
Automatic Layout of Scalable Embedded Field Programmable Gate Array

Hayder MRABET*, Zied MARRAKCHI*, Habib MEHREZ* and André TISSOT**

*LIP6-ASIM Laboratory
Université Pierre et Marie Curie

4, Place Jussieu, 75252 Paris, France

**CEA-DAM IDF
Commissariat á l’Energie Atomique

email:{hayder.mrabet,zied.marrakchi,habib.mehrez}@lip6.fr, andre.tissot@cea.fr

Abstract—This paper presents a layout technique for
scalable embedded Field Programmable Gate Array
architecture (eFPGA). It describes the total flow to
generate a variety of eFPGA architectures using pa-
rameterized generators and Alliance CAD developed
in the university of Paris6. We will show one example
of realization using a symbolic library of cells. Our test
eFPGA have a symmetric mesh architecture (Island-
style) composed of five main tiles. The scalability of
this tiles can be varied to obtain the best design fit on
the System on Chip device.

I. INTRODUCTION

The ability of an FPGA to implement any circuit simply by being
programmed appropriately gives a high flexibility for a system on
chip (SoC) that include FPGA as an embedded performance ac-
celerator. This makes it possible to reuse a portion of the chip
for a variety of tasks and application domains like image analy-
sis and signal processing. Unfortunately the advent of new fabri-
cation technologies increases devices complexity and transistors
count. Designers of modern SoC have a larger design space to
consider and more difficult job to combine heterogeneous compo-
nents. However, automating the generation of the specific embed-
ded FPGA will reduce the overall cost of the design.
In this paper, we present a flexible technique for eFPGA creation,
focusing particularly on the process to create physical eFPGA
model. This process that automates the major part of the transis-
tor level design and layout is based on generators using the proce-
dural GENLIB language [2]. GENLIB uses the C programming
language as a procedural layout language oriented toward devel-
opment or portable parameterized generators for CMOS VLSI.
Mostly dedicated to libraries design, GENLIB addresses both the
process and software portability issues. Advantages of using su-
perset of C functions for symbolic layout and netlist description
permits us to create generic generators (described in section 3).
Those generators use architecture parameters to generate the re-
quired structural netlist and layout. GENLIB ensures the access to
a large number of symbolic components : custom, semi-custom,

standard cell libraries and soon macro cells.
We adopt hierarchical methodology to make up the eFPGA, start-
ing from the bottom level where we generate the different compo-
nents. Then those components have been combined to form core
tiles. Finally the tiles can be used to generate arrays of different
sizes. Figure 1 gives an overview of the flow of this methodology.
Previous attempts at this type of work offered eFPGA cores in
the form of a hard layout [3, 4]. Other efforts to synthesize eF-
PGA core have been reported in [8]. Padalia et al.[5] describes
a system for automating the tile layout . The latter system uses
an appropriate library of asymmetric coarse grained cells. In this
work, we present a general methodology with the adequate CAD
flow that permit designer to create their proper eFPGA with their
proper specifications. The final layout is not dedicated to a single
fabrication process thanks to symbolic method.
This paper is organized as follows: the following section describes
the architecture of our test-prototype. Section 3 describes differ-
ent steps to generate the eFPGA layout. Section 4 describes the
programming technique, including description of the exploration
environment flow necessary to extract the configuration Bitstream.
Section 5 concludes and presents the perspectives for future work.

II. ARCHITECTURE OVERVIEW

To integrate eFPGA onto SoC, we require that the programmable
structure be flexible enough to be implemented easily with any
physical constraints. Our test eFPGA is regular structure in Island
style. It consists of an array of logic blocks, which can be linked
together thanks to uniform horizontal and vertical programmable
routing channels. The logic and routing must be programmed to
realize the required function, the configuration is stored in SRAM
cells.
This style has been the subject of considerable work by Rose et
al. [6] looking at the effect of different architecture parameters on
area and delay efficiency. We also mention the work of Rabey
et.al [7] looking for energy consumption. The goal of our work is
to support any architecture in this style regardless the parameters.
The main building block of our SRAM-based eFPGA prototype is
the programmable Tile presented in figure 2. It combine the logic

1

Tile Generator

view
component 2

view
component N

view
component 1

Logic Logic Logic

Placement
Automatic

Physical
view

Physical
view

Physical
view
Tile 1 Tile 2 Tile N

eFPGA Generator

Routing

CLB, Switch Box , etc...
Components Generators

eFPGA eFPGA

view
LogicLayout

Cell Library
Architecture
Parameters

Figure 1: Overview of Flow

block, the connection box and the switch box:

• The Configurable Logic Block (CLB) structure is capable of
implementing two 4-inputs random logic function or 2-bit
arithmetic function using 2 Look-Up-Table (LUT) of 4 in-
puts. A LUT is a digital memory that stores the truth table of
the boolean function. The 2 outputs of the CLB can be regis-
tered if required using a 2 to 1 Mux controlled by one SRAM
cell. The flip-flop use the global clock. Figure 2 describes the
CLB in details.

• The connection box controls connectivity between the pins
of the CLB and the adjacent routing channels. Its purpose
is to select the right input track to send to the CLB using
programmable muxes. It is also selecting the right outputs
track driven by the CLB using programmable tristates.

• The switch box is located in the cross of vertical and hori-
zontal channels. It is a disjoint with the flexibility of three.
Each track have three programmable connections with the
corresponding tracks on the other three sides.

III. DESIGN TECHNIQUE AND LAYOUT

To create the transistor-level circuit it is sufficient to generate a
high cell-level netlist describing the tiles that can be replicated to
create an eFPGA array. In our model design we have five different
tiles. Each one represents a netlist based on multiplexers, tristates,
flip-flops and SRAM. Difference between tiles is due to the border
effects. These latters represent external interface.

M
U

X
 1

6:
1

M
U

X
 1

6:
1

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

��
��
��
��
��
��

�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

CK

In_0
In_1
In_2
In_3
In_4
In_5
out0
out1

FF

FF

SRAM

Figure 2: Main Tile in the center of the architecture

Figure 3: Example of Tile Layout Placement

A. Tile Layout
As discussed above, a netlist of high-level modules are combined
to form the Tile. Currently the connection box module is man-
ually described on GENLIB format. However CLB and switch
box modules are generated automatically using two generators :
genCLB and genSBOX.

• GenCLB uses three parameters to generate the structural
netlist of the CLB: Number of inputs per CLB, Number of
LUT per CLB, LUT size.

• GenSBOX needs two parameters: the topology of the switch
box, the channel width.

Each netlist is passed to the Placement tool to generate rectangular
layout area, then GenTile combines the three modules and gener-
ates the logic and the physical views. Figure 3 correspond to the
placement of physical Tile. The dimensions of the tile abutment-
box are 96µ x 108.62µ in CMOS 0.13. Cells that compose the
tile are symbolic standard cells (mux2:1, mux4:1, static flip-flop).

2

Figure 4: Sram Cell with asynchrone reset. Symbolic layout with
the dimension 30λ x 50λ (3.9µx6.42µ in CMOS 0.13µ)

We add some specific cells like the SRAM provided with a reset
mechanism shown in figure 4.

B. eFPGA generation
The regularity of the island-style simplifies the automatic struc-
turing of the eFPGA Layout. The parameters for the generator are
the number of CLB per Row and the number of CLB per column.
This generator assumes the last step before the final global routing
. It generates the global physical view (see figure 5)and all the
other needs of the router: structural vhdl netlist and connector
placement file.

The final routed layout of the test-eFPGA is given in figure 6.
It is an array of size 4x4, with an equivalent logic capacity of 32
4-input lookup tables. The layout measures 0.453mmx0.476mm

in CMOS 0.13 and routed using 4 layers of metal (ignoring the
clock distribution). It is reported from the symbolic to the real us-
ing s2r[1]. Table 1 illustrates details of different arrays generated
using genFPGA.

array size number of measure measure
logic capacity transistor in symbolic in CMOS 0.13

4 x 2
16 4-LUTs 25588 3770λx2000λ 0.453mmx0.240mm

2 x 6
24 4-LUTs 37728 1970λx5600λ 0.237mmx0.672mm

4 x 4
32 4-LUTs 48288 3770λx3800λ 0.453mmx0.476mm

4 x 8
64 4-LUTs 93688 3770λx7400λ 0.453mmx0.888mm

8 x 8
128 4-LUTs 181328 7370λx7400λ 0.885mmx0.888mm

IV. CONFIGURATION

A. programming access
The functionality of the logic block is controlled by programming
the multiplexers and the content of the look-up-table. In our test
eFPGA the CLB needs 58 bits. Concerning the programmable

Figure 5: Placement of 4x8 eFPGA

Figure 6: routed 4x4 eFPGA architecture

3

Loader

Bitstream
Binary

Tile configuration
(8 16−bit words)

LutMask0

LutMask1

MUX0 MUX1 MUX2 MUX3 MUX4

MUX6 MUX7MX5 F F

Column Decoder

R
ow

 D
ec

od
er

Data bus driver

Figure 7: eFPGA Configuration Technique

routing inside the tile including connection boxes and the switch
box, it needs 70 bits. The total number of configuration bits in
the Tile is 128 bits grouped as eight word of 16 bits that can be
selectively programmed.
If the implementation of the array is made, we obtain an array
of reconfigurable cells grouped as 16-bit words and can be
programmed similar to RAM.
The random access method is used to write the configuration.
Each configuration cycle the row and column decoders identify
the word being programmed. The data is distributed using a
config bus driver. The configuration circuitry is shown in figure 7.

Using this technique of programming, the number of pins re-
quired for configuration (address pins) is proportional to the array
size. This number is not critical in the case of embedded FPGA
(no extern pins). However we profit of the random access for dy-
namic configuration.

Traget architecture
 parameters

Logic Synthesis

Application suite

Place & Route

Mapping

Binary bitstream

Extract Config

Figure 8: Environment for eFPGA exploration

B. Bitstream configuration
The exploration of the implemented eFPGA requires the flow
(figure 8) involving logic synthesis, placement, routing and
extraction of the implementation on the target architecture named
Bitstream. This flow uses freeware tools like ’boog’ [1] for logic
synthesis, SIS [10] for mapping, T-vpack+VPR [9]for place and
route. We developed a generic extractor of bitstream that analyzes
all the results of the previous tools to generate the configuration
memory.

V. CONCLUSIONS AND FUTURE WORK

We presented a technique for implementation of embedded
FPGA. And we have shown that automation of layout generation
is possible. Using this technique we are capable of producing a
large spectrum of different architectures and different array sizes.
As we noted, our work is not completely automated. To achieve
better quality of layout some manual specific-tasks were sug-
gested. Those tasks are specific to the target FPGA. We are
investigating ways that include those method of placement
optimization and SRAMs organization. Making a local routing
for tiles will be beneficial with respect to global routing.

VI. REFERENCES

[1] www-asim.lip6.fr/recherche/alliance, ALLIANCE CAD.

[2] F.Pétrot, A.Greiner ”Using C to Write Portable CMOS VLSI
Module Generators” Proceedings of the European Design
Automation Conference (EURO-DAC), Grenoble, France,
Septembre 1994, pp.676-681.

[3] Actel Corp, VariCore Embedded Programmable Gate Array
Core (EPGA) 0.18m Family. Datasheet, December 2001.

[4] M2000, Inc, M2000 FLEXEOStm Configurable IP
Core,http://www.m2000.fr.

[5] K.Padalia, R.Fung, M.Bourgeault, A.Eiger, and J.Rose, ”Au-
tomatic Transistor and Physical Design of FPGA Tiles from
an Architectural Specification”, FPGA’03, February 23-25,
Montery, California, USA.

[6] Vaughn Betz, Alexander Marquardt, Jonathan Scott Rose
”Architecture and CAD for Deep-Submicron FPGAs”. Jan-
uary 1999. Kluer Academic Publishers

[7] Varghese George, Jan M.Rabaey ”LOW-ENERGY FPGA Ar-
chitecture and Design”. Kluwer Academic Publishers

[8] James C.H. Wu, Victor Aken Ova, Steven J.E. Wilton, Resve
Saleh”SoC Implementation Issues for Synthesizable Embed-
ded Programmable Logic Cores”. IEEE Custom Integrated
Circuits Conference, Sept. 2003

[9] www.eecg.toronto.edu/ vaughn/vpr/vpr.html

[10] www-cad.eecs.berkeley.edu/Software/software.html

4

