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ABSTRACT

Loop-delay is one of the major sources of instability and
Signal-to-Noise-Ratio degradation in continuous-time band-
pass XA modulators. In this paper, we use the modified-z-
transform technique to calculate the value of the additional
feedback coefficient required to compensate for the loop-
delay. It is shown that, in certain conditions, this additional
feedback coefficient can be removed and the loop-delay is
compensated only by modifying the modulator coefficients.
This is illustrated by several examples of loop-delay com-
pensation in 27¢, 4t and 6" order bandpass modulators.

1. INTRODUCTION

Continuous-Time (CT) XA modulators have several advan-
tages compared to their Discrete-Time (DT) counterparts.
CT XA are theoretically capable of operating at higher sam-
pling frequencies for low-voltage supply and with a lower
power consumption than DT £ A modulators.

The main drawback of CT ¥ A modulators is their high
sensitivity to any non-idealities in the feedback pulse. Loop-
delay, &, is one major non-ideality that can significantly
degrade the performance of CT £A modulators [1].

Loop-delay is mainly due to the comparator response-
time and the latch propagation delay in the quantizer. It is
also due to the propagation delay in the digital circuitry re-
quired to perform Dynamic Element Matching (DEM) of
the feedback DAC elements in the case of multi-bit XA
modulators.

In mono-bit XA modulators, SNR degradation due to
loop-delay may be significantly reduced by using a Return-
to-Zero (RZ) feedback signal [2]. In multi-bit CT XA mod-
ulators, we prefer to use Non-Return-to-Zero (NRZ) feed-
back signals in order to take advantage of their reduced sen-
sitivity to clock jitter [3].

Previous work on loop-delay compensation [4], suggested
to add an additional feedback signal a,,. Loop-delay is rather
difficult to estimate since it is signal dependent [5], and it is
also subject to process and temperature variations [1].

Figure 2: Continuous-time bandpass ©A modulators with loop-
delay, ‘%d and feedback compensation coefficient, a;.

In this paper, we propose to put an explicit delay of one
period, & = 1, or half a period, & = 1, in the feedback
loop. This explicit delay should be sufficiently large to in-
clude comparator and digital circuitry delay with enough
margin to include any additional delay due to signal depen-
dency, process or temperature variations.

It will be shown that in bandpass ¥A modulators it is
possible to compensate for the loop-delay without any addi-
tional coefficients.

2. DT-TO-CT TRANSFORMATION
WITH LOOP DELAY

DT XA modulators, Figure 1, are used as a starting point to
design CT XA modulators, Figure 2. This is done by com-
paring their respective loop gain transfer functions G4(z)
and G.(z):

G4(z) = Ge(2)

Ho(o) = @
4(2) = Z[ Hpac(s) (as + He(s)) ]



where Hy(z), Hc(s) and Hpac(s) are the DT loop filter,
the CT loop filter and the feedback DAC transfer functions
respectively.

Whenever non-idealities of the feedback pulse are involved,
this DT-to-CT transformation is usually performed in the
time-domain [1][4], which significantly increases the com-
plexity of the calculations and makes it inappropriate for
design automation. This is mainly due to the fact that tradi-
tional z-tranform techniques cannot deal with signal varia-
tions between 2 sampling instants.

In [6], a general method for DT-to-CT XA transforma-
tion based on the modified-z-transform technique was pre-
sented. It was shown that this method is valid for the dif-
ferent lowpass and bandpass XA with rectangular and non-
rectangular feedback DAC signals. In this paper, we show
that loop-delay, %d can be modeled using the modified-z-
transform technique, and that this technique can also be
used to calculate the loop-delay compensation coefficient,
ag.

In Figure 3(a) and 3(b), we show a NRZ feedback DAC
pulse shape in the ideal case and with loop-delay, respec-
tively. Assuming 0 < tTd < 1, The loop gain transfer func-
tion of a CT XA modulator with a delayed feedback pulse
can then be written in the following form:
1—e™ ™ g

o (am+Hc(s))] @

Ge(z) = z[

Using the modified-z-transform we get:

az + Hc(s)]

Ge(e) =(1=57) Zn | ©
wherem = 1 — %. The modified-z-transform can be di-
rectly calculated from the Laplace representation using the
residue theorem [7]. This method is systematic and con-
venient for design automation. Equation (3) can then be
written in the following from:

mTs
Ge(z) = (1—271) Z Residues of 22 +fc(s) ze_ o

ag+He(s) ap;

- - - (4)
Using equation (4), we can get a general expression for the
loop gain transfer function of an even order CT £ A modu-
lator with loop-delay:

p; =polesof

-1
Cep 2" + Oy 2" e 2+ g

2(22 — 2 cos(gey )z +1)...(22 -2 cos(gC% )z+1)

®)
A similar expression of an even order DT XA loop gain
can be described by the following relation:

Ge(z) =

d, 2"t ad, 2" a2+ g
(22=(2—-94,2)z+1)...(22=-(2—- gd%Q)z +1)
(6)
From equations (5) and (6) we notice that the loop-delay
has increased by one the order of both the numerator and the

Gd(z) =
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Figure 3: (a) Ideal Feedback Pulse. (b) Feedback Pulse with
loop-delay 4.

denominator of the CT XA loop gain. It is then impossible
to perform equivalence between the CT and the DT loop
gain transfer functions since their orders are not identical.

3. THE FEEDBACK COMPENSATION
COEFFICIENT Ax

To reduce the order of the CT X A loop gain we will find an
expression for the compensation coefficient, a, in function
of the CT loop filter coefficients, a.,, . .., a., such that:

t
aco(aclz---:a%:aw:%)zo (7)

Using equation (7), we can find an expression for the com-
pensation coefficient, a,, in function of the CT XA coeffi-
cients and the loop-delay:

tq
T) (8)

By substitution from equation(8) into equation (5), we will

get an expression for the CT loop gain, G.(z), having the
same order as the DT loop gain, G4(z). Comparing the de-
nominators, we can determine the local resonator feedback
coefficients:

2 :f(acl""7acn’

ge; = cos” ' (1—g3,) ©)
Comparing the numerators of G.(z) and G4(z) and using
the same matrix representation described in [6], we can get
the CT loop filter coefficients in function of the DT loop
filter coefficients and the loop-delay .

tq
Qcy :f(adla"':adnaf)

(10)

t

Qe = f(a’dla"-,adna Td)
Now that we have all the CT loop filter coefficients in func-
tion of the DT loop filter coefficients and the loop-delay,
we can substitute from equation (10) into equation (8) to
get the feedback compensation coefficient in function of the
DT loop filter coefficients and the loop-delay:
tq
T)
All the calculations described in this section have been per-
formed using a symbolic mathematical tool MAPLE [9]. In
the following section, we will see some design examples of
CT XA modulators with loop-delay compensation.

am:f(adlv"'yadnv (11)
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Figure 4: The feedback compensation coefficient, a,, in
function of the loop-delay, tTd for bandpass XA modulators

having a, = 0 when & = 1.

4. DESIGN EXAMPLES

Although the expressions developed in the previous section
are valid for both lowpass and bandpass XA modulators,
here we will only focus on examples of bandpass modula-
tors. An expression for the compensation coefficient, a, in
the case of a 2" order modulator can be given by:

ag = —adlsin(g% —a%[l—l-cos(g g%d)]
Similar expressions of the CT compensation coefficient, a,
in function of the loop-delay, tTd and the DT XA coeffi-
cients, ag,, . ..,aq,, have also been found for 4** and 6**
order modulators. In Figure 4, we use these relations to plot
the compensation coefficient in function of the loop-delay
for different orders of CT bandpass XA modulators having
their center frequency, fo = 0.25f.

From Figure 4, we notice that for a loop-delay, tTd =1,
the value of the compensation coefficient, a, = 0. This
means that if we explicitly put one period delay in the feed-
back loop of a bandpass CT XA modulator, it is possible
to compensate for this delay without any additional feed-
back coefficient. The coefficients of the DT, CT without
delay and CT with one period delay modulators are listed
in tables 1, 2 and 3 for the 27¢, 4t* and 6" order bandpass
modulators respectively. The DT coefficients were obtained
using Richard Schreier’s XA Toolbox [8].

The compensation coefficient can also be equal to zero
for other values of the center frequency, fo. A 27¢ order
modulator with fo = 0.3f, and a 4t* order modulator with
fo = 0.3125f,, have a compensation coefficient, a, = 0,
for a loop-delay tTd = % The modulator coefficients corre-
sponding to these cases are listed in tables 4 and 5 respec-
tively. In order to validate the results of these calculations,
we have simulated all the CT XA modulators presented in
this section and we have compared their performances with
those of the original DT modulators. The signal-to-noise ra-
tios of the 274, 4t* and 6* modulators are plotted in figures
6, 7 and 8 respectively.
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Figure 5: The feedback compensation coefficient, a,, in
function of the loop-delay, &, for bandpass ©A modulators
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having a, = 0 when # = 3.

Table 1: Second order bandpass A coefficients (f = 0.25fs).

| [ DT JCT&=0]CT(%=1)]
a; || +0.6667 [ +0.5236 —0.5236
as || —0.6667 | —0.8225 —0.8225
g12 || +2.0000 | +2.4674 +2.4674

Table 2: Fourth order bandpass S A coefficients ( = 0.25f5).

| [ DT [CcT&=0]CT(k=1)]
a; || +0.5585 [ +0.4927 —0.5544
az || —0.5585 | —0.6526 —0.9922
as || —0.0079 | —0.2777 —0.2543
as || —0.2083 | —0.4045 +0.4411
g2 || +1.9858 | +2.4451 +2.4451
922 || +2.0142 | +2.4898 +2.4898

Table 3: Sixth order bandpass ZA coefficients (% = 0.25f5).

| [ DT J[cT&E=0]CT(k=1)]
a1 || +0.5559 [ +0.5210 —0.6240
as || —0.5559 | —0.6866 —1.0640
as || —0.0211 | —0.3417 —0.2762
as || —0.2219 | —0.4789 +0.6247
as || —0.0433 | —0.0706 +0.1311
ag || +0.0525 | +0.1750 +0.1246
g12 || +1.9620 | +2.4081 +2.4081
922 || +2.0000 | +2.4674 +2.4674
g32 || +2.0380 | +2.5275 +2.5275

From these figures, we can see that there is very lit-
tle difference between the performance of the original DT
modulators and the performance of the CT modulators hav-
ing explicit loop-delay and no compensation coefficient.



Table 4: Second order bandpass A coefficients (f = 0.31s).

| [ DT [CT(F=0[CT(G=3)]
a; || +0.6048 [ +0.3339 —0.3120
as || —0.8727 | —1.1844 —1.2052
g12 || +2.6180 | +3.5530 +3.5530
Table 5: Fourth order bandpass YA coefficients (ff =
0.3125f5).
| || DT [CT(#=0[CT(F=3)]
ay [[ +0.5561 [ +0.3584 —0.3571
as || —0.8742 | —1.1840 —1.4416
as || —0.0409 | —0.4587 —0.4043
as || —0.1200 | —0.3564 +0.5564
g2 || +2.7523 |  +3.8276 +3.8276
g2> || +2.7784 | +3.8831 +3.8831

5. CONCLUSION

In this paper, we have presented a method to calculate the
loop-delay compensation coefficients in CT XA modula-
tors. Implementing this method, based on the modified-z-
transform technique, in a symbolic mathematical tool has
permitted us to study carefully the loop-delay compensation
coefficient. For bandpass modulators, we have proposed to
add an explicit delay of 1 or 1/2 period and to find the cen-
ter frequency and the CT XA coefficients that would not
require any compensation coefficients. Several examples of
high order bandpass modulators have been given to validate
the concept.
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Figure 6: Second order bandpass CRFF (OSR=128).
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