
High level synthesis methodology from C to FPGA used for a network protocol
communication.

M. Diaby, M. Tuna, J-L. Desbarbieux, F. Wajsburt
University Pierre et Marie Curie

LIP6 Laboratory, Dept ASIM
4, Place Jussieu, 75252 Paris Cedex 05, France�

mouhamadou.diaby, matthieu.tuna, jean-lou.desbarbieux, franck.wajsburt � @lip6.fr

Abstract

This paper presents a ”Kahn Process Network” method-
ology based on the DISYDENT platform (DIgital SYstem
Design ENvironmenT). The system is described by a set
of communicating Kahn processes. This processes are C
POSIX threads representing both software and hardware
tasks. Each thread communicates with the others using
channel-read / channel-write primitives. Thus, the system
can be validated efficiently and quickly by software. Sys-
tem’s realization consists of synthesizing hardware tasks
to RTL-VHDL language. This step is automated from C
task to FPGA mapping. This paper shows the method’s ef-
fectiveness through the realization of a network controller
on FPGA enabling communication between two Linux sta-
tions.

Keyword

High Level Synthesis, KPN, Hardware/Software code-
sign, FPGA, Code Generator, VHDL

1. Introduction

The complexity of today’s application specific integrated
circuits steadily increases. Their design and implementation
is getting more and more complex [6]. This is a problem for
integrated circuits for which high quality is required. More-
over, ”time-to-market” constraints are more and more ag-
gressive [4].

Though hardware description languages (HDLs), such
as VHDL and Verilog, have became considerably popular
in system design, there is an increasing need for more in-
tuitive methods for system specification. Moreover, high
level system design requires specification method of higher

level of abstraction than HDLs which are based on hard-
ware model. Whenever there is a higher level specification,
it needs a new step: once a satisfactory system model is es-
tablished, it has to be implemented. This operation is quite
critical [7].The model may be misunderstood or some im-
plementation choices may change the system behavior.

The proposed methodology starts by the description
based on the Kahn processes network formal representa-
tion [5]. The set of communicating processes are C POSIX
threads representing both software and hardware tasks. This
means threads communications using channels read / chan-
nels write primitives. The hardware implementation is au-
tomated by a code-generation tool, needing a C source and
generating the physical description of the circuit in RTL-
VHDL language.

The paper is composed of 2 main sections, organized as
follows. Section 2 presents the methodology and the work
environment : Dysident. In section 3 the methodology is
applied in real case: the conception of a protocol test plat-
form. The last section presents the results and a discussion.

2. Methodology

This methodology helps to go from the high level de-
scription to the actual prototype implementation. It’s based
on the DYSIDENT environment and most specifically on
the use of DPN (Dysident Process Network) library and the
UGH tool (User Guided High level synthesis). Figure 1 rep-
resents the design flow of our method. Each step is detailed
below. First, we study the DPN model, then follows the
implementation stage, lingering over UGH, and finally to
obtain the prototype.

2.1. Software DPN model

DPN stands for ”Dysident Process Network”, DPN [1]
is a library that provides communication channels. It allows

Softawre
DPN model

Satisfactory
Model ?

No

Yes

Implementation
Stage

Classical
VHDL

Implementation
Process
Stage

UGH
Generation

Stage

Software
Adaptation

Stage

RTL-VHDL
design

Software
integrated
to the

environment

RTL-VHDL
design

The
prototype

HARDWARE PART SOFTWARE PART

Figure 1. The method design flow

to specify and simulate a parallel application described by
a communicating tasks graph applying the Kahn processes
model. Thus, DPN library is on one hand a theoretical
model for the parallelism and the communications between
tasks, and on the other hand an implementation that uses
C POSIX thread for simulating the tasks parallel execution.
The C Posix thread model hardware tasks as well as soft-
ware tasks. Thus, the described system represents the whole
application.

Figure 2 presents an example: we have two processes
(hcf and work) and two FIFOs (hcf2work, work2hcf).

Figure 2. The DPN model of the example

This is the corresponding DPN ‘C’ model:

pthread_t hcf_tid,work_tid;

Channel* hcf2work,work2hcf;
/* creation of the channel */
work2hcf= channelInit(DEPTH, 4);
hcf2work= channelInit(DEPTH, 4);
/* creation of the hcf and work process */
pthread_create(&hcf_tid, 0, hcf, 0);
pthread_create(&work_tid, 0, work, 0);
/* waiting for the end of work process */
pthread_join(work_tid, NULL);

/*
The hcf process repeats forever:
1) read 2 words from the work2hcf channel,
2) compute their hcf,
3) write the result into the hcf2work channel.
*/

void hcf()
{

int a, b;
while(1)
{

channelRead(work2hcf, a);
channelRead(work2hcf, b);
while (a != b)
{

if (a < b)
b = b - a;

else
a = a - b;

}
channelWrite(hcf2work, &a);

}
}

/*
*/

void work()
{

int in,out;
in = production_number();
channelWrite(work2hcf,in,1);
in = production_number();
channelWrite(work2hcf,in,1);
channelRead(hcf2work,out,1);
printf("out = %d", out);

}

Simulation validate the description.

2.2. Implementation stage

Following the design flow chart, the next step is a criti-
cal section : the implementation. It can be divided in two
main parts : hardware part and software part. The hardware
part’s implementation consists to obtain the RTL-VHDL
code. This can be made in by an automatic code generator :
UGH, or by a ”manual” classical way. The software imple-
mentation consists to adapt the code at the environment in
which it will be submerged.

2.2.1 Classical VHDL implementation process

The ”manual” classical way : following the classical VHDL
implementation process i.e. to hand write the RTL-VHDL
code and simulate. It is also possible to do design reuse if
the bloc already exists in VHDL.

2.2.2 UGH

The UGH tool [3] is a complete framework for high level
synthesis and is the cornerstone of our method. In our case,

2

high level synthesis means translation of a sequential be-
havioral description (C language) to hardware description
(VHDL).

In model UGH, the task communicates with the others
tasks using a basic asynchronous handshake protocol (typ-
ically FIFO). As indicated by its name (User Guided), the
UGH synthesis approach relies on user hints. Such hints
are necessary: the module interface (the number of commu-
nication channels) and the resource allocations by defining
a data path. This clearly means that the designer needs to
have designing skills to take the correct decisions. This in-
formation is contained in the ddp (Draft DataPath) file, for
helping UGH to drive the generation of the data path of the
circuit. However, the less you help UGH, the more it takes
decision instead of you. To resume, UGH needs two input
files: the ‘C’ source file and the ‘DDP’ file.

The ‘C’ source file
The ‘C’ input of UGH describes the functional behavior

of the circuit. In order to synthesize it, UGH places restric-
tions on the ‘C’ and so defines a ‘C’ subset. Nevertheless,
the ‘C’ description is still perfectly valid and may be com-
piled. For running it, you must provide to the linker the I/O
routines. Those for the Disydent Process Network are al-
ready provided. Such runs are useful to verify functionally
the ‘C’ description. To perform the synthesis, the descrip-
tion must contain the bit sizes of the registers. This means
that the basic UGH ‘C’ types are:
� int1 , int2 , ... , int32 : the intN type defines an integer

of N type bits. These types extend ‘C’ types char ,
short , int , long.

� uintx for unsigned types.

In the rest of the description, it is advised to use them
instead of standard ‘C’ types, in order to allow the syn-
thesis process to restrict the number of bits to its mini-
mum. For the compound types, you can define ‘C’ type-
def, structure and union, using the types intN , uintN . Ar-
rays are allowed, pointers are forbidden. The communica-
tion channels must be declared as global variables of types
ugh inChannel1, ugh inChannel2, ... , ugh inChannel32 for
the input channels and ugh outChannel1, ugh outChannel2,
... , ugh outChannel32 for the output channels. The global
variables are the registers of the tasks. The types of the
variables are either the basic UGH ones (int1, ... , uint1, ...
) or compound ones built on these types. Array variables
are allowed (RAMs), pointer variables are forbidden. Sim-
ple and array variable can be initialized (VarType var=...;)
if and only if they are declared ”static const”. They are
then read only. The behavior of the task is enclosed in the
ugh main(void) function. This function is the entry point
used for synthesis. The behavior is described in standard
‘C’ language without pointers:

� variable declarations

� control statements: if, for, while, break, continue,
goto, ...

� logic operators:
�����������
	�	�	

� operators on the basic UGH types: all the ’C’ operators
like � �
��������������������������������	�	�	

� function calls: the functions must be inlined, the classi-
cal parameters are allowed even references arguments

Nevertheless there are the following restrictions:

� floats and doubles are forbidden

� pointer variables are forbidden

In our method, the ‘C’ UGH input is the DPN file af-
ter modifications to be UGH compliant. For instance,
a UGH‘C’ synthesizable description of our HCF task is
shown below:

ugh_inchannel32 fifo_in;
ugh_outchannel32 fifo_out;

HCF()
{

uint32 a;
uint32 b;

while(1)
{

ugh_read(fifo_in, &a);
ugh_read(fifo_in, &b);

while (a != b)
{

if (a < b)
b = b - a;

else
a = a - b;

}

ugh_write(fifo_out, &a);
}

}

A comparison with the DPN model shows minor differ-
ences between the two files.

The ‘DDP’ file
The ‘DDP’ file gives the draft of the data path. Like a

data path, it consists of an interface and of a set of cells
connected together. Nevertheless, it is a draft. So the fol-
lowing rules allow to simplify the description:

� The interface is reduced to the data connectors neces-
sary to perform I/O operation with the external world.

� The connectors of the cells of the library have no size.
Therefore you can connect the connectors of the cells
without taking care of their bit sizes.

� Control inputs (clock, write enable, ...) of the cells are
omitted.

3

� An input connector can be driven by several output
connectors so multiplexers are not required.

Figure 3 represents the dreamed data path of our hcf:

a

b

alu

data in

data out

Figure 3. The dreamed data path

Then, here is the code of the hcf.ddp file:

MODEL HCF (inchannel fifo_in;
outchannel fifo_out)

{

DFF a;
DFF b;

ALU alu1;

a.d = alu1.s, fifo_in;
b.d = alu1.s, fifo_in;

alu1.a = a.q;
alu1.b = b.q;

fifo_out = a.q
}

The separation of the behavior (C file) and the draft data
path (DDP file) permits to test several differents architec-
tures to fit the best to the needs. In other words, UGH per-
mits architectural exploration. As said before, the less you
help UGH, the more it take decision instead of you. That
means the DDP file can be almost empty, only the interface
and the registers are mandatory.

2.2.3 the software part

The software adaptation has two sides:
� the communication with the hardware : for example, if

the hardware is mapped on the FPGA, the communica-
tion with the FPGA is needed (PCI bus, JTAG or spe-
cific). If the software is embedded, the communication
is hardware to software fifos or software to hardware
fifos.

� the immersion in the environment (Linux, windows,
embedded system ...)

2.3 The prototype

The prototype is realized when all parts are connected in
the correct environment. If the partitionning in the hardware

part between the task generated by UGH and the others is
judicious, this means that the task generated by UGH is task
liable to change, then if a change appears in this file, obtain
the new reliable prototype is quick and easy.

3. Case study: realization of a network con-
troller on FPGA enabling communication
between two Linux stations

The aim is to realize a full-size protocol test platform.
This platform has to enable the experimental evaluation of
ZCSP’s protocol (Zero Copy Secured Protocol) [2]. We will
experiment the method described above on this project to
get rapidly a prototype of the platform. This platform con-
sists of two communicating Linux stations. They are con-
nected by a point-to-point full duplex link plugged to their
PCI card. The PCI card is a PLDA PCI20K-PROD C and
disposes of an APEX20K FPGA (from EP20K400FC672-
1XV family). This FPGA has 16640 logic elements and
212992 memory bits (400k typical gates).

3.1 System description and DPN model

The first step of the method is to code the DPN model of
the system. Figure 4 represents this system.

This system represents two communicating machines.
Each machine has a network controller (the hardware part
with the FPGA). It consists of PCI core, TX, RX and WD
tasks resuming the protocol and PB and PX tasks charged
of the communication to the other machine. All these tasks
communicate by mean of a daisy-chain. This part will be
mapped on the FPGA. The Ping-Pong task represents the
application using the network controller. Ping-Pong and
Memory tasks model the PC environment necessary.

In order to understand the later implementation choices,
this section roughly describes each tasks of the system:
� the daisy-chain: this subset is the bus of the system.

In fact, the APEX EP20K FPGA doesn’t have tri-state
components and so, we can’t realize a standard bus.
This daisy-chain is based on multiplexers. The pro-
cesses of the system will communicate with each oth-
ers using the daisy-chain. Each operator is connected
to the bus through a ‘Wrapper’. The wrapper is respon-
sible for the communication between its task and the
bus. Figure 5 shows the implementation of the daisy-
chain. The information transits on the bus through the
pipe (just a register). At each cycle, the information
propagates from pipe to pipe.

� the PCI core: this entity symbolizing the PCI core will
enable communication between the FPGA and the ex-
ternal world. This PCI core enables the classical access
to the configuration space and memory space.

4

 :FIFO Channel

xx :C Posix Thread

 MACHINE 1 MACHINE 2

 FPGA FPGA

PX

RX

PB

TX

WD

PING

MEMORY

PCI CORE

DAISY-CHAIN PX

RX

PB

TX

WD

PONG

MEMORY

PCI CORE

DAISY-CHAIN

Figure 4. The system: two machines commu-
nicating with each other. Each machine is
composed of two parts: the software repre-
senting by PING/PONG threads and the hard-
ware on the FPGA.

� Memory: this task simulates the PC’s memory.

� PB, PX: these two tasks respectively build packets to
send to the network (Packet Builder) and extract in-
formation from packets from network (Packet Extrac-
tor). PB task of machine 1 is connected to PX task
of machine 2 and vice-versa to enable communication
between them.

� TX, RX et WD: these three tasks describe ZCSP pro-
tocol. TX is the transmission task, RX the reception
task and WD manage timeouts.

� PING et PONG: This tasks represent the software of
the system. They realizes a ping-pong between the two
machines.

The whole tasks have been described with DPN library.
All this tasks simulate hardware level and the necessary
software application. This level of description permits a
rapid compilation, rapid system execution (C compiled) and
simple debugging.

Note: The PCI core physical description in RTL-VHDL
already exists. The PCI core described at this level is a DPN
simulable simple version, i.e. it communicates with mem-
ory and ping-pong with channelRead/channelWrite. In the

SYSTEM BUS:
THE DAISY-CHAIN

TASK N+M

TASK 1

TASK N

TASK 2Wrapper

Wrapper

Wrapper

Wrapper Pipe

Pipe

Pipe

Pipe

Figure 5. Daisy-Chain model

DPN model, we don’t need to add the PCI protocol to the
PCI core. We only want to access the memory.

3.2 Implementation stage

After the validation of the DPN model, we can then begin
the implementation stage. This step is the most decisive in
rapid prototyping.

3.2.1 Hardware synthesis

For the tasks representing the hardware, the DPN model and
the RTL-VHDL description must have the same behavior.
In our model, we have to find a partitionning between tasks
to synthesize with UGH and tasks to ”hand-write”. In our
case, the VHDL description of the PCI core already exists.
Moreover, the PCI core as well as PB, PX and the daisy
chain tasks are cycle accurate. Thus, two categories can be
defined:

� the cycle accurate tasks: Pb, Px, Daisy-chain, PCI core

� ZCSP tasks: TX, RX and WD

The cycle accurate tasks
PCI core is provided. For the daisy-chain, wrappers are

simple combinational components and pipes are just regis-
ters. So, the simple design of the daisy-chain enables an
easy implementation in RTL-VHDL. PB and PX tasks ma-
nipulate a lot of data, it’s why their designs must be opti-
mized. Nevertheless, their designs are simple because the
manipulated data have been pre-processed by the tasks con-
taining the mindness of the system. Each state machine has
less than 10 states.

5

ZCSP tasks
TX, RX and WD represent ZCSP protocol and so the net-

work controller conductor. Any protocol is first described
by a flow chart. The translation from a flow chart to a high
level language (C language) is easy. In opposite, translation
to a hardware description language (VHDL) is quite hard
and long because of the considerable number of states (near
hundred). They don’t manipulate a lot of data but their be-
havior is complex. So, we get their description in hardware
language with UGH. DPN files must be adapted, replacing
channelwrite/channelread by ugh write/ugh read and deter-
mining the variables size (intN, uintN) and add the entry
point: ugh main. All ddp files are nearly empty in order to
let UGH do its own choices.

Software integration
The software integration corresponds to the immersion

of the ping-pong thread in the environment. In the DPN
model, ping-pong threads communicated directly with the
PCI core. The ping-pong thread communicates with the
PCI card through an added software brick: the PCI core
Linux driver. Obviously, the communication with the mem-
ory changes compared to the classical way.

3.3 Mapping and results

When the whole tasks is synthesized in RTL-VHDL, this
description can be mapped on the FPGA. The tools used
is ALTERA QUARTUS II version 2.0. After the mapping
of the hardware tasks on the FPGA and the installation of
the software application (driver and ping-pong programs)
on the two machines, the platform is ready to work. The
results with our network controller:

� full PCI throughput (no wait state) : more than 100
MB/s

� circuit frequency : 33 MHz

� fpga occupation : 80%

The table below presents for each ZCSP tasks the num-
ber of C lines written, the caracteristics of code generated
by UGH (number of line and state of the state machine).

TX RX WD
C lines nbr 390 375 232

VHDL lines nbr 3052 1088 955
states nbr 440 143 34

logic cells nbr 3363 2488 954
memory bits nbr 0 0 4592

TX represents 20% of the FPGA surface, RX 25%
and WD 7%. They represent more than 50% of the global
circuit. TX, RX and WD are the core of the hardware part.

4 Discussion

As we have seen, the three ZCSP tasks represent more
than 50% of the circuit because of their complexity and the
code generated by UGH is not optimal. Nevertheless ZCSP
protocol is still in development. So, the ZCSP tasks (partic-
ularly the transmission and the reception task) will be mod-
ified. The new prototype is reliable and quickly obtained.
In this modification loop, the longest phase is using QUAR-
TUS to map on the FPGA (about 45 minutes). In our case,
the interest to have a C model for the ZCSP tasks permits to
translate easily to Promela language for model checking.

5 Conclusion

Implementation phase is a critical step. This paper
presents a methodology in which an application written in
language C is mapped onto a target platform composed of a
CPU and an FPGA in an automatic way. UGH is the heart
of our methodology. This tool allows us to quickly go from
an application specification in C to an hardware specifica-
tion in VHDL. The system is described with DPN model
which applies Kahn processes model. In this model, mem-
ory is distributed and each task runs independently of the
other tasks. So the partionning is realized easily and so we
can get an efficient mapping onto the CPU and the FPGA.
The paper shows the method’s effectiveness through the re-
alization of network controller on FPGA enabling commu-
nication between two Linux stations

References

[1] I. Auge, F. Donnet, P. Gomez, D. Hommais, and F. Petrot.
Disydent : A pragmatic approach to the design of embed-
ded systems. DATE02 Designers’ Forum, University Booth
Demonstration, page 255, March 2002.

[2] V. Beaudenon, E. Encrenaz, and J.-L. Desbarbieux. Design
validation of zcsp with spin. Third International Conference
on Application of Concurrency to System Design (ACSD’03),
page 102, June 2003.

[3] F. Donnet. User guided high level synthesis. PhD Thesis of
University Paris 6, January 2004.

[4] M. Hunt and J. Rowson. Blocking in a system on a chip. IEEE
Spectrum, November 1996.

[5] G. Kahn. The semantics of a simple language for parallel
programming. In Information Processing: Proceedings of the
IFIP Congress, page 74, 1974.

[6] N. Leveson. Software engineering: Stretching the limits of
complexity. Communcations of the ACM, 40(2):129–131,
February 1997.

[7] S. Murphy, P. Gunningberg, and J. Kelly. Implementing pro-
tocols with multiple specifications : Experiences with estelle,
lotos and sdl. Testing and Verification, June 1989.

6

