
A Layout-Educated Analog Design Flow

Vincent Bourguet, Laurent De Lamarre and Marie-Minerve Lou¨erat
University of Paris VI, LIP6-ASIM Laboratory,

4, Place Jussieu, 75252 Paris, France
Vincent.Bourguet@lip6.fr

Abstract— In this paper, we present a new flow for analog de-
sign automation. It is an electrical and layout co-design flow which
is based on the precise knowledge of the process electrical models
and layout. This flow is as fast as a layout-aware flow since the
layout informations aren’t given by an external extractor, but are
measured while generating the layout. But it is also as accurate
as a layout-inclusive flow seeing that it goes until the layout gen-
eration. It is so a layout-educated flow which, by a strong separa-
tion from the target process, allows the technology migration for
commonly used designs. All the expertise of the proposed flow is
contained in the device generators, which are the leaf cells of the
flow hierarchy

I. I

Many papers state the increasing part of analog circuitry re-
quired in the design of mixed-signal integrated systems on
chip [1]. Although there has been a lot of improvement in the
topic of analog CAD, analog designers are still reluctant to use
design automation, since there are always some steps of the
design that they can not control. Today, migrating an existing
function to a new set of specification for the same process, or
to a new process with the same or new specifications is con-
sidered as a very difficult and major issue. Furthermore, with
the growing part of analog circuitry in manufactured chip, it
is compulsory to find how to reuse existing design and knowl-
edge, which means that designers are required to define and
use some kind of analog libraries of commonly used analog
functions [2]. However, specification and technology migra-
tion of an analog circuit is still considered as requiring a lot of
designer’s tuning.

Here we present simple analog function generators, called de-
vices. With a library of such generators at his disposal, the
analog designer is able to create complex hierarchical function
generators. Although these devices greatly facilitate the design
by automating it, they still provide the designer the entire con-
trol of the circuit generation. We will also explain how these
generators can be independent of the technological process thus
enabling process and specification migration.

Specification
values

Geometrical
constraint

Process design
rules

Devices
Library of

Template
Specs

Template
Netlist

Template
Layout

Electrical
Synthesis

Shaping,
P&R

Sized Nelist
Annotated

Layout

BSIM3 models

Fig. 1. The proposed design flow

II. A IC D F

A. State of the Art

Studies on analog design of integrated circuits agree that lay-
out information has to be taken into account as soon as possi-
ble in the electrical sizing phase of the circuit [1], [3]. Differ-
ent approaches are used to meet this goal. They differ by the
way they estimate the parasitics resulting from the layout (i.e.
knowledge based estimation, layout generation with or without
external extractor, look up tables of pre-characterized devices)
and by the way they take advantage of the parasitics informa-
tion in the electrical sizing phase. Our device generators allow
the design to be as fast as layout-aware flows [4]–[6] since the
layout informations aren’t given by an external extractor, but
are measured while generating the layout. Meanwhile, it can
be as accurate as the layout-inclusive [7] flow seeing that the
layout generation is actually performed in the sizing loops.

B. The Proposed Flow

According to our flow (fig. 1), the circuit is described by a func-
tional tree. The nodes of this tree are called modules and are
created by module generators. A module is based on two hier-
archical templates : an electrical one (the netlist template) and
a physical one (the layout template). The netlist template, as
shown on fig 2-a., is the unsized netlist of the design, described
in a hierarchical way. The leaf cells of this electrical tree are
the devices. All electrical pertinent components are enclosed
in the devices. In order to predict parasitics resulting from lay-
out, we have chosen an approach using layout templates. The
relative placement of instances inside a module is described by
a container tree. A container defines the layout template of the
module and is composed of abutted containers placed besides
each other in a specific order (fig 2-b). There exists vertical and
horizontal containers. The leaf cells of the container tree cor-
respond to the devices. Otherwise, there is an injective relation
between the electrical tree and the physical tree. For each node
in the electrical tree, there exists a corresponding container in
the physical one, but there could be more containers than mod-
ule since the containers are used to describe the layout topology
inside a single module.

The first step of the proposed design flow consists in creating
both the electrical and physical templates. Then, the second
step is the design space exploration [8], [9]. Here we check
that the specifications can be reached, and if possible, we com-
pute parameters of the sub-level generators to meet them. To
achieve this computation, we define a third template containing
a list of selected parameters required to perform the electrical
sizing. This template is called the specification template (cf.
section III.-B.). Once the parameter values are obtained, we
can achieve the third step which shapes the circuit layout. In
fact, as we will explain in section III.-C., a design may present

OTA Netlist Template

Transistor Device

Current Mirror Device

Differential Pair Device

a.

Transistor Device Container

OTA Container

Current Mirror Device Container

Differential Pair Device Container

b.

Fig. 2. Both netlist and layout templates for a simple OTA

several layouts with different shapes. Therefore, the shaping
step consists in calculating all the geometrical dimensions that
can be taken by a module. Each of these shapes involve dif-
ferent parasitics, and moreover, different performances. In or-
der to take that into account, the layout of every device shape
is generated. However, while drawing, the layout engine also
measures the parasitics. After the shape selection by a geomet-
rical constraint, the fourth step achieves the circuit placement
and routing.

Although our proposed design flow goes until the layout gener-
ation, parasitics aren’t computed by an external extractor. The
synthesis loop is significantly improved by that, and this flow
can take place at the frontier of a layout-aware and a layout-
inclusive design flow.

III. D W D G

A. Introduction

We have seen that the proposed design flow of an analog circuit
is based on an existing library of devices which are made up of
both electrical and physical views. These devices are not nec-
essarily electrical basic elements such as transistor, capacitance
or resistor. They can also be several elements tied by strong
matching constraints, that can only be respected by a dedicated
layout [10]–[12]. Typically, a differential pair is a device.

B. Electrical Sizing

The proposed method allows the designer to keep control on
the sizing of the circuit. Our device generators integrate a set
of functions which return the electrical characteristics of a de-
vice. Then by questioning the generator on the value of these
parameters, the designer has the possibility to write a synthesis
procedure, based on his own expertise of the circuit. There are
two kinds of functions:

direct functions return the electrical performances of a de-
vice. The arguments taken are the biasing voltages and
the dimensions of the devices

inverse functions that are able to return a dimension or a bi-
asing voltage in order to satisfy a constraint on the circuit

The electrical synthesis step is seen as a negotiation between
two levels of the module hierarchy. After specifying a number
of constraints on the generator’s parameters, the higher level
can ask for the value of the missing parameters. An exception

request is threw when the set of specifications is unrealizable.
Caught by the upper level, it is decoded to know which pa-
rameter failed. For example the width of a transistor can be
computed for a given drain current, length and bias voltages. If
the drain current is too high and consequently the largest draw-
able width cannot conduct it, the upper level is informed. The
latter may try another configuration. The list of valid questions
for the transistor is given in table 1. To calculate the width for
a given drain current, the designer may fix the gate-source volt-
ageVgs or the overdrive voltageVOD = Vgs − VT , whereVT

is the threshold voltage. A function that computes bothW and
Vgs to achieveIds andVOD is implemented in the transistor gen-
erator. Our library eases the task of the designer by proposing
some useful built-in functions.

dimensions
W gate width
L gate length

biasing voltage
VGS gate-source voltage

static parameters
VTH threshold voltage

VDSAT saturation voltage
IDS drain current
Qx charge at node x

STH thermal noise density
S1F 1

f noise density
small signal parameters

GM gate transconductance
GDS drain conductance
GMB substrate transconductance
Cxy capacitor between nodes x et y

TABLE I

Valid questions for the transistor generator

From the designer’s point of view, the manipulation of the basic
components is process independent. The same model’s equa-
tions than those used in electrical simulator (BSIM3v3) have
been implemented in our device generators. We can directly
exploit the values of the technological parameter file, to calcu-
late accurately the electrical characteristics of a component. As
we can see in figure 3, for the gate transconductance, the pa-
rameter’s values calculated by our functions match the results
of the electrical simulator.

0

2e-05

4e-05

6e-05

8e-05

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

 0 0.5 1 1.5 2 2.5 3 3.5

G
m

(m
ho

)

Vds(V)

built-in gm function
ELDO

Fig. 3. Gate Transconductance computation compared to Eldo results

Parasitics elements are accurately estimated during this step
since it gets the value of all geometrical informations, set by
the layout generation step. For a transistor, the number of fin-
gers, the diffusion area and perimeter are taken into account
during the synthesis process.

C. Shaping and Layout Generation

One of the main difficulties in analog layout automation is to
manage the wide range of aspect ratios that can be presented by
a same design. In fact, as illustrated on fig 4, the layout area of
a specific analog function can easily double between two sets of
specifications. On that figure, two layouts of a differential pair
are shown. The first results from a desiredIds = 0.1mA, the
second fromIds = 0.2mA. Of course, migrating this function
on a new process leads to the same problem.

Ids = 0.2 mAIds = 0.1 mA

Fig. 4. Inter-digitated differential pair layout from two differentIds

The device generator presented here tries to give an answer to
that problem by having several layout aspect ratio for electri-
cal known specifications on a target process. For example, a
transistor with a gate widthW can be drawn asM parallel tran-
sistors with a gate widthWf = W/M while Wf respects the
minimal width of the process. This technique is well known as
transistor folding [10]–[12]. These different aspect ratios are
represented by a shape function which gives for example the
width as function of the height, as presented on fig 5. Unit is
theλ with λ = 0.5µm. Thanks to that, the designer can obtain a
compact layout.

M = 2

M = 3

M = 4

M = 5

M = 8

M = 7

M = 6

M = 1

Fig. 5. Shape function of an inter-digitated differential pair

The devices achieve this shaping by building the layout as an

abutment of simple patterns. If we consider a folded transis-
tor, patterns would be each of the ”little” parallel transistors,
also called transistor fingers. If we now consider a capacitor
matrix, pattern would be a unit capacitor. Thus, the placement
of these patterns gives the global layout aspect ratio. Fig. 6
shows two different aspect ratios -that means two different pat-
tern placements- of the same transistor, using respectively two
and four patterns.

Finally, all device shapes are stored in the shape function which
can be bottom-up propagated through the hierarchy to compute
higher level modules shape functions. Thus, the whole design
layout can also present several shapes. Although the final shape
is typically selected by a geometrical constraint, the designer
still can impose the shape he wants for one or several devices.

1) Pattern Generators:The pattern generators are very com-
plex generators since they enclose all the layout expertise of
the design. Moreover, they are required to be respectful of the
process rules, and to guaranty maximal accuracy for a reliable
analog layout. We aim to clearly divide this complex achieve-
ment into simpler tasks. The idea is that a pattern is composed
by rectangles and each rectangle can be defined by five vari-
ables : X, Y, DX, DY and the Layer. With this simple set of
variables, the whole pattern layout can be drawn. Nevertheless,
we have to define the interface between the target process rules,
which is a very complex set of rules, and the pattern’s simple
set of variables. This is done by a set of functions called MAPI.
However, as it is explained in section III.-C.-2), the MAPI has
another issue which consists in separating patterns -and thus
device- and the target process. This allows to handle technol-
ogy migration.

Let’s see how MAPI compute the X, Y, DX, DY, and Layer
variables. First, we have to understand two things :

1. Each pattern generator has his own MAPI at his disposal.
That means that the MAPI is aware of the pattern drawing.

2. Pattern generators are device specifics. That implies that
they are designed to be used in a known instantiating en-
vironment. For example, a pattern knows which kind of
other pattern is abutted to it.

With this knowledge, the MAPI exactly knows which kind of
process rules it needs. Then, it asks for the selected process in-
formations, and achieves some computing such as maximums,

Pattern 1 Pattern 2

Pattern 1 Pattern 2 Pattern 3 Pattern 4

Fig. 6. Pattern placement

or sums in order to get X, Y, DX, DY and Layer of each rect-
angle.

2) Process Informations Access:All along the generation, in-
formations about the process are required. Meanwhile, we saw
that a good separation with the technology is important to en-
sure the migration. As the pattern have their MAPI, the device
has a DAPI. The DAPI gives the device a direct access to the
process informations. For example, it can be useful to get the
Wmin, which is involved in both electrical synthesis and shaping
computation.

MAPI

DEVICE GENERATOR

DTR File

DAPI

PATTERN
GENERATOR

Fig. 7. Internal hierarchy of a device

Therefore, the generation is
based on a description of the
target process. The diffi-
culty resides in the very het-
erogeneous information that
is needed. We resolved
this problem by using a
Device Technological Rules
file (DTR) to describe a se-
lected process. The syntax
of this file allows large free-
dom about the enclosed in-
formation and can easily be
updated. Figure 7 shows the
finally involved hierarchy in
a device generator.

3) Parasitics Calculation:In order to perform an electrical
and layout co-design, it is compulsory to communicate infor-
mations about the parasitics resulting from the layout to the
electrical sizing engine. To achieve this, the pattern generators
return informations about the layout they draw. For example,
the transistor device is informed about the W, L and diffusion
dimensions of each finger. Then, the device takes into account
the information received from each of its patterns to compute
global information. Therefore, the design space explorer has
a back-annotated netlist at his disposal, resulting from actual
layout and the electrical models can estimate the resulting per-
formances. This enables to adjust the sizing parameters to meet
the specifications.

IV. A : S OTA

We will now illustrate an example for the generation of a sim-
ple OTA. This one is represented by a single-level hierarchy.
In fact, the OTA module instantiates a current-mirror device,
a differential pair device and a transistor device (fig. 2). In
this example, we chose to show what happens when the GBW

Specifications
Vdd 3.3V
Vss 0V

Cload 5.0pF
VICM 1.2V
VOCM 1.2V
GBW 65MHz

Results
GBW 64.99MHz

Fig. 8. Simple OTA :GBW= 65MHz

changes for same charge, supply and common mode voltages.
The geometrical constraint is still done byDYmax = 300µm.
Figure 8 shows the generated layout forGBW= 65MHz. Fig-
ure 9 shows thatGBW= 130MHz.

V. C

We proposed a set of device generators which allows the au-
tomation of analog circuit design. These devices can be inte-
grated in a flow which is as accurate as a layout-inclusive flow,
but also as fast as a layout-aware flow. In fact, the parasitics re-
sulting from the layout are measured and then, computed with
very accurate BSIM3v3 models. Moreover, the layout gener-
ation engine allows the designer to get a compact layout on
different target technologies, since it performs a shaping step.
However, the designer keeps controlling every step of the gen-
eration.

R
[1] Gielen and Rutenbar. Computer Aided Design of Analog and Mixed-

signal Integrated Circuits.Proc IEEE, 88(12):1825–1852, December
2000.

[2] Hershenson, Boyd, and Lee. GPCAD : A Tool for CMOS Op-Amp Syn-
thesis.ICCAD, pages 296–303, 1998.

[3] de Ranter, Van der Plas , Steyaert, Gielen and Sansen. CYCLONE :
Automated Design and Layout of RF LC-Oscillators.IEEE TCAD, pages
1161–1170, October 2002.

[4] Tang, Zhang, and Doboli. Layout-Aware Analog System Synthesis
Based on Symbolic Layout Description and Combined Block Parame-
ter Exploration, Placement and Global Routing.Proc. IEEE Symposium
on VLSI, ISVLSI’03, 2003.

[5] Dessouky, Lou¨erat, and Porte. Layout-Oriented Synthesis of High Per-
formance Analog Circuits. Design AUtomation and Test in Europe,
DATE, pages 53–57, March 2000.

[6] Agarwal, Sampath, Yelamanchili, and Vemuri. Accurate Estimation of
Parasitic Capacitances in Analog Circuits.Design Automation and Test
in Europe, DATE, pages 1365–1366, February 2004.

[7] Ranjan, Verhaegen, Agarwal, Sampath, Vemuri, and Gielen. Fast,
Layout-Inclusive Analog Circuit Synthesis using Pre-Compiled
Parasitic-Aware Symbolic Performance Models.Design AUtomation
and Test in Europe, DATE, pages 604–609, February 2004.

[8] Hershenson. Efficient Description of the Design Space of Analog Cir-
cuits. DAC 2003, pages 970–973, June 2003.

[9] De Smedt and Gielen. WATSON : Design Space Boundary Explo-
ration and Model Generation for Analog and RF IC Design.Proc IEEE,
22(2):213–224, February 2003.

[10] Naiknaware and Fiez. Automated Hierarchical CMOS Analog Circuit
Stack Generation with Intramodule Connectivity and Matching Consid-
erations.IEEE JSSC, pages 304–317, March 1999.

[11] Pelgrom, Duinmijer, and Welbers. Matching Properties of MOS Tran-
sistors.IEEE JSSC, pages 1433–1440, October 1989.

[12] Hastings.The Art of Analog Layout. Prentice Hall, 2001.

Specifications
Vdd 3.3V
Vss 0V

Cload 5.0pF
VICM 1.2V
VOCM 1.2V
GBW 130MHz

Results
GBW 129.98MHz

Fig. 9. Simple OTA :GBW= 130MHz

