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Abstract - Architectural exploration and application 
development for digital System On Chip need more and 
more performance from the simulator. Today, the standard 
design flow use a unified modeling language and only one 
simulator for every development step. SystemC based 
simulators are efficient to validate hardware specifications 
but its performances are not good enough to write and 
debug embedded softwares. Using some specialized 
simulators increase the effectiveness of a particular step. So, 
we specialize the simulator to become more suitable for 
targeted steps. In this paper, we describe an approach to 
accelerate simulation performances by focusing on the cycle 
accurate simulation level. 

I. INTRODUCTION 
SystemC is a modeling language. Its key advantage is to 
allow the user to use various levels of abstractions under the 
same unified language. The SystemC simulator provided by 
OSCI is able to simulate mixed abstraction models. The cost 
is the use of a general simulation engine. The actual 
implementation is an event-driven simulator. Many 
researchers look through performance issues[1] to find the 
fastest subset of process/data types.  

In the synthesis/implementation flow[2] shown figure 1, 
the embedded software developer and the RTL designer 
works separately early after the system design is completed. 
 

 
Figure 1.  

SYNTHESIS/IMPLEMENTATION FLOW 
 

As the complexity of application grows, the needs of on 
-chip multiprocessor, DSP, and a lightweight operating 
system increase. The software development becomes a huge 
part of the system-on-chip process time. Advanced 
programming tools lacks and debug time is incredibly high 
in many cases.  

Systems we would like to model contain a small set of 
components (under 100). They are synchronous and 
potentially multi clocked. 

We have done some profiles about the SystemC 
simulations to evaluate the kernel weight. The simplification 
of the SystemC engine allows us to increase the speed rate 
significantly if we define constraints about the way to write 
models. So, we would like to get the best simulation time 
using a particular abstraction level modeling. 

 The goals are to minimize the engine overhead, and to 
speed-up models execution, while keeping a simple way to 
design.  

We choose the finite state machine with data path 
abstraction level (FSMD), cycle and bit accurate.  

Firstly, we give a brief overview of the FSMD modeling 
to introduce cycle true simulation; we present a formalism to 
identify mandatory model writing constraints and describe a 
basic approach to check model descriptions; we suggest 
some advanced implementations to take advantages from the 
FSMD modeling. Secondly, we discuss some experimental 
results, and finally conclusions are presented. 

II. SIMULATION ALGORITHMS 

I. Event-driven simulation 
Each component is described by one or several process 
bounded to an input port list. The list name is sensibility list. 
Any input port assignment generates an event call the 
process.  
A simplified algorithm[3] is as follows: 
• Initialization: Execute all process to initialize the 

system. 
• Execute: Execute a set of process that are ready to run. 

Each assignment to a register or a signal sends an event 
that will be handled in the next step.  

• Update: For each posted event e: 
• Update the corresponding register or signal. 
• Resume all the bounded process according the 

sensitivity list. 
• Go to the Execute step while any event appears. The 

simulation time is increased by a delta. 
• Increase simulation time: The system is stable. The 

simulator determines the next simulation time; jump to 
the Execute step. 

 
This algorithm is very common and widely used in the 

hardware simulation (VHDL, Verilog, etc.).  
The formal module model is a set of functions: 
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1 2 ... n , 
Where: 

• Each function i has the static sensitivity list ei. 
• I, O and S are respectively inputs, outputs and states. 

 
Let tc t t d tc 1 in, 
St d ei i

s St , I t                                          (1) 
Ot d ei i

o St , I t                                         (2) 
 

II. FSMD modeling and Cycle Accurate engines 
A system can be described as a set of synchronous FSMD 
connected using signals. For each component, we write one 
or several FSM(s). 
 

Definition: A FSM is defined using a quintuple 
{ I ,O ,S, , }, where I is the input set, O the output 
set, S the state set, the set of transition functions such that 
: I S S , and the set of generation functions such 

that either : S O , for Moore FSMs, or 
: I S O , for Mealy FSMs. 

 
Three kinds of function describe an entire FSM: 

transition, Moore generation, and Mealy generation. 
Transition and Moore generation function are synchronous, 
called once at every cycle. Mealy generations are 
asynchronous, called until its inputs are stables. Several calls 
may occur at each cycle. 

Functions above need to match all the following rules.  
The FSMD model is a set of function: 

MO CF  
Where is transition functions; MO Moore generation 

functions; CF combinational functions. 
Let tc t t d tc 1 ; d is the elapsed time 

after a delta cycle, tc is in number of cycles, CK is an 
arbitrary clock edge in, 

Stc 1 CK Stc , I tc                                        (3) 
SOt SE St                                                    (4) 
COt CB St ,I t                                             (5) 

Where SO is the set of Moore outputs; and CO Mealy-
only outputs: O SO CO . 

III. FORMAL MODEL 
The formal model of event-driven and FSMD simulation are 
slightly differents. Our objective is to define a set of 
additional constraints to be able to use both the event driven 
and FSMD approaches on the same model description. 

We consider two main cases: 
Clocked functions 

If the static sensitivity list of i  is ei = CK , this 
implies d = 1 in, 

 St 1 CK i
s St , I t                 equivalent to (3) 

Ot 1 CK i
o St , I t  

Since the function i is called only one time at the 
beginning of the cycle, the input It acts like a register: 

S' t 1 CK I t Ot i St , S' t equivalent to (4) 
The function i describes either transitions or Moore 

generation functions. 
 
Other functions  

If the static sensitivity list o i is ei CK I , then 
St d ei i St , I t  

Ot d ei i
o St , I t                    equivalent to (5) 

If the writing condition is CK on registers, we have: 
Stc 1 ei i

s Stc , I tc                equivalent to (3) 

The function i describes either transitions or Mealy 
generations. 

 
Writing Constraints 

Finally, we need to put some strong constraints to stick 
to those two previous cases: 
• Clocks are fully identified. 
• All the used input ports appear in the static sensitivity 

list. 
• The writing conditions on registers include clocks. 

Using these constraints, we prove that we can translate 
from FSMD modeling to event-driven modeling and vice- 
versa. 

IV. VALIDATION OF THE DESCRIPTION 
Before executing any system simulation, it is interesting to 
know if all the models follow the previous rules. Note that 
some languages provide a built-in validation efficient 
enough to validate the model description. In our SystemC 
case study context, a third party tools is needed to do this 
optional step. 

Our approach is to use a simple syntax checker to 
analyze and validate the relationship of operands 
source/destination. The denied operations depend on the 
considered function.  

Firstly, we enumerate all the functions and determine its 
kind: constructor, transition, Moore generation, and Mealy 
generation. Secondly, we build the variables dependency 
graph and check expression types.  

We distinguish: 
• Ports (sc_in, sc_out, sc_inout for examples); 
• Registers (sc_signal); 
• Architectural constants (data members, template 

parameters); 
• Local variables; 

We define a table I that describes four function types 
where some assignations are allowed and others not. Any 
local variable uses are not restricted. 
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Syntax checking is useful to validate the FSMD model 
writing. The basic approach is good enough to avoid 
mistakes and compatibility problems. 

 
Table I 

Allowed Operations 
Function Result type Operand Types 
Constructor Constants Constants 
Transition Registers, Constants Inputs, Registers, Constants 
Moore Outputs Registers, Constants 
Mealy Outputs Inputs, Registers, Constants 

 

V. ADVANCED OPTIMIZATIONS 
The use of the FSMD models on an event-driven simulator 
significantly reduces the number of scheduled events at least 
cost and provides greater performances. While a basic 
FSMD simulation engine gives some good results, we have 
found a number of optimizations that are useful to produce a 
more efficient simulation. The FSMD modeling has some 
constraints allow us to simplify the simulator: 
• Lightweight read/write primitives 
• Static scheduling [4] of asynchronous functions 
• Fast relaxation algorithm because Mealy function 

granularity is very small and occurs seldom at system 
wise level 

 
Lightweight read/write primitives 
Each read/write operations target two signal tables. The first 
one holds the current values; the second one holds the new 
values. At the end of synchronous calls, the engine copies 
the second one into the first one. During the Mealy 
computations, read/write operations target the same table. 
 
Partial Static scheduling 

We build a directed graph (figure 4). Each node is a 
signal. Each arrow A to B tells about a data dependency: B 
depends on A. We perform a topological sort and extract the 
strong component to produce an ordered static scheduling. 

 

 
Figure 4. 

FSMS WITHOUT COMBINATIONAL CYCLE 
 

The simulation kernel calls each combinational function 
only once time without using any scheduling overhead. 

 
Dynamic scheduling  
When the graph is cyclic (figure 5), we need to iterate 
simulation until all signals are stable. Complex dynamic 
schedulers cost is too high because combinational functions 
are very small. So, we use a simple loop to minimize 
overheads. At the loop beginning, the flag unstable holds 
false. Each Mealy generation function is called. When a new 
value is written to any output port, the flag switches to true. 
The loop ends when the flag unstable stays false after the 
iteration. 
 

 
Figure 5. 

FSMS WITH A COMBINATIONAL CYCLE 
 

Two main semantic differences exist between the event-
driven and the FSMD approach. 

The first one is about clocks. Since the new proposed 
engine is Cycle Accurate, clocks meanings are slightly 
differents. Clock signals/ports haven't any value and the 
system/model designer has to identify them explicitly using 
a dedicated syntax. Some hand-written simulation loops are 
incompatibles: clocks should be used only to drive data 
register inputs. 

 The second one is about sensitivity lists. In the event-
driven context, some variables or output ports may have a 
register behavior. FSMDs modeling principles presented 
above put some constraints on the register accesses. The 
consequences are that the static scheduler gives no 
guaranties for users to get the same execution order than the 
event-driven scheduler. System behaviors could be differents 
if the sensitivity list is not complete.  

The event-driven modeling gives a syntax allowing a lot 
of mistakes. Commercial tools use only a small subset from 
the initial language reference. By the same way, the FSMDs 
modeling avoid some mistakes by using a well-known 
formal model that allows accurate hardware modeling. 

VI. RESULTS 
We use the SystemC language to develop four VCI[5] 
models: a MIPS R3000, a data cache, an instruction cache 
and a simple RAM. These models belong to  SOCLIB[6] 
library.  

3 



 

We use only a small part of the language reference [7]. 
SC_THREAD, SC_CTHREAD1, and hardware data types 
aren't implemented. 

The syntax checker, built upon g++ front-end, validates 
all the models. Note that the analysis time is very short and 
optional. 

To select the simulator engine, either SystemC 2.0 or 
our implementation called SystemCASS, we change only the 
include/library directories. Otherwise, all the models are 
strictly identical. The software application running on our 
system is a set of simple algorithms: Fibonacci, factorial, 
memory copy, ... The table II indicates the simulation 
performances using the both engines. The compiler is g++ 
3.0.4. The system ends after 12 million cycles. The 
elaboration phase is excluded from analyzed time. 

 
Table II 

Allowed Operations 
SystemC Engine SystemC 2.0 SystemCASS 

Simulation time (in s) 163 26 
Performance (in cycles/s) 76k 474k 

 
The following tables III and IV give a summary of the 

simulation profiles. The first table shows that the SystemC 
2.0 kernel cost is very high: half of execution time is spent 
into the kernel. Update is one of the most costly steps.  

SystemCASS saves a lot amount of time by using a 
lightweight kernel. 

 
Table III 

Kernel Weight 
SystemC Engine SystemC 

2.0 
SystemCASS

Simulation time (in s) 70.1 35.7 
Cumulative time in methods (in cycles/s) 34.3 27.2 
Cumulative time in kernel (in cycles/s) 35.8 8.5 
 
Note that this example doesn't underline performance 

lost by combinational loop. We can observe only the 
advantage of the lightweight primitives and the static 
scheduling. Many designs have no combinational loop 
anyway. 

 
Table IV 

Time spent in Models Evaluation 
SystemC Engine SystemC 

2.0 
SystemCASS 

Instruction Cache (in s) 55 26 
Data Cache (in s) 66 42 

MIPS R3000 (in s) 40 27 
RAM (in s) 61 32 

 
We wrote a second example to profile the combinational 

cost: the system got nine modules including two separate 
combinational loops. Each method is reduced to one or two 
simple assignments. 

SystemC evaluates up to 3 times some combinational 
methods and may not evaluate at all if the input ports are 

stable. SystemCASS always call each method at least one 
time but the total number of iterations is lesser. 

                                                           
1 deprecated since SystemC 2.0.1 

The SystemCASS initialization needs to elaborate (at 
execution time) the net list description first, compute the 
static scheduling, write the C++ code, compile and link 
dynamically. This initialization is more costly than the 
original SystemC simulator but it tends to be very quick 
even for short simulation duration. 

VII. CONCLUSIONS 
SystemC goals are to unify the different modeling levels 
under the same language but this forces the simulation 
kernel to be very general [2]. This choice doesn't allow some 
optimizations to increase performances in specific contexts. 
When the abstraction level is higher, the models are more 
complex, faster but the kernel weight increases. 

Our approach is to define an abstraction level 
appropriated to the embedded software development. The 
cycle-based SystemC simulator we implemented is more 
than four times faster than the official one; and more suited 
to embedded software design and architectural exploration. 
In practice, SystemCASS is integrated easily in a design 
flow and provides a great utility value in some early stage. A 
hardware synthesis tool, like UGH designed by LIP6[8], is 
able to translate a C functional model into a cycle accurate 
model. SystemCASS may find a large use in SoCLIB[6] for 
University purpose. 

VIII. FURTHER WORK 
As scheduling cost is low and the engine is very lightweight, 
we don't expect to increase again the overall performance. 
So, the next work is about enhancing the modeling domain 
to get the best of FSMD simulators using others various 
level of abstractions and/or basically others syntax. Some 
third party tools could be useful to debug models, system 
architectures, and softwares; to validate FSMD modeling; to 
trace result values; or to check format compatibility. 
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