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Abstract

This paper describes two simple mathematical models
for the minimization of the memory access of a cycle-based
simulator. An integrated circuit can be viewed as a directed
acyclic graph G. The problem consists then to build a graph
order on the vertices, compatible with the relation order in-
duced by G, and minimizing the cost function.

We first noticed that, experimentally, the two cost func-
tions we propose are correlated. Since the number of gates
of a circuits may be important, we then focus our study on
simple greedy algorithms. We firstly test two very simple
intuitive strategies and show experimentally that they do
not behave better than a random numbering of the vertices.
Then, we tried a more sophisticated heuristic and we show
that a speed up of near20%may be achieved in real condi-
tions.

1 Introduction

Simulation is a crucial challenge for the design of inte-
grated circuits [4]. In very few words, a cycled-based simu-
lator can be viewed as a computer program that reads a file
that contains the physical description of an integrated circuit
— a VHDL file for example — and produces, in a so-called
compilation phase, anexecutable simulation codethat sim-
ulates the behavior of the circuit. Then, thetest phasecon-
sists in running the executable code on a large number of
benchmarks.

As the executable code that simulates the circuit is run
a very large number of times — some test phases may last
several days — producing an optimized code is of practical
interest to significantly reduce the length of the test phase.
The generated simulation code has a very special structure.
On the one hand, there is no loop nor branching instructions.
On the other hand, there are a great number of instructions
and of variables to deal with in each block of code. Conven-
tional compilers, such asgcc , are not devised to optimize
such a code.

In this paper, an integrated circuit will be seen as a set of
logical gates(such as AND, OR, NOT. . . ) interconnected
through wires represented by a directed acyclic graph (see
figure 1(a) and 1(b)). The value of the output of a gate is
directly derived from its inputs so that the role of the code
simulating the circuit is to sequentially compute the values
of all the wires in order to compute the output. Clearly,
since all the inputs must be calculated in order to compute
the output, the values of the wires must be computed in a
topological order (e.g.[2]) induced by the digraph (see fig-
ure 1(c)). Conversely, any topological order of the digraph
yields a different code so that our problem is to find a topo-
logical order that produces the fastest code.

The main difficulty in building the model is to find an
estimate for the speed of the code. In fact, given the great
number of variables induced by a large integrated circuit,
memory management is of key importance in order to use
different cache levels at best. The two models proposed
here aim at minimizing total memory access time.

In Section 2, we present the model and the two score
functions. We also briefly discuss on their correlation. Sec-
tion 3 is devoted to the presentation of a new heuristic to
solve the practical problem. The validation process is de-
tailed, and we present some experimental results. In conclu-
sion, some insights about further validations are presented,
and the relevance of our work is discussed.

2 Models

Let G(V;A) be a directed acyclic graph representing the
dependence between the variables of the simulation code.
Each vertex ofV is associated with a logical gate or an
input of the logical circuit. An arc(u;v) 2 A corresponds
to a wire. We setn = jVj and m = jAj. 8v 2 V, we
denote byΓ+(v) (resp. Γ�(v)) the set of successors (resp.
predecessors) ofv.
Since any possible code is represented by a numbering of
the nodes ofG, a feasible solutionof the problem is for-
mally described by a bijectionϕ that mapsV to f1; � � � ;ng



and satisfies the constraint8a= (u;v) 2 A;ϕ(u) < ϕ(v). ϕ
is called agraph ordering functionor agraph order.

For example, let us consider the logical circuit pictured
by figure 1(a). The associated graph is pictured by figure
1(b). The figure 1(c) corresponds to a feasible code. The
corresponding graph order isϕ(v1) = 1, ϕ(v2) = 2, ϕ(v3) =
3,ϕ(v4)= 5,ϕ(v5) =6,ϕ(v6)= 4,ϕ(v7) =7 andϕ(v8)= 8.

Given a graph ordering functionϕ, let C (ϕ;u) denote the
total cache access costfor the variableu. This cost repre-
sents the sum of the access costs to search in memory the
variableu. The total cost of the orderϕ on G will then be
defined in the following way:

C (ϕ;G) = ∑
u2V

C (ϕ;u)

The problem is to find an orderϕ that minimizes this ob-
jective function. In the rest of this section, two models are
proposed to evaluate by two different ways the cache access
costsC (ϕ;u). In both these models,C (ϕ;u) is a determin-
istic function that only depends onϕ andu. This hypothesis
can be criticized because cache policies may be randomized
and the real access times depends of numerous other pa-
rameters such as the cache size, the operating system (and
its settings), the memory state when the simulation code is
run, the programs that are concurrently run and many oth-
ers. However, as the simulation code is run many times
— eventually on different machines — we are interested
in minimizing its average running time. So, we are going
to assume thatC (ϕ;u) represents something like a “mean”
cache access cost.

We observe that the expression of the total costC (ϕ;G)
deliberately ignores the time spent at computing the value
of the output of the logical gate once the input are read. In
fact, this time is assumed to be constant. So, the total time
for running the simulation code is the sum of a constant
computation time and a cache access time depending onϕ.
Only this second value is minimized.

In the first model, the estimation ofC (ϕ;u) is based on
the number of instructions executed between to successive
usage of the variableu. The second model is more complex
since it keeps track of all the memory moves.

2.1 Directed Sum Cut

This model is based is based on the observation thatϕ
induces a numbering of the lines of the simulation code
(see Figure 1(c)): ϕ(vi) is the number of the line at
which vi is created. Let us consideru 2 V and the ele-
ments fromΓ+(u)[ fug ordered following the sequences
v0;v1; :::;vjΓ+(v)j with v0 = u and ϕ(v0) < ϕ(v1) < ::: <

ϕ(vjΓ+(v)j). The first access tou is made whenv1 is com-
puted. The cost for readingu is thenf (ϕ(v1)�ϕ(u)). After

this computation, both the variablesuandv1 are at the top of
the memory stack so that whenu is accessed by the second
successorv2 of u, the access cost isf (ϕ(v2)�ϕ(v1)). As a
consequence, the total cost related to the access to variable
u is

C (ϕ;u) =
jΓ+(v)j

∑
i=1

f (ϕ(vi)�ϕ(vi�1))

In order to simplify the model, we assume that the cache
access cost function is simply the identity function. Under
this assumption, we get:

C (ϕ;G) = ∑
u2V

��
max
(u;v)2A

ϕ(v)
�
�ϕ(u)

�

For the example of figure 2, the total DSC cost is equal
to 9. This model is proved in [1] to have the same score
function as the directed version of SUMCUT [3]. For the
following, we will therefore write:

C (ϕ;G) = DSC(ϕ;G)

2.2 Uniform Cost Stack

The UCS model (forUniform Cost Stack) is intended to
represent the load costs of variables which are stored during
the execution of a program. This model is clearly an exten-
sion of the well-known model of Sethi presented in [8] for
the register allocation problems.

The memory is seen as a stack, on which two operators
are available:

� LD (α) moves the valueα stored in the stack to the top
(of the stack). The cost of this operation is proportional
to the number of variables stored betweenα and the
top before the move.

� OP (α1; � � � ;αk) applies a commutative operator to
α1 � � �αk. It is supposed thatα1 � � �αk have been pre-
viously moved to the firstk levels of the stack. The
result is then moved to the top of the stack. Since the
cost of an operation is supposed to be constant, we set
it equal to zero.

For example, let us consider a graphG(V;A) pictured by
figure 2. The ordering function corresponds to the number-
ing of the nodes. Then, we can deduce a list of operations
on the stack to evaluate the vertices of the graph following
the numbering function (see figure 3). The cost of an execu-
tion is then the summation of the costs of the moves: each
of them is associated with an arc(x;y) 2 A.

For our example of figure 3, the arcs are valued with the
corresponding cost. We finally get a total UCS cost of 9.

For general graphs, the code generation associated with
graph orderϕ is more complicated: indeed, if a vertexu2V
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has several predecessors, we have to decide in which order
they will be loaded in the stack beforeu to minimize the
cost. It is proved in [1] that a simple (polynomial) strategy
can be developed to get the best code for a given orderϕ.

2.3 Correlation between DSC and UCS

It is proved in [1] that UCS and DSC are polynomial for
out-trees and coincide in this case. These criteria are not
obviously correlated theoretically for general graph struc-
tures.

Experimentally, we observed a linear correlation of these
two criteria for a great number of graphs generated ran-
domly [7]. For example, figure 4 shows the values of both
scores upon several random orderings of the precedence
graph of an IEEE 64 bit multiplier designed with GenOp-
tim [6].

This point allowed us to develop common heuristics for
the two models, and to test them simultaneously.

3 Practical resolution

The aim of this section is to present a heuristic to build an
efficient graph order and to present some experimental re-
sults: it is proved in [1] that DSC and UCS are both NP-hard
for some particular graph structures. Moreover, the number
of verticesnmay be important for the practical applications.
So, in order to obtain efficient solutions, we must develop
heuristics with a very low complexity (i.e. a complexity of
O(n)). Firstly, we present the heuristic that we developed
for DSC and UCS. Then, we introduce our validation pro-
cess. In the third part, we show experimentally that this
heuristic improves the solution usually implemented.

3.1 Ordering heuristics

Heuristics currently in use in simulators such as CASS
[5] only use a random topological order. At each stepi, this
algorithm numbers a vertex chosen randomly among a set
L(i) composed by the vertices whose predecessors are all
numbered.

The simplest strategies derived from this algorithm are
to bias the choice of the current vertex: letS be the set of
thesource verticesof G, S= fu2V;Γ�(u) = /0g. 8u2V,
the level of a vertexu will be defined as the number of
arcs of the longest path fromS to u. Then, a depth-first
(resp. width-first) strategy consists in choosing a vertex of
maximum (resp.minimum) level.

We tested these two strategies against random, with poor
results. This lead us to develop a new heuristic intended to
take more into account the inner structure of our models,

their main common point being the fact that in both cases
vertices must not be computed too long after the computa-
tion of their predecessor.

For our new heuristic, the candidate setC is composed
of vertices whose numbering is urgent in terms of memory
management. At each stepi 2 f1; � � � ;ng of the algorithm,
vertexu of minimum level is chosen out of the set of candi-
date nodesC�V. The set of the predecessors ofu not yet
numbered is denotedP, and thus there are 2 cases:

if P= /0
ϕ(u) i
i i+1
C C�fug[Γ+(u)

else
C C[P

endif
The candidate setC is initialized with a vertexu 2 S.

The algorithm orders every vertex becauseG is connected.
The second case is treated at most(n� 1) times because
it adds at least a vertex to the candidate set. Furthermore,
at each iteration the predecessors of the chosen vertex are
scanned, so the number of operations is at mostO(2nm).
The complexity isO(n) for practical applications since the
mean degree of the vertices is bounded. An example is
shown in figure 6.

3.2 Validation process

Methods which are usually applied in order to evaluate
the quality of a heuristic are often hard to use on graph or-
dering problems, mainly because it is difficult to find good
lower bounds for the criterion. For this reason, we decided
to compare our results to a random topological order. This
comparison was made possible by the implementation of a
simulation environment described in figure 7.

First a precedence graph is generated from a netlist.
For statistical measure purposes, a pseudo-random graph
generator was also designed. The method is very simple.
The vertices are numbered from 1 ton, and a bounded
number of arcs(u;v) are pseudo-randomly generated. In
order to forbid cycles, the conditionu < v is added for
every arc.

Then, a simple program is generated in order to simulate
the behavior of the circuit whose dependence graph is the
generated graph. For this, we suppose that all the opera-
tors are identical, and the input data is generated randomly.
In other words, our aim is not to simulate the semantic of
the integrated component, but only the memory movements
which occur during its simulation. The simulator is then
compiled with a classical compiler such asgcc , and the
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Figure 6. Evolution of the candidate set during the computation of the graph shown in figure 5

execution duration is measured. The UCS and DSC scores
are also computed from the graph.

Up to a sufficient graph size, two factors prevent to
make a good analysis of the results. On the one hand, the
execution time is too small to be correctly measured by a
computer. On the other hand, the low number of variables
guarantees that all the execution can be made within low
levels of the memory, which are very fast. For these
reasons, our measures were made with graphs containing at
least 103 vertices.
We also used the following method in order to magnify
the memory defaults: the simulator is designed to handle
memory blocks of parameterizable size. During the
experiments which are presented here, this size was within
2000*sizeof(int) and 20000*sizeof(int) .
Moreover, this also reflects the fact that high level simula-
tors often manage heavy data structures.

3.3 Experimental results

Table 1 shows the execution time speed-ups obtained
with our heuristic against a random order for two prece-
dence graphs of operators computed by GenOptim [6]: an
IEEE 64 bit divider and an IEEE 64 bit multiplier. Although
the scoring method is deterministic, the execution time is
actually the mean duration of several executions upon con-
vergence, in order to reduce the side effects of the system
under which the simulator is running. In fact, the variance
can sometimes be more than twice the mean value. The
convergence is empirically reached after 100 executions.
It was empirically observed for a great number of pseudo
random graphs and netlist generated graphs that the new
heuristic improves both UCS and DSC scores with regards
to a random ordering. The results of table 1 are coherent
with these observations. This improvement is also true for
mean execution times.

Divider Multiplier

Vertices 35078 3109
Arcs 76023 7923

UCS random 82252692 1515454
score heuristic 80510609 1329766
Speed up 2% 12%
DSC random 68394731 883191
score heuristic 66682900 751626
Speed up 3% 15%

Execution random 59461 7972
time (ms) heuristic 50037 6431
Speed up 16% 19%

Table 1. Execution time speed up

4 Conclusions

This work has proved that the study of a theoretical
model of memory management can result in a practical
improvement of the processing time required to simulate
and test integrated circuits. Indeed, we have formulated
two combinatorial optimization problems in graphs and we
have proposed a heuristic algorithm to solve them. This
algorithm can be used to generate a simulation code that
efficiently manages the memory. This heuristic algorithm
has been experimentally proved to significantly decrease
the average execution times of the simulation code.

As this study settles the usefulness of a specific algo-
rithm to generate the simulation code, the next step of our
work is to completely integrate our method into a real sim-
ulation environment. Such an environment is clearly more
complex than the simplified experimental platform we have
built for our tests, so we expect we will have to refine
our theoretical model in order to optimize this integration.
Maybe, we will have to improve and modify our heuristic
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Figure 7. Validation process for the models

so that it fits a compiler or an operating system at best. At
the end, the objective of reaching the same speed-up of 15%
for a real simulation code is an exciting challenge.
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Figure 1. Code generation for the simulation
of a circuit
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Figure 3. Evolution of the stack during the
computation of the tree of figure 2
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