jV jg
such that UCS(';G) � K ?

We prove that BipUCS is NP-complete using a reduction from Minimum Lin-
ear Arrangement (MinLA).

Theorem 9 There exists a polynomial transformation from MinLA to BipUCS.

PROOF. Let us consider an instance � of MinLA given by a graph H =
(W;E) with W = f1; � � � ; ng and an integer B. Let m be equal to jEj. We
build an associated instance �0 of BipUCS de�ned by a graph G = (V;A) and
an integer K with V = X [ Y de�ned as follows (see Figure 8):

� The set Y corresponds to W . We denote by yi the element of Y that is
associated to the vertex i of W .
� The set X is the union of the set X(E), which corresponds to E and the sets
Q(y1); � � � ; Q(yn). The element ofX(E) corresponding to the edge e = fi; jg
of E is denoted by x(e) or x(fi; jg). Each set Q(yi) has n

6 elements and the
sets Q(yi) are pairwise distinct.
� Each vertex in Q(yi) has one successor that is yi. Each vertex x(fi; jg) has
exactly two successors yi and yj.
� K is set to be equal to (n6 +m + 1)B +m2.

This transformation is clearly polynomial and the graph G is bipartite.

Let us suppose that the answer to � is \yes" and let f a solution. In order
to simplify the notation, we assume without loss of generality that f(i) = i
for each i 2 W . An order ' of the corresponding instance �0 is computed
by numbering vertices yi of Y correspondingly to the order f of W . In other
words, '(y1) < '(y2) < ::: < '(yn). Assuming that '(y0) = 0, we number the
elements of X as follows :

� from '(yi�1) + 1 to '(yi�1) + n6, the n6 elements of Q(yi)
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Fig. 8. Transforming MinLA to BipUCS

� from '(yi�1)+n6+1 to '(yi)� 1, the elements x(fi; jg) of X(E) such that
i < j. Clearly, the vertices x(fi; jg) with j < i have been numbered before
'(yj).

Now, we prove that UCS(';G) � K. 8(x; y) 2 A, UCS('; (x; y)) denotes the
load cost of x for the evaluation of y. We obtain:

UCS(';G) =
X
y2Y

X
x2��(y)

UCS('; (x; y))

In this sum, UCS('; (x; y)) > 0 only for some y = yi and x = x(fi; jg) with
j < i. Let us consider such a vertex x. x is a predecessor of yi, it was �rst
pushed in the stack with a RD-operation for the computation of yj, that was
executed before the computation of yi (j < i implies that '(yj) < '(yi)). We
can set UCS('; (x; yi)) = �(x; yj) +�(yj) where �(x; yj) (resp. �(yj)) is the
number of vertices stacked between x and yj with yj included (resp. between
yj and the top of the stack) just before the execution of yi (see Figure 9).

Every vertex yj 2 Y has at most m predecessors x in X(E), so �(x; yj) � m.
Moreover, every vertex yk 2 Y has at most n6 +m predecessors. Since tasks
from Y are stacked following ', we get �(yj) � (f(i)� f(j))(n6 +m+ 1).

UCS(';G) � m2 + (n6 +m+ 1)
X

fi;jg2E

jf(i)� f(j)j � m2 + (n6 +m+ 1)�B

18
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�(yj)
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yi�1

yi�2

Q(yi)

x

Q(yi�1)

yj

Fig. 9. Computation of yi

So, we get UCS(';G) � (n6 +m + 1)B +m2 = K. ' is then a solution for
the instance �0 of BipUCS.

Conversely, let us suppose that ' is a solution to the instance �0 of BipUCS.
We have UCS(';G) � K. We can assume w.l.o.g. that tasks in W are num-
bered such that '(y1) < '(y2) < � � � < '(yn). Then, we build the order
function f(i) = i for any i 2 W and we prove that this function f � Id is a
solution for the instance � of MinLA.

Let e = fi; jg 2 E be an edge with i < j. We estimate a lower bound for
the cost of loading x(e) in order to compute yj. Let us consider the state of
the stack before the LD operation. Since none of the yk with k < j have been
loaded after their creation, the elements of Y appear in the y1; y2; � � � ; yj�1
order in the stack. Moreover, the elements of Q(yk) for 1 < k < j have not
been reloaded so that they are stacked between yk�1 and yk. So, the height
of yi in the stack is at least (j � i� 1)(n6 + 1) +Nj where Nj is the number
of elements of Q(yj) that are '-ordered just before yj. Since x(e) has not
been reloaded after the computation of yi, it is deeper in the stack so that
UCS('; (x(e); yj)) � (f(j)� f(i)� 1)(n6 + 1) +Ni (we use f � Id).

We now estimate the cost of loading all the variables of X(E) [ Q(yj) re-
quired to compute yj. First, the load cost of x(fi; jg) with i > j are dis-
regarded, that is we simply estimate that UCS('; (x(fi; jg); yj)) � 0. Let
x(fi1; jg); x(fi2; jg); � � � be the variables with ik < j that must be loaded, we
assume they are ordered according to the stacking order. Let L be the highest
index, such that there is some elements of Q(yj) deeper than x(fiL; jg) in the
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stack. So we have that

UCS('; (x(fik; jg); yj)) �

8><
>:
(f(j)� f(ik)� 1)n6 if k � L

(f(j)� f(ik))n
6 if k > L

We �nally show that the cost of loading the elements of Q(yj) is at least Ln
6.

If L = 0, it is obvious so that we study the case where L � 1. We consider
the element x of Q(yj) which is the deeper in the stack. As, for each k � L
x(fik; jg) was last used to compute yik , then the L elements yi1 ; � � � ; yiL of Y
are between x and the top of the stack, so that the height of x is, counting
x(fik; jg), at least (L�1)n6+L+N 0 whereN 0 < n6 is the number of elements of
Q(yj) between x(fiL; jg) and the top of the stack. If N

0 = n6�1, then the cost
of loading this element is at least Ln6+L�1 � Ln6. If N 0 < n6�1, there is at
most 2 elements of Q(yj) deeper than x(fiL; jg). The cost of loading these two
elements if at least 2((L� 1)n6+L+N 0) � Ln6. So, by summing these costs,
we have shown that the cost of loading all the variables required to compute yj
is at least (

P
k f(j)�f(ik))n

6 so that UCS(';G) �
P

fi;jg2E jf(j)�f(i)j�n
6.

Now, since UCS(';G) � K and K = (n6 +m+ 1)� B +m2, we obtain that

(
X

fi;jg2E

jf(j)� f(i)j � B)� n6 � (m+ 1)B +m2

Furthermore, m � n2 and B � nm � n3, so

X
fi;jg2E

jf(j)� f(i)j � B �
1

n
+

1

n2
+

1

n3
< 1; 8n > 1

and then
P

fi;jg2E jf(j)� f(i)j � B. f is then a solution to �.

Corollary 10 UCS is NP-hard for a bipartite directed acyclic graph.

4.2 Polynomial cases

4.2.1 In tree

We suppose here that G = (V;A) is an in tree. 8u 2 V , ���(u) is the set of
the ancestors of u and s(u) is the unique successor of u in G. We also denote
by G(u) the subtree of G rooted by u and by r the root of G.

Lemma 11 For any execution order ', another '0 is built with UCS('0; G) �
UCS(';G) and such that all the ancestors of any vertex u 2 V are ordered by
'0 just before u:

8v 2 ���(u); '0(v) 2 f'0(u)� j���(u)j; � � � ; '0(u)� 1g
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Fig. 10. Transforming an order for the UCS score of an in tree

PROOF. Let us suppose that ' is an optimal order which does not ful�ll the
condition expressed by the lemma. Let u be the �rst (according to the order
') vertex of V which does not verify this condition. Let k be the last node
(according to ') such that '(k) < '(u) and k =2 ���(u).

By minimality of '(u), predecessors of k are computed just before k. A new
order '0 will be derived from ' by moving k and ���(k) just after u (�gure 10).
For the sake of clarity, the following sets are de�ned:


1= fv 2 V; '(v) < '(k)� j���(k)jg


2= fv 2 V; '(k) < '(v) < '(u)g


3= fv 2 V; '(u) < '(v)g

Notice that s(u) and s(k) are both belonging to 
3. 8v 2 V , we set �(v) =
UCS('0; (v; s(v)))�UCS('; (v; s(v))). We prove that

P
v2V�frg�(v) � 0. The

value �(v) depends on the 6 following cases:

(1) If v = u, then in the worst case, values from fkg[���(k) are still all stored
between u and the top of the stack at the execution of s(u) following '0.
So, we get �(u) � 1 + j���(k)j.

(2) If v = k, then k is closer to its father for '0, so �(k) � 0.
(3) If v 2 ���(k), then �(v) = 0 because such vertices are moved along with

k.
(4) If v 2 
2, then �(v) = 0 because s(v) 2 
2 [ fug.
(5) If v 2 
3, then �(v) = 0 since 8l 2 
3, '

0(l) = '(l).
(6) If v 2 
1, then if s(v) 2 
1, �(v) = 0. Now, by hypothesis, 
1\�

��(u) 6=
;. So, there exists l 2 
1 with s(l) 2 
2 [ fug. For this value, �(l) =
�1� j���(k)j. We deduce that

P
v2
1 �(v) � �1� j�

��(k)j.

Thus, X
v2V

�(v) = �(u) + �(k) +
X
v2
1

�(v) � 0

Now, let us consider an order ' following the condition of the previous lemma
and a vertex u 2 V with predecessors p1; :::; pq numbered such that '(p1) <
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::: < '(pq). If we denote by jG(u)j the number of vertices of G(u), the cost of
G(u) is :

C(';G(u)) =
qX

j=1

C(';G(pq)) +
qX

j=1

(j � 1)jG(pq)j

This value is minimum i� jG(p1)j � jG(r2)j � :::jG(pq)j. So, we deduce the
following theorem :

Theorem 12 Any order ' following the condition of the previous lemma and
such that 8u 2 V; 8(p1; p2) 2 ��(u)2; '(p1) < '(p2) ) jG(p1)j � jG(p2)j is
optimal.

At each step u 2 V , we have to sort the values jG(v)j; v 2 ��(u). The com-
plexity of the algorithm is then O(n logn).

4.2.2 Out tree

We suppose here that G = (V;A) is a connected out tree (jAj = m = n � 1).
We prove here that the optimal order computed for DSC in Section 3.2.2,
denoted by '�, is also optimal for UCS. We �rst prove an inequality linking
UCS and DSC cost functions

Lemma 13 In an out tree, UCS(') � DSC(')�m for any graph order '.

PROOF. Let us consider the unique LD operation associated to the arc
(u; v) of the out tree. We prove that UCS('; (u; v)) � DSC('; (u; v))� 1. If u
is already on the top of the stack, it means that it is the result of the previous
RD or OP operation. So we have '(v) = '(u) + 1 and v = s1('; u). Then
UCS('; (u; v)) = 0 = DSC('; (u; v))� 1. If u is not on the top of the stack,
v = si(u) for some 1 � i � Æ+(u). The last time that u was on the top of the
stack was when u was created (if i = 1) or just before si�1(u) was computed
(if i > 1). In any case, at least '(si(u))�'(si�1(u))�1 variables were pushed
by OP operations afterwards. So, UCS('; (u; v)) � '(si(u))�'(si�1(u))�1 =
DSC('; (u; v)) � 1. By summing these inequalities, we eventually have that
UCS(') � DSC(')�m.

Theorem 14 For an out tree G, the optimal solution '? of DSC is also op-
timal for UCS. So, the minimum UCS can be computed in O(n) time.

PROOF. We prove in the following that UCS('?; G) = DSC('?; G) � m.
Since '? is optimal for DSC and DSC('?; G) �m is a lower bound for UCS
(from Lemma 13), we conclude that '? is optimal for UCS.
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Fig. 11. A node u with its successors in a tree

Let us consider, as illustrated by Figure 11, a vertex u along with its q = Æ+(u)
successors, denoted by s1 = s1('

?; u); � � � ; sq = sq('
?; u). So, '?(s1) < � � � <

'?(sq). We �nally de�ne Ti; 8i 2 f1; � � � ; ng, the vertices of the subtree whose
root is si. At each step i 2 f1 � � � qg, u is loaded for the computation of si. Vi
then denotes the set of vertices stacked between u and the top of the stack
just before the evaluation of si. The UCS score of this load of u can then be
expressed as UCS('?; (u; si)) = jVij. There are 2 cases:

� If i = 1, by de�nition of '?, '?(s1) = '?(u) + 1. u is already on top of the
stack, so V1 = ;. Therefore, jV1j = 0 = '?(s1)� '?(u)� 1.
� Else, if i > 1, we prove in the following that Vi = Ti�1:

� By de�nition of '?, elements of Ti�1 are computed after the computation
of si�1 and before the load of u for the computation of si, so Ti�1 � Vi.
� Conversely, let k 2 VinTi�1. '?(k) < '?(si�1) because the elements of Ti�1
are numbered from '?(si�1) to '

?(si)� 1. Therefore, there exists l 2 Ti�1
whose computation requires the load of k because by construction all the
elements numbered between si�1 and si are in Ti�1. Since k =2 Ti�1, l
has 2 predecessors, which contradicts the structure of G. In conclusion,
Ti�1 = Vi.

Therefore:

UCS('?; (u; si)) = jTi�1j = '?(si)� '?(si�1)� 1 = DSC('?; (u; si))� 1

By summing these costs, we �nally have that UCS(';G) = DSC(';G)�m,
which completes the proof.
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5 Conclusion

This paper has proposed two combinatorial optimization models for the prob-
lem of minimizing the memory access times for an integrated circuit simula-
tors. The problems are NP-hard even when the depth of the graph is bounded.
However, when the graph describing the circuit is an in tree or an out tree,
the problems are polynomial for both our criteria.

It can be observed that for the two polynomial cases there is an order that
simultaneously minimize both our criteria. Experimentally, some tests have
shown that these criteria are correlated on graphs derived from existing in-
tegrated circuit. Preliminary tests have also shown that a real speed up can
be obtained when the simulation code is based on a good ordering of the
graph. However, in order to integrate our results in a real integrated circuit
simulator, we are going to re�ne our theoretical models in order to deal with
the hierarchical description of the circuits and to model the complete test
procedure.
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