

FAST CYCLE ACCURATE SIMULATOR TO SIMULATE EVENT-DRIVEN
BEHAVIOR

Buchmann R., Pétrot F., Greiner A.

ASIM/LIP6, 4 Place Jussieu, 75252 Paris cedex 05, FRANCE
{buchmann;fred;alain}@asim.lip6.fr

Abstract - Architectural exploration and application
development for digital System On Chip need more and
more performance from the simulator. Today, the standard
design flow use a unified modeling language and only one
simulator for every development step. SystemC based
simulators are efficient to validate hardware specifications
but its performances are not good enough to write and
debug embedded softwares. Using some specialized
simulators increase the effectiveness of a particular step. So,
we specialize the simulator to become more suitable for
targeted steps. In this paper, we describe an approach to
accelerate simulation performances by focusing on the cycle
accurate simulation level.

I. INTRODUCTION
SystemC is a modeling language. Its key advantage is to
allow the user to use various levels of abstractions under the
same unified language. The SystemC simulator provided by
OSCI is able to simulate mixed abstraction models. The cost
is the use of a general simulation engine. The actual
implementation is an event-driven simulator. Many
researchers look through performance issues[1] to find the
fastest subset of process/data types.

In the synthesis/implementation flow[2] shown figure 1,
the embedded software developer and the RTL designer
works separately early after the system design is completed.

Figure 1.

SYNTHESIS/IMPLEMENTATION FLOW

As the complexity of application grows, the needs of on
-chip multiprocessor, DSP, and a lightweight operating
system increase. The software development becomes a huge
part of the system-on-chip process time. Advanced
programming tools lacks and debug time is incredibly high
in many cases.

Systems we would like to model contain a small set of
components (under 100). They are synchronous and
potentially multi clocked.

We have done some profiles about the SystemC
simulations to evaluate the kernel weight. The simplification
of the SystemC engine allows us to increase the speed rate
significantly if we define constraints about the way to write
models. So, we would like to get the best simulation time
using a particular abstraction level modeling.

 The goals are to minimize the engine overhead, and to
speed-up models execution, while keeping a simple way to
design.

We choose the finite state machine with data path
abstraction level (FSMD), cycle and bit accurate.

Firstly, we give a brief overview of the FSMD modeling
to introduce cycle true simulation; we present a formalism to
identify mandatory model writing constraints and describe a
basic approach to check model descriptions; we suggest
some advanced implementations to take advantages from the
FSMD modeling. Secondly, we discuss some experimental
results, and finally conclusions are presented.

II. SIMULATION ALGORITHMS

I. Event-driven simulation
Each component is described by one or several process
bounded to an input port list. The list name is sensibility list.
Any input port assignment generates an event call the
process.
A simplified algorithm[3] is as follows:
• Initialization: Execute all process to initialize the

system.
• Execute: Execute a set of process that are ready to run.

Each assignment to a register or a signal sends an event
that will be handled in the next step.

• Update: For each posted event e:
• Update the corresponding register or signal.
• Resume all the bounded process according the

sensitivity list.
• Go to the Execute step while any event appears. The

simulation time is increased by a delta.
• Increase simulation time: The system is stable. The

simulator determines the next simulation time; jump to
the Execute step.

This algorithm is very common and widely used in the

hardware simulation (VHDL, Verilog, etc.).
The formal module model is a set of functions:

1

1 2 ... n ,
Where:

• Each function i has the static sensitivity list ei.
• I, O and S are respectively inputs, outputs and states.

Let tc t t d tc 1 in,
St d ei i

s St , I t (1)
Ot d ei i

o St , I t (2)

II. FSMD modeling and Cycle Accurate engines
A system can be described as a set of synchronous FSMD
connected using signals. For each component, we write one
or several FSM(s).

Definition: A FSM is defined using a quintuple
{ I ,O ,S, , }, where I is the input set, O the output
set, S the state set, the set of transition functions such that
: I S S , and the set of generation functions such

that either : S O , for Moore FSMs, or
: I S O , for Mealy FSMs.

Three kinds of function describe an entire FSM:

transition, Moore generation, and Mealy generation.
Transition and Moore generation function are synchronous,
called once at every cycle. Mealy generations are
asynchronous, called until its inputs are stables. Several calls
may occur at each cycle.

Functions above need to match all the following rules.
The FSMD model is a set of function:

MO CF
Where is transition functions; MO Moore generation

functions; CF combinational functions.
Let tc t t d tc 1 ; d is the elapsed time

after a delta cycle, tc is in number of cycles, CK is an
arbitrary clock edge in,

Stc 1 CK Stc , I tc (3)
SOt SE St (4)
COt CB St ,I t (5)

Where SO is the set of Moore outputs; and CO Mealy-
only outputs: O SO CO .

III. FORMAL MODEL
The formal model of event-driven and FSMD simulation are
slightly differents. Our objective is to define a set of
additional constraints to be able to use both the event driven
and FSMD approaches on the same model description.

We consider two main cases:
Clocked functions

If the static sensitivity list of i is ei = CK , this
implies d = 1 in,

 St 1 CK i
s St , I t equivalent to (3)

Ot 1 CK i
o St , I t

Since the function i is called only one time at the
beginning of the cycle, the input It acts like a register:

S' t 1 CK I t Ot i St , S' t equivalent to (4)
The function i describes either transitions or Moore

generation functions.

Other functions

If the static sensitivity list o i is ei CK I , then
St d ei i St , I t

Ot d ei i
o St , I t equivalent to (5)

If the writing condition is CK on registers, we have:
Stc 1 ei i

s Stc , I tc equivalent to (3)

The function i describes either transitions or Mealy
generations.

Writing Constraints

Finally, we need to put some strong constraints to stick
to those two previous cases:
• Clocks are fully identified.
• All the used input ports appear in the static sensitivity

list.
• The writing conditions on registers include clocks.

Using these constraints, we prove that we can translate
from FSMD modeling to event-driven modeling and vice-
versa.

IV. VALIDATION OF THE DESCRIPTION
Before executing any system simulation, it is interesting to
know if all the models follow the previous rules. Note that
some languages provide a built-in validation efficient
enough to validate the model description. In our SystemC
case study context, a third party tools is needed to do this
optional step.

Our approach is to use a simple syntax checker to
analyze and validate the relationship of operands
source/destination. The denied operations depend on the
considered function.

Firstly, we enumerate all the functions and determine its
kind: constructor, transition, Moore generation, and Mealy
generation. Secondly, we build the variables dependency
graph and check expression types.

We distinguish:
• Ports (sc_in, sc_out, sc_inout for examples);
• Registers (sc_signal);
• Architectural constants (data members, template

parameters);
• Local variables;

We define a table I that describes four function types
where some assignations are allowed and others not. Any
local variable uses are not restricted.

2

Syntax checking is useful to validate the FSMD model
writing. The basic approach is good enough to avoid
mistakes and compatibility problems.

Table I

Allowed Operations
Function Result type Operand Types
Constructor Constants Constants
Transition Registers, Constants Inputs, Registers, Constants
Moore Outputs Registers, Constants
Mealy Outputs Inputs, Registers, Constants

V. ADVANCED OPTIMIZATIONS
The use of the FSMD models on an event-driven simulator
significantly reduces the number of scheduled events at least
cost and provides greater performances. While a basic
FSMD simulation engine gives some good results, we have
found a number of optimizations that are useful to produce a
more efficient simulation. The FSMD modeling has some
constraints allow us to simplify the simulator:
• Lightweight read/write primitives
• Static scheduling [4] of asynchronous functions
• Fast relaxation algorithm because Mealy function

granularity is very small and occurs seldom at system
wise level

Lightweight read/write primitives
Each read/write operations target two signal tables. The first
one holds the current values; the second one holds the new
values. At the end of synchronous calls, the engine copies
the second one into the first one. During the Mealy
computations, read/write operations target the same table.

Partial Static scheduling

We build a directed graph (figure 4). Each node is a
signal. Each arrow A to B tells about a data dependency: B
depends on A. We perform a topological sort and extract the
strong component to produce an ordered static scheduling.

Figure 4.

FSMS WITHOUT COMBINATIONAL CYCLE

The simulation kernel calls each combinational function
only once time without using any scheduling overhead.

Dynamic scheduling
When the graph is cyclic (figure 5), we need to iterate
simulation until all signals are stable. Complex dynamic
schedulers cost is too high because combinational functions
are very small. So, we use a simple loop to minimize
overheads. At the loop beginning, the flag unstable holds
false. Each Mealy generation function is called. When a new
value is written to any output port, the flag switches to true.
The loop ends when the flag unstable stays false after the
iteration.

Figure 5.

FSMS WITH A COMBINATIONAL CYCLE

Two main semantic differences exist between the event-
driven and the FSMD approach.

The first one is about clocks. Since the new proposed
engine is Cycle Accurate, clocks meanings are slightly
differents. Clock signals/ports haven't any value and the
system/model designer has to identify them explicitly using
a dedicated syntax. Some hand-written simulation loops are
incompatibles: clocks should be used only to drive data
register inputs.

 The second one is about sensitivity lists. In the event-
driven context, some variables or output ports may have a
register behavior. FSMDs modeling principles presented
above put some constraints on the register accesses. The
consequences are that the static scheduler gives no
guaranties for users to get the same execution order than the
event-driven scheduler. System behaviors could be differents
if the sensitivity list is not complete.

The event-driven modeling gives a syntax allowing a lot
of mistakes. Commercial tools use only a small subset from
the initial language reference. By the same way, the FSMDs
modeling avoid some mistakes by using a well-known
formal model that allows accurate hardware modeling.

VI. RESULTS
We use the SystemC language to develop four VCI[5]
models: a MIPS R3000, a data cache, an instruction cache
and a simple RAM. These models belong to SOCLIB[6]
library.

3

We use only a small part of the language reference [7].
SC_THREAD, SC_CTHREAD1, and hardware data types
aren't implemented.

The syntax checker, built upon g++ front-end, validates
all the models. Note that the analysis time is very short and
optional.

To select the simulator engine, either SystemC 2.0 or
our implementation called SystemCASS, we change only the
include/library directories. Otherwise, all the models are
strictly identical. The software application running on our
system is a set of simple algorithms: Fibonacci, factorial,
memory copy, ... The table II indicates the simulation
performances using the both engines. The compiler is g++
3.0.4. The system ends after 12 million cycles. The
elaboration phase is excluded from analyzed time.

Table II

Allowed Operations
SystemC Engine SystemC 2.0 SystemCASS

Simulation time (in s) 163 26
Performance (in cycles/s) 76k 474k

The following tables III and IV give a summary of the

simulation profiles. The first table shows that the SystemC
2.0 kernel cost is very high: half of execution time is spent
into the kernel. Update is one of the most costly steps.

SystemCASS saves a lot amount of time by using a
lightweight kernel.

Table III

Kernel Weight
SystemC Engine SystemC

2.0
SystemCASS

Simulation time (in s) 70.1 35.7
Cumulative time in methods (in cycles/s) 34.3 27.2
Cumulative time in kernel (in cycles/s) 35.8 8.5

Note that this example doesn't underline performance

lost by combinational loop. We can observe only the
advantage of the lightweight primitives and the static
scheduling. Many designs have no combinational loop
anyway.

Table IV

Time spent in Models Evaluation
SystemC Engine SystemC

2.0
SystemCASS

Instruction Cache (in s) 55 26
Data Cache (in s) 66 42

MIPS R3000 (in s) 40 27
RAM (in s) 61 32

We wrote a second example to profile the combinational

cost: the system got nine modules including two separate
combinational loops. Each method is reduced to one or two
simple assignments.

SystemC evaluates up to 3 times some combinational
methods and may not evaluate at all if the input ports are

stable. SystemCASS always call each method at least one
time but the total number of iterations is lesser.

1 deprecated since SystemC 2.0.1

The SystemCASS initialization needs to elaborate (at
execution time) the net list description first, compute the
static scheduling, write the C++ code, compile and link
dynamically. This initialization is more costly than the
original SystemC simulator but it tends to be very quick
even for short simulation duration.

VII. CONCLUSIONS
SystemC goals are to unify the different modeling levels
under the same language but this forces the simulation
kernel to be very general [2]. This choice doesn't allow some
optimizations to increase performances in specific contexts.
When the abstraction level is higher, the models are more
complex, faster but the kernel weight increases.

Our approach is to define an abstraction level
appropriated to the embedded software development. The
cycle-based SystemC simulator we implemented is more
than four times faster than the official one; and more suited
to embedded software design and architectural exploration.
In practice, SystemCASS is integrated easily in a design
flow and provides a great utility value in some early stage. A
hardware synthesis tool, like UGH designed by LIP6[8], is
able to translate a C functional model into a cycle accurate
model. SystemCASS may find a large use in SoCLIB[6] for
University purpose.

VIII. FURTHER WORK
As scheduling cost is low and the engine is very lightweight,
we don't expect to increase again the overall performance.
So, the next work is about enhancing the modeling domain
to get the best of FSMD simulators using others various
level of abstractions and/or basically others syntax. Some
third party tools could be useful to debug models, system
architectures, and softwares; to validate FSMD modeling; to
trace result values; or to check format compatibility.

IX. REFERENCES
[1] Ando Ki, “Empirical study of systemc”, R&D Center,Dynalith

Systems, Korea, 2003.
[2] Preeti Ranjan Panda. “Systemc”. In ISSS, pages 7580, 2001
[3] Robert S. French, Monica S. Lam, Jeremy R. Levitt, and Kunle

Olukotun. “A general method for compiling event-driven
simulations”. In Design Automation Conference, pages 151156, 1995.

[4] Frédéric Pétrot, Denis Hommais, and Alain Greiner. “Cycle
precise core based hardware/software system simulation with
predictable event propagation”. In Proceeding of the 23rd Euromicro
Conference, pages 182 187, Budapest, Hungary, September 1997.
ASIM/LIP6, IEEE.

[5] “Virtual Component” , http://www.vsi.org. Interface Standard.
[6] SoCLIB, “A modelisation & simulation platform for system on

chip”, http://soclib.lip6.fr , 2003.
[7] OSCI, “SystemC 2.0.1 Language Reference Manuel”,

http://www.systemc.org, 2003.
[8] LIP6, “Digital system design environment”, http://www-
asim.lip6.fr/recherche/disydent.

4

http://soclib.lip6.fr/
http://www.systemc.org/
http://www-asim.lip6.fr/recherche/disydent
http://www-asim.lip6.fr/recherche/disydent

