
DESIGN SPACE EXPLORATION FOR ANALOG IPs USING CAIRO+

Ramy ISKANDER*, Laurent de LAMARRE*, Andreas KAISER**, Marie-Minerve LOUËRAT*

*Université Pierre et Marie Curie, LIP6-ASIM Laboratory,4 Place Jussieu, 75252 Paris, France
**IEMN-ISEN, 41 Bld. Vauban, 59046 Lille Cedex, France

email: ramy.iskander@asim.lip6.fr

Abstract—In this paper, a new methodology for de-
sign space exploration (DSE) and knowledge capture
is presented. The methodology presents analog IPs
as a hierarchy of devices and modules. The hierar-
chy is implemented using an analog language called
CAIRO+. A mechanism, which is established between
devices and modules, allows modules to question de-
vices about their electrical behavior. The electrical
properties propagate upward along the hierarchy in
order to guide higher level modules. This methodol-
ogy is used to capture and document the designer’s
knowledge. Once captured, an executable generator
is produced. This generator is then used to synthe-
size analog IPs with different specifications. The same
generator can be used to migrate analog IPs between
different technologies. As an illustrative example, a
fully-differential two stages common-mode feedback
(CMFB) amplifier is synthesized and migrated using
CAIRO+.

I. INTRODUCTION

During the past decade, as the design process of the analog part
of a mixed-signal chip became a bottleneck, researchers became
interested in the synthesis of analog cells. Despite the big efforts
to develop CAD tools to automate the design process of analog
cells, analog designers are still reluctant to use them. Their main
argument is the unexplained compromises and tradeoffs demon-
strated in those tools, as well as their incompleteness. Analog
designers prefer to perform complicated hand analysis rather than
using automated tools. This way, they control all the electrical and
physical aspects of the design, based on their accumulated expe-
rience. Capturing the designer’s knowledge and integrating them
into CAD tools have been an active research area for many years.
OASYS [1] uses a hierarchical decomposition of the cell topol-
ogy and executes design plans to select each level’s topology and
sizes the corresponding devices to meet the performance specifi-
cations. BLADES [2] tries to mimic designer’s knowledge in an
expert system in the form of ”IF-ELSE” rules. Nowadays, EDA
companies, like Barcelona Design [3], developed CAD tools that
allows designers to specify the equations of analog circuits, at the
system, block and device levels - solving them simultaneously to
arrive at optimal device sizes that satisfy performance and yield
specifications.

A main difficulty is related to the inherent nature of the analog
world. This is mainly due to the lack of parameterized cell gen-
erators. As we know, the notion of soft IPs exists in the digital
domain. The same IP will be reused many times in many different
designs through synthesis. The existence of complete synthesis
flow from VHDL down to silicon allows technology migration to
be performed systematically. In the analog world, such a flow
does not exist. Due to the continuous nature of the analog signals,
the devices have to be manually resized to meet the specifications
in the new technologies. Thus, the full-custom approach is the
regular method for analog design.

In this paper, we follow the similar ideas to OASYS and
BLADES. In section A, CAIRO+ framework that is used to cap-
ture the designer’s knowledge is described. Then, in section
B, a fully-differential two-stages CMFB amplifier is presented.
The representation of the amplifier into CAIRO+ is demonstrated.
Once the DSE phase is completed, a parameterized cell generator
is systematically created. The produced generator will be used for
two purposes. The first one is to synthesize the amplifier for pre-
determined specifications in 0.6µ technology. The second purpose
is to migrate the amplifier to 0.35µ technology. Finally, we draw
conclusions in section C.

II. CAIRO+ FRAMEWORK
The CAIRO+ framework is described in [4].The main idea is to
capture the designer’s knowledge into an executable generator that
is capable to produce correct device sizing for a set of predefined
specifications. CAIRO+ provides the designer with an analog lan-
guage to describe generators hierarchically. It is built as an ex-
tension to C/C++ programming language. It provides a library of
functions to describe the netlist template, layout template, speci-
fication template, design space exploration procedure, shape gen-
eration and layout generation. In our work, we will focus on the
design space exploration procedure. The following subsections
describe some notions of CAIRO+.

A. Modules and Devices
Any analog IP core may be hierarchically composed of modules
and devices. Higher level modules can communicate with lower
level modules as shown in Figure 1. The lowest level module
communicates with the device level. The device level describes
passive devices: resistors and capacitors. It also describes active
devices: PMOS, NMOS, differential pair, simple current mirror,
... etc. To calculate all the small signal parameters for the leaf

1

transistors, the device level calls the builtin BSIM3V3 transistor
model to calculate the small signal parameters.

Generator
GET_VALUE

SET_PARAM GET_PARAM

CHECK_PARAM

Answer

GET_PARAMSET_PARAMLevel n+1

Level n

Level n−1 GET_VALUE CHECK_PARAM

Question

Question Answer

Data

Data

Figure 1: Communication protocol between higher-level and lower-level mod-
ules.

The higher level module n + 1 uses SET PARAM to set
all the parameters needed to answer a question. The lower level
module n (or device level) has access to these parameters through
calls to GET V ALUE. Then, the higher level module calls the
GET PARAM to get the answer. The answer for the question is
implemented in the lower level module in a CHECK PARAM

section. Normally, the question is the specification which the de-
signer is interested in. The answer is given by the procedure used
to calculate the specification. A question may have different an-
swer procedures to calculate it.

B. Design Space Exploration
To write a parameterized generator, the designer must first de-
termine the set of devices required by the given circuit topology.
Then the modules are implemented hierarchically on top of the
device level. The device level must provide questions/answers for
the higher level module. Each lower level module must also pro-
vide another set of questions/answers to the next higher level mod-
ule, and so on. We can think that each module level is a different
level of abstraction in the design representation. As an example,
one can define a system level(Σ∆), a functional level(integrator),
a block level(amplifier) and a device level. After determining the
devices, the designer needs to identify a design plan to size all the
transistors in the IP analog. The whole generator is coded using
C/C++ functions that constitutes CAIRO+ framework.

III. ANALOG IP: AMPLIFIER
In this section, we demonstrate the use of CAIRO+ framework to
create a parameterized generator for a fully differential two-stages
CMFB amplifier[5]. The amplifier is shown in Figure 2. The
details of the implementation will be discussed in the following
subsections.

A. Circuit Analysis
A thorough hand analysis of the small signal model of the
amplifier has been developed. The analysis takes into account
parasitic capacitances in the transistor model. The transistor
model used is shown in Figure 3.

The precision of the developed model was verified against the
ELDO simulation. It was found that the model satisfies the fre-
quency response of amplifier in terms of static gain, poles, zeros,
phase margin and high frequency gain. The model was verified

M8

VBAL

M2BM2AM7

OUT+

OUT−

IN+
IN−

M3B

M3A

BIAS1BIAS1

M6AM6C M6B

M1BM1A

M4B

BIAS1BIAS1

M5 M4A

CCB

R
C

B

R
C

A

CCA

RM RM

CM CM

Figure 2: Fully-differential 2-stages CMFB amplifier.

gm Vgs gmb Vbs

gds

Cdb

CsbCgs

Bulk

Source

Drain

Gate

Cdg

Figure 3: Small-signal transistor model including parasitics.

using a symbolic analyzer to ensure the correctness of the deriva-
tion steps. The following equations fully describe the amplifier:

G01 = gds1B + gds2B + gds6A (1)
C02 = Cdb1B + Cdb2B + Cgs3B + Cdb6A + Cdg6A + Cdg2B (2)
G03 = gds3B + gds4B + GL + GM (3)
C03 = Cdb3B + Cdb4B + CL + CM + Cdg4B (4)

A = gm3B + G01 + G03 (5)
B = Cdg1B + C02 + C03 (6)
K = Cdg1BG03 + C02G03 + C03G01 (7)
D = G01G03 (8)
E = (Cdg1B + C02)C03 (9)

CT = Cdg3B + CCB (10)

A2 = RCBCCBCdg3B (11)
A1 = CT − gm3BRCBCCB (12)

B3 = RCBCCB(E + Cdg3BB) (13)
B2 = E + RCBCCBCdg3BA + BCT + KRCBCCB (14)
B1 = K + DRCBCCB + ACT (15)

(16)

Ad(s) = (Cdg1Bs − gm1B) ·
[A2s2 + A1s − gm3B]

[B3s3 + B2s2 + B1s + D]
(17)

Equations (1) − (17) have been implemented in the generator
to calculate the amplifier performance.

B. Modules and Devices
In order to determine the set of devices that should be imple-
mented in the device level, we rely on the matching criterion.
Any group of elementary components that are equally sized have
to be matched in the layout level. This is done to reduce the
effects of process variations on the overall performance. The
implemented devices are shown in Figure 4. We use the ap-
propriate devices to form each of following groups:(M5, M8),
(M1A, M1B), (M3A, M3B), (M4A, M4B), (M7, M2A, M2B),
(M6C , M6A, M6B), (RCA, RCB), (CCA, CCB), (RM , RM) and
(CM , CM).

2

A B C

D E F

G H

Figure 4: Low-level devices.

C. Implementation using CAIRO+
We model the amplifier, as the current module level, based on
the devices already defined. In the current module, we define a
design space exploration procedure that will size all the devices of
the amplifier. We create one CHECK PARAM section called
DIMENSIONS, that when called from higher level module,
will perform the sizing procedure. As an example, to perform the
sizing, we choose to fix the bias currents in the two stages of the
amplifier. We implement the following algorithm:
Set values of passive devices
Determine all drain currents in all transistors
Fix input voltages for operating point
Estimate initial value of gate voltage VGS of M1A
Loop while gate voltage VGS of M1A not converging

Calculate W of M5 and M8 based on gate voltage VGS of M1A
Get new estimated gate voltage VGS of M5 and M8
Calculate W of M4A and M4B based on gate voltage VGS of M5
Calculate W of M3A and M3B
Get new estimated gate voltage VGS of M3A and M3B
Calculate W of M1A and M1B based on voltages on M5 and M3B
Calculate W of M6C, M6A, M6B in terms of M1A
Get new estimated gate voltage VGS of M1A

End Loop
Calculate W of M7, M2A and M2B based on voltages on M3B and M1A

The code is written in C/C++ using CAIRO+ framework. It is
then compiled into an executable generator by the framework.
CAIRO_CHECK_PARAM("DIMENSIONS")

...

// ---------------------------------
// Initialization of passive devices
// ---------------------------------
CAIRO_SET_PARAM(LIBRES_4C, "BIRES_4C_POLY", "res_rca_rcb" , "RVAL", rc) ;
CAIRO_SET_PARAM(LIBCAP_4C, "BICAPA_4C" , "cap_cca_ccb" , "CVAL", cc) ;

CAIRO_SET_PARAM(LIBRES_3C, "BIRES_3C_POLY", "res_rma_rmb" , "RVAL", rm) ;
CAIRO_SET_PARAM(LIBCAP_3C, "BICAPA_3C" , "cap_cma_cmb" , "CVAL", cm) ;

// ---
// Determine all drain currents in all transistors
// ---
isd_m5 = ibias ; isd_m8 = ibias ;
isd_m1a = ibias/2.0 ; isd_m1b = ibias/2.0 ;
isd_m6c = ibias/2.0 ; isd_m6a = ibias/4.0 ; isd_m6b = ibias/4.0;
ids_m2a = isd_m1a + isd_m6a; ids_m2b = isd_m1b + isd_m6b;
isd_m4a = igain * ibias ; isd_m4b = igain * ibias ;
ids_m3a = isd_m4a ; ids_m3b = isd_m4b ;
ids_m7 = isd_m6c ;

// ------------------
// Fix input voltages
// ------------------
v_bal = vdd/2.0;
v_inp = vdd/2.0;
v_inn = vdd/2.0;

// ---
// Estimate initial value of gate voltage of M1A
// ---
vgs_m1a = veg_p ;

do {

vgs_m1a_prev = vgs_m1a ;

// ---------------------------
// Calculate W of M5 and M8
// ---------------------------
vd_m5 = vdd/2.0 - vgs_m1a;
vsd_m5 = vdd - vd_m5;
vbs_m5 = 0.0;

CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "TEMP",temp) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "VDS", -vsd_m5) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "VBS", vbs_m5) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "IDS", -isd_m5) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "L" , l) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "VEG",veg_p) ;

TRY
CAIRO_GET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "W","W(L,IDS,VEG)",w_m5);
CAIRO_GET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m8_m5", "VGS","*",vgs_m5);

IF_ERROR_PARAM
exit(-1);

ENDIF_ERROR_PARAM

// -----------------------------
// Calculate W of M4A and M4B
// -----------------------------
v_bias = vdd + vgs_m5;

vgs_m4b = vgs_m5;
vsd_m4b = vdd/2;
vbs_m4b = 0.0;

CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "TEMP",temp) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "VDS", -vsd_m4b) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "VBS", vbs_m4b) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "IDS", -isd_m4b) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "L" , l) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "VGS",vgs_m4b) ;

TRY
CAIRO_GET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m4b_m4a", "W","W(L,IDS,VGS)",w_m4b);

IF_ERROR_PARAM
exit(-1);

ENDIF_ERROR_PARAM

// -----------------------------
// Calculate W of M3A and M3B
// -----------------------------
vds_m3b = vdd/2.0;
vbs_m3b = 0.0;

CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "TEMP",temp) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "VDS", vds_m3b) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "VBS", vbs_m3b) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "IDS", ids_m3b) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "L" , l) ;
CAIRO_SET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "VEG",veg_n) ;

TRY
CAIRO_GET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "W","W(L,IDS,VEG)",w_m3b);
CAIRO_GET_PARAM(LIBMOS_2T, "MOS_2T", "tr_m3b_m3a", "VGS","*",vgs_m3b);

IF_ERROR_PARAM
exit(-1);

ENDIF_ERROR_PARAM

// -----------------------------
// Calculate W of M1A et M1B
// -----------------------------
v_n8d = vdd - vsd_m5;
vsd_m1a = v_n8d - vgs_m3b;

if (bulk)
vbs_m1a = vdd - v_n8d;

else
vbs_m1a = 0.0;

CAIRO_SET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "TEMP",temp);
CAIRO_SET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "VBS",vbs_m1a);
CAIRO_SET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "VDS",-vsd_m1a);
CAIRO_SET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "L",l);
CAIRO_SET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "IBIAS",-isd_m5);
CAIRO_SET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "VEG",veg_p);

TRY
CAIRO_GET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "W","W(L,IBIAS,VEG)",w_m1a);

CAIRO_GET_PARAM(LIBMOS, "DP_CC", "pd_m1a_m1b", "VGS","*",vgs_m1a);
w_m6c = w_m1a;
w_m6a = w_m1a/2;
w_m6b = w_m1a/2;

IF_ERROR_PARAM
exit(-1);

ENDIF_ERROR_PARAM

} while (fabs(vgs_m1a-vgs_m1a_prev) > EPSILON);

CAIRO_SET_PARAM(LIBPD_3T, "PD_3T", "pd_m6c_m6a_m6b", "WREF",w_m6c);
CAIRO_SET_PARAM(LIBPD_3T, "PD_3T", "pd_m6c_m6a_m6b", "LREF",l);

// --------------------------------
// Calculate W of M7, M2A and M2B
// --------------------------------
vds_m7 = vgs_m3b ;
vds_m2a= v_n8d - vsd_m1a;
vbs_m7 = 0.0;

a = 2;
b = 3;

3

CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "TEMP",temp) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "VBS", vbs_m7) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "IREF",ids_m7) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "LREF", l) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "A",a) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "B",b) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "VDSREF",vds_m7) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "VDS",vds_m2a) ;
CAIRO_SET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "VGS",vds_m2a) ;

TRY
CAIRO_GET_PARAM(LIBCM_3T, "CM_3T", "cm_m7_m2a_m2b", "WREF","*",w_m2a);
w_m2b = w_m2a;
w_m7 = w_m2a * a / b;

IF_ERROR_PARAM
exit(-1);

ENDIF_ERROR_PARAM

// ---------------------------
// Flag : Dimensions ready
// ---------------------------
CAIRO_SET_LOCAL_VARIABLE("DIMENSIONS_EFFECTUES",true);
CAIRO_SET_LOCAL_VARIABLE("W_M1A",w_m1a);

CAIRO_RETURN_PARAM(1.0);

END_CHECK_PARAM

D. Synthesis Results
To synthesize the amplifier in the 0.6µ, we set the specifications
as I1ststage = 20µA, I2ndstage = 200µA and Veg = Vgs −Vth =
0.4V . We also fix the values: RM = 40KΩ, CM = 1pf , RC =
370Ω, CC = 2pf , Vdd = 5V , L = 2µm. After synthesis, we get
the dimensions for the transistors as shown in Table 1.

Table 1: Dimensions in 0.6µ

Transistor Dimensions
M1A , M1B , M6C 7.68µ/2µ

M3A, M3B 47.65µ/2µ
M4A, M4B 138.50µ/2µ
M6A, M6B 3.84µ/2µ

M7 2.03µ/2µ
M2A, M2B 3.04µ/2µ

M5, M8 16µ/2µ

The simulation results show that the amplifier behaves as pre-
dicted by equations (1) − (17). This is shown in Figure 5.

Figure 5: Simulation results for 0.6µ.

E. Technology Migration Results
To migrate the amplifier in the 0.35µ, we set the specifications as
I1ststage = 20µA, I2ndstage = 200µA and Veg = Vgs − Vth =
0.2V . We also fix the values: RM = 40KΩ, CM = 1pf , RC =
370Ω, CC = 2pf , Vdd = 3.3V , L = 2µm. After synthesis, we
get the dimensions for the transistors as shown in Table 2,

Table 2: Dimensions in 0.35µ

Transistor Dimensions
M1A, M1B , M6C 19.65µ/2µ

M3A , M3B 143µ/2µ
M4A , M4B 406.5µ/2µ
M6A , M6B 9.8µ/2µ

M7 4.8µ/2µ
M2A , M2B 7.2µ/2µ

M5 , M8 42µ/2µ

The simulation results show that the amplifier behaves as pre-
dicted by equations (1) − (17). This is shown in Figure 6.

Figure 6: Simulation results for 0.35µ.

IV. CONCLUSIONS
CAIRO+ framework was used to develop an executable parame-
terized generator for a fully-differential two-stages CMFB ampli-
fier. The generator was then used to synthesize the amplifier in
the 0.6µ. Then, the amplifier was migrated to the 0.35µ. In both
tests, the results were verified through ELDO simulations that use
the device sizes generated by the parameterized generator. The
framework showed to be successful in synthesizing and migrating
analog IPs.

V. REFERENCES
[1] R.Harjani, R.A.Rutenbar and L.R.Carley. OASYS: a framework for analog

circuit synthesis. IEEE Trans. on Computer–Aided Design, vol. 8, no. 12, pp.
1247–1266, Dec. 1989.

[2] Fatehy El-Turky and Elizabeth E. Perry. BLADES: An artificial intelligence
approach to analog circuit design. IEEE Trans. on Computer–Aided Design,
vol. 8, no. 6, pp. 680–692, 1989.

[3] Website URL: www.barcelonadesign.com

[4] P. Nguyen Tuong, M.M.Louërat and A. Greiner. Guidelines for Designing
Smart and Reusable Analog IP Cores. SAME Sophia Antipolis Microeletron-
ics Forum, Oct. 2004.

[5] Mihau Banu, John H. Khoury and Yannis Tsividis. Fully Differential Oper-
ational Amplifiers with Accurate Output Balancing. IEEE Journal of Solid-
State circuits, vol. 23, no. 6, pp. 1410–1414, Dec. 1988.

4

