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ABSTRACT

The CAIRO+ tool allows the designer of analog circuits
to automate his flow, and permits the reuse. However,
it doesn’t prevent him from controlling the generation.
CAIRO+ is based on a library of smart generators which
can handle the analog specific constraints, related to the
electrical synthesis or to the design rules for a reliable
layout. Here we present what are these device genera-
tors and how they can be used in a complex design au-
tomation. The example of a simple OTA using some of
the available generators is shown.
Key Words : Analog design automation, Analog circuit
synthesis, Layout generation.

1. INTRODUCTION

Since the review given in [1], many other studies have shown
the increasing part of design automation in the design of
mixed-signal integrated systems on chip [2, 3, 4, 5, 6, 7, 8].
Although there has been a lot of improvement in the topic
of analog CAD, analog designers are still reluctant to use
design automation, one of the problem being that there are
always some steps of the design that they can not control.
Today, migrating an existing function to a new set of spec-
ification for the same process, or to a new process with the
same or new specifications is considered as a major but very
difficult issue. Yet, with the growing part of analog circuitry
in manufactured chip, it is compulsory to find how to reuse
existing design and knowledge, which means that designers
are required to define and use some kind of analog libraries
of commonly used analog functions [9]. However, specifi-
cation and technology migration of an analog circuit is still
considered as requiring a lot of designer’s tuning.
Here we present both the CAIRO+ language to design ana-
log function generators as well as a library of devices, which
consist of matched basic components. With such a language
and generators at his disposal, we show that the analog de-
signer is able to create complex hierarchical function gen-
erators. Although the proposed method greatly facilitates
the design by automating it, it still provides the designer the
entire control of the circuit generation. We will also explain
how CAIRO+ generators can be independent of the techno-

logical process thus enabling process and specification mi-
gration.
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Figure 1: CAIRO+ Module generator featuring specifica-
tion and technology migration

2. ANALOG IC DESIGN FLOW

2.1. State of the Art

Different approaches to analog design of integrated circuits
agree that layout information has to be taken into account
as soon as possible in the electrical sizing phase of the cir-
cuit [1, 10]. In order to meet this goal various flows [4, 5,
6, 7, 8] as well as various parasitics models(i.e. knowledge
based estimation, layout generation with or without exter-
nal extractor, look up tables of pre-characterized devices)
are used. CAIRO+ allows the design to be as fast as layout-
aware flows [11, 12, 6, 4, 7, 8] since the layout data are not
given by any external extractor, but they are measured while
generating the layout. Yet the design can be as accurate as
the layout-inclusive [5] flow seeing that the layout genera-
tion is actually performed in the sizing loops.



2.2. The Proposed Flow

In the CAIRO+ approach, the circuit is described by a func-
tional tree. The nodes of this tree are called modules and are
created by module generators (Fig. 1). Therefore a module
is an instance of the hierarchical representation of the cir-
cuit and it can instantiate other modules. The leaf cell of the
module tree is called a device.
A module is based on three hierarchical templates : the de-
scription of the electrical topology (the netlist template),
a list of specifications (the specification template) and the
physical relative placement of modules (the layout template).
The netlist template, as shown on Fig 2-a., is the unsized
netlist of the design, described in a hierarchical way. Let us
note that a module generator is dedicated to a fixed electrical
topology.
In order to predict parasitics resulting from layout, we have
chosen an approach using layout templates (Fig 2-b.) with
layout device generators. The description of the relative
placement of instances inside a module is described by a
container tree. A container is composed of abutted contain-
ers placed besides each other in a specific order. There ex-
ists vertical and horizontal containers. The leaf cell of the
container tree corresponds to a device.
Devices are elementary components such as folded MOS
transistors, capacitors and resistances but also sets of ele-
mentary components that have to be matched (i.e. differen-
tial pair, current mirrors, capacitor matrices, matched resis-
tances [13, 14]).
The CAIRO+ module tree, used to represent both the elec-
trical view of the circuit (sized netlist) and the physical view
(layout), allows strong interaction between electrical sizing
and layout realization.
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Figure 2: Netlist and layout templates for a simple OTA

The first step of the CAIRO+ flow (Fig 1) consists in cre-
ating both the electrical and physical templates. Then, the
second step is the design space exploration [15, 16]. Here
we check that the specifications can be reached, and if pos-
sible, we compute parameters of the sub-level generators

to meet them. Once the parameter values are obtained, we
proceed to the third step which shapes the circuit layout. In
fact, as we will explain in section 3.3, a sized netlist can be
realized by several layouts with different shapes. Therefore,
the shaping step consists in calculating all the geometrical
dimensions that can be taken by a module. Each of these
shapes involve different parasitics, and moreover, different
performances. After the shape selection by a geometrical
constraint, the layout engine also measures the parasitics,
with exact knowledge of the device layouts. The fourth step
achieves the circuit placement and routing.
Although this flow goes until the layout generation, para-
sitics are not computed by an external extractor. The syn-
thesis loop is significantly improved by that, and this flow
can take place at the frontier of a layout-aware and a layout-
inclusive design flow [6].

3. DEVICE GENERATORS

3.1. Introduction

We have seen that the proposed design flow of an analog
circuit is based on an existing device library which is made
up of both electrical and physical views. These devices are
not necessarily electrical basic elements such as transistor,
capacitance or resistor [17, 13, 14]. They can also be several
elements tied by strong matching constraints, that can only
be respected by a dedicated layout [14, 18, 19]. Typically,
a differential pair is a device. They are critical components
since each of the presented hierarchical steps of the flow is
based on device generators. In the following we will explain
how the latter handle electrical sizing, shaping and layout
generation.

3.2. Electrical Sizing

The proposed method allows the designer to keep control
on the sizing of the circuit. Device generators integrate a
set of functions which return the electrical characteristics of
a device. Then, by questioning the generator on the value
of these parameters, the designer has the possibility to write
a synthesis procedure, based on his own expertise of the
circuit. There are two kinds of functions:

direct functions return the electrical performances of a de-
vice. The arguments taken are the biasing voltages
and the dimensions of the devices

inverse functions that are able to return a dimension or a
biasing voltage in order to satisfy a constraint on the
circuit

The electrical synthesis step is seen as a negotiation between
two levels of the module hierarchy. After specifying a num-
ber of constraints on the generator’s parameters, the higher
level can ask for the value of the missing parameters. An
exception request is threw when the set of specifications is



unrealizable. Caught by the upper level, it is decoded to
know which parameter failed. For example the width of a
transistor can be computed for a given drain current, length
and bias voltages. If the drain current is too high and conse-
quently the largest drawable width cannot drive it, the upper
level is informed. The latter may try another configuration.
As an example of useful built-in functions provided by CAIRO+
to the designer, the list of valid questions for the MOS tran-
sistor device is given in table 1. To calculate the width for
a given drain current, the designer may fix the gate-source
voltageVgs or the overdrive voltageVOD = Vgs − VT ,
whereVT is the threshold voltage. A function that computes
bothW andVgs to achieveIds andVOD is implemented in
the MOS transistor device generator.

dimensions
W(L,IDS,bias) gate width
L(W,IDS,bias) gate length

biasing voltage
VGS(VOD,W,L,bias) gate-source voltage

static parameters
VTH(W,L,bias) threshold voltage

VDSAT(W,L,bias) saturation voltage
IDS(W,L,bias) drain current
Qx(W,L,bias) charge at node x

STH(W,L,bias) thermal noise density
S1F(W,L,bias) 1

f noise density
small signal parameters

GM(W,L,bias) gate transconductance
GDS(W,L,bias) drain conductance
GMB(W,L,bias) substrate transconductance
Cxy(W,L,bias) capacitor between nodes x et y

Table 1: Questions to the MOS transistor device generator

From the designer’s point of view, handling the device gen-
erator is process independent. The same model’s equations
than those used in electrical simulator (BSIM3v3) have been
implemented in our device generators.
Parasitics elements are accurately estimated during this step
since the value of all geometrical informations, set up by
the layout generation step, are known. For a transistor, the
number of fingers, the diffusion area and perimeter are taken
into account during the synthesis process.

3.3. Shaping and Layout Generation

One of the main difficulty in analog layout automation is to
manage the wide range of aspect ratios that can be presented
by a given netlist topology. In fact, the layout area of a
specific analog function can easily double between two sets
of specifications. Of course, migrating this function on a
new process leads to the same problem.
The CAIRO+ device generators try to give an answer to that
problem by having several layout aspect ratio for electrical
known specifications on a target process. For example, a

transistor with a gate widthW can be drawn asN paral-
lel transistors with a gate widthWf = W/N while Wf

respects the minimal width of the process. This technique
is well known as transistor folding [14, 18, 19, 13]. These
different aspect ratios are represented by a shape function
which gives for example the width as function of the height,
as presented on Fig 3. Thanks to that, the designer can ob-
tain a compact layout [20].
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Figure 3: Shape function of a MOS inter-digitate differen-
tial pair device generator

The device generators achieve this shaping by building the
layout as an abutment of simple patterns. If we consider a
folded MOS transistor, patterns would be each of the ”little”
parallel transistors, also called transistor fingers. If we now
consider a capacitor matrix, pattern would be a unit capac-
itor. Thus, the placement of these patterns gives the global
layout aspect ratio. Fig. 4 shows two different aspect ratios
-that means different patterns and different placements- of
the same transistor, using respectively two and four patterns.

Pattern 1 Pattern 2

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Figure 4: Pattern placement of a MOS transistor device gen-
erator

Finally, all device shapes are stored in the shape function
which can be bottom-up propagated through the hierarchy
to compute higher level module shape functions [20]. Thus,



the whole design layout can also present several shapes. Al-
though the final shape is typically selected by a geometrical
constraint, the designer can still impose the shape he wants
for one or several devices.

3.3.1. Pattern Generators

Although patterns are not visible from the circuit designer’s
point of view, presenting them leads to a good understand-
ing of the process migration mechanism. Pattern generators
are very complex generators since they enclose all the lay-
out expertise of the design. They are required to be respect-
ful of the process rules, and to guaranty maximal accuracy
for a reliable analog layout. We aim to clearly divide this
complex achievement into simpler tasks. The idea is that
a pattern is composed by rectangles and each rectangle can
be defined by five variables : X, Y, DX, DY and the Layer.
With this simple set of variables, the whole pattern layout
can be drawn. But we have to define the interface between
the target process rules, which is a very complex set of rules,
and the pattern’s simple set of variables. This is done by a
set of functions called MAPI. However, MAPI has another
issue which consists in separating patterns -and thus device-
and the target process, which is a key factor to perform tech-
nology migration.
Let’s see how MAPI compute the X, Y, DX, DY, and Layer
variables. First, we have to understand two things :

1. Each pattern generator has his own MAPI at his dis-
posal. That means that the MAPI is aware of the pat-
tern drawing.

2. Pattern generators are device specific. That implies
that they are designed to be used in a known instan-
tiating environment. For example, a pattern knows
which kind of other pattern is abutted to it.

Therefore, MAPI knows exactly the process rules it has to
be aware of. Other computing such as maximums, or sums
in order to get X, Y, DX, DY and Layer of each rectangle
are also achieved by MAPI.

3.3.2. Process Information Access

All along the netlist and layout generation, data about the
process are required. As patterns have their MAPI, devices
have a set of functions, called DAPI, which gives the de-
vice direct access to the process data. For example, it is
compulsory to get theWmin related to the target process,
which is involved in both electrical synthesis and shaping
computation. However, this strategy relies upon a conve-
nient description of the target process. Therefore, we have
introduced theDevice Technological Rulesfiles (DTR) to
describe each available process. The syntax of this file has
3 purposes :

1. Making a census of all rules which may be involved,
for available processes.

2. Being easily updated .

3. Being able to express that a specific rule is not in-
volved in the target process.

Figure 5 shows the finally involved hierarchy in a device
generator.

MAPI
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Figure 5: Internal hierarchy of a device

3.3.3. Parasitics Calculation

In order to perform an electrical and layout co-design, it
is compulsory to communicate parasitics values resulting
from the layout to the electrical sizing engine. To achieve
this, the pattern generators return geometrical data corre-
sponding to the layout they draw. For example, the transis-
tor device is informed about the W, L and diffusion dimen-
sions of each finger. Then, the device takes into account the
data received from each of its patterns to compute global de-
vice data. Therefore, the design space explorer has a back-
annotated netlist at his disposal, resulting from actual layout
and the electrical models can estimate the resulting perfor-
mances. This enables to adjust the sizing parameters to meet
the specifications (parasitics loop between step 2 and step 4
in Fig. 1).

4. USING CAIRO+

Let’s now present how the designer actually uses our tool.
Since CAIRO+ is a knowledge based method, it aims to
capture the designer’s expertise. What is proposed is then
a method together with a language which help him in de-
scribing his circuit. The method imposes that each node of
the hierarchy, that means each module, is defined by four
functions. One per step presented in section 2.2:

• CAIRO CREATE : Template creation.

• CAIRO GET PARAM : Design Space Exploration, Elec-
trical synthesis procedure.

• CAIRO SHAPE: Shape Function Computation.

• CAIRO LAYOUT : Placement and routing.

All of these functions have to be written by the designer in
a hierarchical way. For example, the shaping function con-
sists only in calling lower level bloc shaping function. Then
CAIRO+ achieves the computation to get the shape function



of the considered bloc. Leaf functions of this hierarchy are
the device generator functions. As explained is Section 3,
another CAIRO+ issue is to provide this device library.
Concerning the CAIRO+ language, a set of user functions
is provided to help the designer in writing each of the four
module functions. Specific functions exist to create the tem-
plates, to tradeoff electrical parameters and target perfor-
mances with lower levels or to achieve a procedural and
shape independent routing. Here are some of the provided
functions :

• CREATION :

– CAIRO CREATEallows instantiation of lower lev-
els (netlist template).

– CAIRO LOGICAL IO : allows the designer to de-
scribe the interface of the netlist template.

– CAIRO CONNECT :used to describe internal con-
nections of the netlist.

– CAIRO CONTAINER :used to stack the sub-containers
given as parameters in the new created one (lay-
out template).

• ELECTRICAL SIZING :

– CAIRO SET PARAM : used to specify the value of
a sizing parameter to the electrical sizing proce-
dure belonging to a child module.

– CAIRO GET PARAM : used to ask the value of a
parameter belonging to a child module.

– CAIRO TRY GET VALUE : used to ask the value of
a constraint or a biasing data from the father
level.

• P & R :

– CAIRO PHCON : places a physical connector at
given coordinates or on a named point.

– CAIRO WIREx : draws a specified layer and width
metal line composed by x segments from a named
point to another. This function computes the
parasitic capacitance which is introduced by rout-
ing.

When the design is entirely described in the CAIRO+ lan-
guage, a C main function starts the flow by activating each
step. At the end of the direct flow, CAIRO+ outputs a gds
layout and a layout annotated sized netlist. It is up to the
designer to decide if he wants to introduce a loop to reinject
the parasitics involved in the electrical sizing step (Fig. 1).
With this helpful context, the designer is asked to describe
his design expertise for a given netlist topology. On one
hand, that means that he chooses the hierarchy that suits his
wishes in terms of matching or routing complexity. On the
other hand, he has to give equations to size his design, as he
would have written them down on a paper. This expertise

should not depend on the design performances or on the
target process. That is why CAIRO+ IPs can be reused since
CAIRO+ handles the process dependent informations.

5. APPLICATION : SIMPLE OTA

Here is the example of the generation of a simple OTA. This
one is represented by a single-level hierarchy. In fact, the
OTA module instantiates a current-mirror device, a differ-
ential pair device and a transistor device (Fig. 2). In this
example, we show what happens when the unity frequency
FT changes. This specification affects the device param-
eters which are computed by the OTA generator. In both
examples, the geometrical constraint is given byDYmax =
300µm. Figure 6 shows the module specifications, gen-
erated layout and eldo simulation of the CAIRO+ layout
aware netlist forFT = 65MHz. Figure 7 present the re-
sults for theFT = 130MHz case. Layout have of course
different aspect ratio and electrical simulations are in good
agreement with specifications.

6. CONCLUSION

CAIRO+ provides a method, a language and a library of
device generators which allow the automation of analog cir-
cuit design. In this flow, the parasitics resulting from the
layout are measured while drawing the layout. This al-
lows to introduce a very fast sizing loop including parasitics,
since all steps are achieved by CAIRO+. Moreover, the
layout generation engine allows the designer to get a com-
pact layout on different target technologies, by performing
a shaping step. However, the designer keeps control of ev-
ery step of the generation seeing that CAIRO+ follows a
knowledge-based approach.
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