
Session: ANALOG & ELECTRICAL DESIGN

Guidelines for Designing Smart and Reusable Analog IP Cores

P. Nguyen Tuong, M.-M. Louerat, A. Greiner
Pierre et Marie Curie University, Paris, France

Abstract

Every analog designer has to face with the legacy of
the traditional analog development, an iterative con-
ception process where a single computation loop can
last a week. The tremendous gap between the analog
and the digital world’s methodology of conception is
sharper than ever. The reasons should be found both
in the lack of automated tools and in the methodol-
ogy itself. If a few commercial and academic soft-
wares offer development environments, these envi-
ronments do not easily allow creating analog genera-
tors because of lack of clear methodology. This paper
presents a guideline for designing smart and reusable
analog generators as an answer to the problem of ana-
log IPs.

Introduction

Motivations

For the past decade, the most challenging activity
of the micro-electronics design was to deal with the
high speed endless technology evolution. As the dig-
ital design has developed dedicated synthesis algo-
rithms and popular automated tools, analog design
has to develop its own methodologies to deal with the
complexity of electrical systems, intellectual prop-
erty reuse and technology migration which is a time
consuming common task. Thus, we need a methodol-
ogy to develop component which will be instantiated
without running through a complete development cy-
cle from scratch.

Commercial and academic realizations

To face with the lack of efficient analog electrical
synthesis algorithms and to promote IP reuse, one can

develop precharacterized cells (hard cells) or genera-
tors (dynamic generation). Both of these objects rely
on the designer’s expertise. A few commercial and
academic softwares can handle analog design, yet
none of them is providing a tool allowing the designer
to create generators of analog functions. We can cite
the Barcelona Design tool ([3]), the Koan/Anagram
tool ([4]), the Neolinear/Neocell tool for Cadence
([1]) and a lot of other approaches described in [1]

Goals: designing analog generators

The challenge is to capture the designer’s knowl-
edge, in order to perform design space exploration
in a way ensuring reuse and portability (regarding
electrical specification and process migration, figure
1). Following the conventional design flow (Choice

Aspect Ratio 1

DRM 1

BSIM3 Techno 1

Spec values1

1. CREATE
2. ELECTRICAL SIZING
3. LAYOUT SHAPING
4. ROUTING AND BACK ANNOTATION

Symbolic
Layout
Rules

Net List
*.spi

Layout
.GDSII

Spec values2

BSIM3 Techno 2

DRM 2

Aspect Ratio 2

Parasitics Loop

OTHER TECHNOLOGY
& SPECIFICATIONS

DEVICESMODULES

Figure 1: CAIRO+ Generator used for process and
specification migration

of the topology, electrical sizing, electrical simu-
lation, layout generation, parasitics extraction) we
show where the critical stages are located, more pre-
cisely where the designer’s knowledge is involved

and should be captured. Then, to capture this knowl-
edge, we propose a generator definition based on sev-
eral templates: a netlist template, a layout template
and a specification template. Upon these informa-
tions, we have developed a dedicated language made
of C++ macro-functions to ease (guide) the descrip-
tion as well as an original design methodology called
CAIRO+. The main idea is the design space explo-
ration achieved by the capability of the generators to
be questioned about a parameter regarding a specifi-
cation and to give back an answer.

Analog design flow

The critical stages of the circuit design

In the analog design flow, when the system architec-
ture is chosen, the next critical stage is the electrical
sizing. The goal is to satisfy the set of circuit spec-
ification of the resulting layout. Seeing that the par-
asitics have a dramatic influence on the circuit per-
formances, they have to be included in a circuit siz-
ing loop, allowing the designer to correct their effects
(figure 2). The analog designer is in charge of the

Yes

Design goal

No

Netlist sized
Layout

Choice of the circuit topology

Layout extraction

Layout generation

Electrical sizing Parameters modifications

Electrical netlist description

System architecture

Performances reached ?

Electrical simulation

Designer’s knowledge

Circuit sizing loop

Designer’s knowledge

Figure 2: Critical stages of the circuit design

description of the circuit, as well as the electrical siz-
ing. The main engine of the electrical sizing is the de-
signer’s experience which drives the entirely design.
The other critical stage of the circuit design lies in
the layout design. The performance of the resulting
circuit is dependent on the quality of the actual layout
([4]). A lot of previous studies exist on automating
the layout, but few studies have tackled the problem
of codesign of electrical and physical views [5] [6].

The common way to design circuits relies on slow
simulations, and moreover on the knowledge of the
analog designer. In this approach, the designer is not
required to derive synthesis equations of the circuit.
It is a simulation based approach, which can not en-
sure the reusability of the designed circuit because
the electrical sizing and the simulations must be per-
formed each time a new target process is chosen.

Knowledge capture and reuse

In the previous section, the common analog flow has
been discussed showing that the knowledge of the
designer involved in both the critical stages (electri-
cal and layout) is neither captured nor stored. Yet
it seems possible to store a large amount of the ef-
forts made by the designer to have a chance to get
benefits of previous work. Capturing the designer’s
knowledge may imply an equation based approach.
The investment is certainly large, but it is an effi-
cient solution to the problem of analog reuse of com-
monly used blocks. We propose a knowledge based
approach relying on explicit equations written by the
designer, hardcoded in a generator. Because para-

System architecture

Design goal

Electrical sizing
Knowledge based

Parasitics estimation
With electrical model

Parasitics loop

No

First loop

Netlist sized

Convergence criteria
Finger number stable ?

Layout

Netlist template
Layout template

Layout generation

Yes

Design space exploration

CAIRO+ generator

Parameters’ modifications

Aspect ratio constraint Choice of the circuit topology

Electrical simulation

Figure 3: Knowledge capture and reuse approach

sitics are essential and to avoid time consuming ex-
tractions/simulations, we propose to estimate the par-
asitics in the layout generation (figure 3). A para-
sitics loop is automatically performed, but without a
simulation stage. This allows a faster generation and
ensures a larger design space exploration. Instead of
waiting days between each attempt, the analog de-
signer can change the parameters almost “on the fly”.
Of course an external simulation is still performed,
but at the very end of the design. The goal is that the

final generated netlist is as close as possible as the
one extracted from the final generated layout.

Relevant criteria for an analog
generator

As an answer to Analog IP creation and reuse, we
propose analog function generator dedicated to a spe-
cific electrical topology. The generator input are a set
of specifications (electrical values and aspect ratio) as
well as technological data, and the output are a sized
netlist together with the layout (figure 1). Such a gen-
erator has to deal with modules, made of intercon-
nected devices which can be electrically and physi-
cally co-sized. In the following, we will explain what
kind of information is handled by these generators.

Templates

Netlist template: specifying the electrical
topology

The netlist template is an unsized hierarchical elec-
trical netlist with logical connectors. Objects are
devices (Transistors, differential pairs, resistors...)
or modules (Integrators, modulators...). Figure 4
presents an example on the left.

Layout template: specifying the relative
placement

To avoid expensive computing time, it is possible to
specify a floorplan for the entire circuit. We have cho-
sen a slicing tree structure in order to consider analog
constraints such as symmetry. The whole description
can be found in [2] (figure 4 on the right).

Specification template: specifying the input
and output parameters for electrical sizing

Input parameters of a generator are the variables
which can influence the realized analog function.
Output parameters are all the informations given back
to characterize the circuit. An explicit declaration
forces the analog designer to clarify the equations of
the system. It is very important to carefully choose
the parameters: only the essentials parameters should
be declared. The next section details this point.

diff_pair curr_mir tr_mos tr_mostr_mos

MODULE TREE (net−list) CONTAINER TREE (layout topology)

������
���
������
���

������
���
������
���
���������������
���������������

���������������
��������������� 	�		�	

	�	
�

�

�

������
���
������
���

V_CONT

OTA

V_CONTOTA

������
���������������

������
������

������
������

������
������

������
������

������
������

������
������

��
��

��
��

��
��

��
��

������
������

������
������

������
������

������
������

tr_mos tr_mos tr_moscurr_mirdiff_pair

Figure 4: Netlist and Layout Templates

Design Space Exploration

Hierarchical communications - Question
and answer mechanism

Generators should be “smart” generators: given a set
of input data the generators are able to answer a ques-
tion (Figure 5). This is a hierarchical mechanism.

Data Question

GET_PARAM

Answer

Level n+1

Level n

SET_PARAM

GET_VALUE

Data

GET_VALUE

CHECK_PARAM

SET_PARAM

GET_PARAM

Question Answer

Level n−1

Generator

CHECK_PARAM

1 2

34

Figure 5: Communication mechanism

① In order to ask a question, the analog designer
uses a SETPARAM function to set all the pa-
rameters needed to answer the question (One
call for each parameter to be set).

② Then the question is asked thanks to the
GET PARAM function, which gives back the
answer.

③ Inside the generator, when the GETPARAM
function is called, the CHECKPARAM func-
tion checks the question parameter

④ All the parameters are retrieved from the level
n+1. Then the answer is calculated and returned.

The same process is also used between the level n and
the level n-1.

Portability: process and specification

An other goal is to ensure the portability of the gen-
erator. Considering the lowest levels of the module
tree (the devices), the equations are technological de-
pendent. The communication mechanism explained
in the previous section is an abstraction layer which
hides all the details. In figure 6 the module asks for
the “IDS” value to the device level (All the neces-
sary parameters are shown on the figure). The imple-
mentation of the GETPARAM function in the device
calls a function belonging to a MOSFET calculator.
This calculator contains a switch to call the correct
function depending on the transistor model. As stated
in figure 6 the answer is returned up to the module
level.

.

.

.MODEL MNAME3 NMOS
+ PNAME1 = PVAL3 ...
.

.MODEL MNAME4 PMOS
+ PNAME1 = PVAL4 ...

+

FILES
MODEL’S

PARSING
&

VERIFICATION

CAIRO_SET_PARAM("W")
CAIRO_SET_PARAM("L")

CAIRO_SET_PARAM("VDS")
CAIRO_SET_PARAM("VGS")
CAIRO_SET_PARAM("VBS")
CAIRO_SET_PARAM("TEMP")

DATA
STRUCTURES

CAIRO_MOS_IDS

Model’s filenames

Model’s chart names

IDS_BSIM3
(LEVEL 53)

Model’s functions
implementation

+PNAME1 = PVAL1...

DEVICE

CAIRO_BEGIN_GET_PARAM

CALL

MOSFET CALCULATOR LEVEL

LEVEL

TECHNOLOGY
CAIRO+

DATA BASE
INITALIZATION

MODULE
LEVEL

CAIRO_GET_PARAM("IDS")

Transmit TEMP
L,W,VGS,VDS,VBS

RETURN IDS

RETURN IDS

RETURN IDS

CALL

CALL

...

MNAME1
NMOS
LEVEL

.

.

.MODEL MNAME1 NMOS
+ LEVEL=53
+ PNAME1 = PVAL1 ...

.MODEL MNAME2 PMOS
+LEVEL=53

PVAL1

Figure 6: Process Electrical Parameter Management

Layout

In order to automate the parasitic loop in figure 3, it
is compulsory to predict layout parasitics early in the
design phase. We have seen that the layout template
can describe the relative placement of instances in-
side a circuit as a tree, which leaf cells are devices
(figure 4). Device generators have to provide two
types of information : layout respecting analog re-
quirements [7], as well as electrical models having an
accurate knowledge of the actual device layout shape.
Physical matching is included in the devices [6].

Sizing stages with the CAIRO+
language

CAIRO+ is an integrated design environment which
implements the guidelines of this paper. The analog
designer has to write four functions (figure 7). Each

diff_pair curr_mir tr_mos tr_mostr_mos

MODULE TREE (net−list) CONTAINER TREE (layout topology)

������
���
������
���

������
���
������
���
������
���
������
���

������
���
������
��� 	�		�	

	�	
�

�

�

������
���
������
���

V_CONT

OTA

V_CONTOTA

��
�
������
���

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

tr_mos tr_mos tr_moscurr_mirdiff_pair

CREATE

LAYOUT

Layout generation

DSE

SIZE

Shape function generation

Design Space Exploration

Data structures

Figure 7: CAIRO+ functions

function is written as a variadic function:

CAIRO_BEGIN_XXX(NAME,char *name,parameters)
// my code

CAIRO_END_XXX(NAME)

where XXX stands for CREATE, SIZE,
GET PARAM, LAYOUT (for a module) and
GENERATE (for a device). “parameters” are c++
parameters choosen by the designer.
The create function contains the module/device in-
stantiations, the electrical port declaration and the
parameters declarations. Please note the three tem-
plates:

CAIRO_BEGIN_CREATE(OTA,char *name,char type,
bool ring,bool dummy)

// Saving options
CAIRO_SET_LOCAL_VARIABLE("ring",ring) ;
CAIRO_SET_LOCAL_VARIABLE("type",type) ;

// ********* NETLIST TEMPLATE

// --------- Instance creation
// Current mirror
CAIRO_CREATE("libMOS","CM_MOS","CM","MP3","MP4",

TRANSP,ring,dummy) ;

// Differential pair
CAIRO_CREATE("libMOS","DP_MOS","DP","MN1","MN2",

TRANSN,ring,dummy) ;

// Simple transistor
CAIRO_CREATE("libMOS","TR_MOS","BIAS","MN5",

TRANSN,ring,dummy) ;

// ----------- connectors
CAIRO_LOGICAL_IO("VE1",CP_WEST) ;
...
CAIRO_LOGICAL_IO("VS" ,CP_EAST) ;
CAIRO_LOGICAL_IO("VSS",CP_WEST,CP_EAST) ;

// ----------- connections
CAIRO_CONNECT("CM","SIG1","VS","VDD","VDD");
CAIRO_CONNECT("DP","SIG1","VS","VE1","VE2",

"SIG2","VSS") ;
CAIRO_CONNECT("BIAS","SIG2","VP1","VSS","VSS");

// *********** LAYOUT TEMPLATE

CAIRO_VERTICAL_CONTAINER(name,
"BIAS",SYM_Y,SD_NTIE,SD_NTIE,PITCH*2,PITCH*2,
"DP",NOSYM,SD_NTIE,2*PITCH,SD_NTIE,SD_NTIE,
"CM",SYM_Y,2*PITCH,3*PITCH,SD_NWELL_PTIE,

SD_NWELL_PTIE) ;

// *********** PARAMETERS TEMPLATE

CAIRO_DECLARE_PARAM("TEMP" ,CP_IN) ;
CAIRO_DECLARE_PARAM("VDD" ,CP_IN) ;
CAIRO_DECLARE_PARAM("VSS" ,CP_IN) ;
CAIRO_DECLARE_PARAM("L_INIT" ,CP_IN) ;
...
CAIRO_DECLARE_PARAM("VP1", CP_OUT) ;
CAIRO_DECLARE_PARAM("GBW", CP_INOUT) ;

CAIRO_END_CREATE(OTA)

The GETPARAM function is the design space ex-
ploration function. It contains the knowledge of the
analog designer:

CAIRO_BEGIN_GET_PARAM(OTA,char *name)

double temp = 0.0 ;
...
double capa_load = 0.0 ;

// temp
CAIRO_TRY_GET_VALUE("TEMP",temp)

cout <<"--ampli : TEMP = " << temp << endl ;
IF_NO_VALUE

FATAL_ERROR_PARAM("TEMP","parameter not set",
LOCATION);

ENDIF_NO_VALUE

...

// ************** GBW parameter
CAIRO_CHECK_PARAM("GBW")

// ****************** BIAS point
CAIRO_BEGIN_PROCEDURE("IBIAS_OTA")

...
CAIRO_SET_PARAM("libMOS","DP_MOS","DP",

"VBS",vbs_dp) ;
// Ask W=f(L,IBIAS,VGS)
TRY

CAIRO_GET_PARAM("libMOS","DP_MOS",
"DP","W","W(L,IBIAS,VGS)",w_dp);

IF_ERROR_PARAM
cout << "Param : " <<VALUE<< endl <<
"Reason : "<< WHAT<< endl ;
exit(1) ;

ENDIF_ERROR_PARAM
// Ask for small signal parameters
...
c2 = cgd_cm + cdb_cm + cgd_dp + cdb_dp

+ capa_load ;

...
gbw = gm/c2 ;
...
CAIRO_SET_LOCAL_VARIABLE("L_BIAS"...) ;

CAIRO_RETURN_PARAM(gbw);

END_PROCEDURE

// ****************** GBW
CAIRO_BEGIN_PROCEDURE("GBW_OTA")

for(i = 1 ; i < 5 ; i++)
{

// Compute ibias current
ids_bias = -ibias_ota_new ;
...
CAIRO_SET_PARAM("libMOS","DP_MOS",...) ;

TRY
CAIRO_GET_PARAM("libMOS","DP_MOS",...);

IF_ERROR_PARAM
ERROR_PARAM("W","Required W is ...);

ENDIF_ERROR_PARAM
...
gbw_cal = ...

}

CAIRO_RETURN_PARAM(gbw_cal) ;

END_PROCEDURE

CAIRO_DEFAULT_PROCEDURE
cout << "Unknown...module " << endl ;
ERROR_PARAM("...");

END_DEFAULT_PROCEDURE

END_CHECK_PARAM

The SIZE functions calls the SIZE function of its
children:

CAIRO_BEGIN_SIZE(OTA,char *name)

CAIRO_SIZE("libMOS","DP_MOS","DP",w_dp,l_dp) ;
CAIRO_SIZE("libMOS","CM_MOS","CM",w_cm,l_cm) ;
CAIRO_SIZE("libMOS","TR_MOS","BIAS",

w_bias,l_bias) ;
...
CAIRO_COMPOSE_RSF() ;

CAIRO_END_SIZE(OTA)

Finally the LAYOUT function is in charge of the con-
nectors placement and the routing:

CAIRO_BEGIN_LAYOUT(OTA,char *name)

CAIRO_PHCON(ALU1,SW_ALU1,"VDD",NORTH,...) ;
...
// VDD
CAIRO_WIRING1("VDD",ALU1,SW_ALU1,...) ;
...

CAIRO_END_LAYOUT(OTA)

Design Examples

The fully differential current-mode integrator used in
a third order current-mode continuous-time Sigma-

Delta modulator [8] is taken as a design example.

Figure 8 presents the methodology used for electri-
cal sizing. Specifications coming from higher level
are used together with simplified model of the tran-
sistors to choose the circuit biasing. Then using the
BSIM3v3 built-in functions, a complete net-list of the
integrator can be generated, with layout annotations.

Figure 8: CAIRO+ Sizing Procedure for theΣ∆ In-
tegrator

Figure 9 presents the layout of two current-mode in-
tegrators generated by CAIRO+ with the same set of
specifications and two CMOS processes, illustrating
the ability of CAIRO+ to ensure technology migra-
tion.

SNRTH BW OSR
80 dB 100 kHz 128

Process 0.6µm 0.18µm

VDD 3.3V 1.8V
I0 70µA 150µA

0.18µm Process

0.6µm Process

Figure 9: Layout of two current-mode integrators
generated by CAIRO+ with the same set of specifi-
cations and two CMOS processes.

Conclusion

We have presented a guideline to design analog gen-
erators. Using a knowledge based approach and a
new methodology without electrical simulations in
the optimization loop, a demonstration tool called
CAIRO+ was developed. It provides an integrated
development environment to design reusable analog
generators. Today the designer has to describe the
equations of the electrical sizing, but we also intend
to help him by plugging an optimization engine in our
tool.

References

[1] Gielen and Rutenbar, “Computer aided design
of analog and mixed-signal integrated circuits,”
Proc IEEE, vol. 88, pp. 1825–1852, December
2000.

[2] Pierre Nguyen Tuong, Marie-Minerve Louerat
and Alain Greiner, “Managing the Shape Func-
tion of Analog Devices in a Slicing Tree Floor-
plan” MIXDES 2004, 23-26 june 2004, pp. 226-
229

[3] Hershenson, “Efficient description of the design
space of analog circuits,”DAC 2003, pp. 970–
973, June 2003.

[4] J.M.Cohn, R.A.Rutenbar, L.R.Carley,
“Koan/Anagram II: New Tools for Device-
Level Analog Placement and Routing,”IEEE
JSSC, pp. 330–342, March 1991.

[5] Vancoreland, Van de Plas, Steyaert, Gielen, and
Sansen, “A layout-aware synthesis methodology
for RF circuits,” ICCAD, pp. 358–362, Novem-
ber 2001.

[6] M. Dessouky and M.-M. Louerat, “A layout
approach for electrical and physical design in-
tegration of high-performance analog circuits,”
pp. 291–298, ISQED, 2000.

[7] Hastings,The Art of Analog Layout. Prentice
Hall, 2001.

[8] H.Aboushady, L.de Lamarre, N.Beilleau and
M.M.Louerat, “Automatic Synthesis ans Sim-
ulation of Continuous-TimeΣ∆ Modulators”,
DATE’04

