
Use of multiple numeration systems for architecture and design of a high
performance FIR filter netlist generator

Ludovic Noury and Habib Mehrez
Université Pierre et Marie Curie

LIP6/ASIM Laboratory
75005 Paris, France

ludovic.noury@lip6.fr, habib.mehrez@lip6.fr

François Durbin and André Tissot
Commissariat à l’énergie atomique

CEA DAM/DIF
91680 Bruyeres le Chatel, France

francois.durbin@cea.fr, andre.tissot@cea.fr

Abstract

With increased complexity and shorter development cy-
cle of hardware, designers can’t afford to redesign similar
subcomponents. They have to focus on the global design,
and must extract a validated netlist from the specification of
some classic component, thus insuring good performance
and adaptation to their needs.

In this paper, we present the design methodology for a
FIR filter netlist generator, the FIR filter being one of the
most frequently used device in digital signal processing.
Starting from mathematical equation and specification pa-
rameters, we include arithmetic knowledge in the generator,
allowing architecture choices based on filter properties and
realistic parameters values. We also provide a rounding op-
tion and a validation framework.

1 Introduction

Since filtering is widely used in digital signal processing
we see the interest of a parameterizable digital filter gener-
ator and use it as an example of mathematical knowledge
integration. We have selected one of the most commonly
used digital filter, the Finite Impulse Response filter (FIR).
FIR filters are time invariant linear discrete systems defined
by the equation :

y(n) =

N−1∑

i=0

aix(n − i) (1)

with x(n) the input signal, y(n) the filtered output, ai the
filter coefficients and N the number of coefficients. Since
no real operation is instantaneous the implemented equation
becomes :

y(n) =

N−1∑

i=0

aix(n − i − 1) (2)

The main difference between two filters lies in their tem-
plate. For every filter the template defines the amplitude
range A(w) in which frequency response should be found:
within [1 − δp, 1 + δp] for the passband (PB) and within
[−δs, δs] for the stop-band (SB), δp and δs being the toler-
ances in PB and SB. From this template and N , severals al-
gorithms allow coefficients extraction, [9] being one of the
most frequently used. The designer can freely choose any
coefficients, which are parameters for the FIR filter netlist
generator.

The other difference are the arithmetic representation
and world length of the input, output and coefficients. The
input x is represented in simple position numeration on sx

bits. For the output y we use either fixed point or two’s
complement representation on sy bits. The N normalized
coefficients ai are given to the generator in IEEE-754 dou-
ble format with an associated maximum coding size sa. The
generator then converts them to fixed point representation
using up to sa bits. The coefficients aren’t reconfigurable
after the generation process.

To implement our generator we use the Genoptim frame-
work [8] which allows to develop a generator independently
of the target technology. We design a virtual description of
the netlist, then Genoptim maps this virtual description onto
the target library and optimizes the circuit.

2 Forms

Two forms are commonly used for FIR Filter (figure
1). The direct-form is the straightforward implementation
of equation (2) whereas the indirect-form is obtained after
some transformations. The direct-form has a longer critical
path which limits clock rate. The indirect-form has a grow-
ing register size which increases the silicon surface and an
input signal distributed over a large number of multipliers
which increases power consumption due to high input ca-
pacitance and adds routing complexity.

an−1an−2a0 a1 a2

x(n)

y(n)

an−1 an−2 a1an−3

y(n)

x(n)

a0

Figure 1. Direct-form (up) and indirect-form
(down).

We use the direct structure prefering smaller area and
lower power consumption. Moreover, this structure leaves
more room for optimizations, thus reducing the clock rate
limitation.

3 Constant Multiplier

Since the filter coefficients have fixed values, there is
no need for a 2 operands standard multiplier, which is re-
placed by a new one with 1 fixed operand : a constant mul-
tiplier;also, the constants registers are removed.

A multiplier includes 2 blocks: partial products compu-
tation and summation. Since one of the operands is set,
the hardware dedicated to partial products computation is
greatly reduced. Therefore constant multiplier algorithms
aims at minimizing the summands number.

We used the multi-base constant multiplier described
in [5]. This multiplier relies on the Booth algorithm [2]
adapted to constant multiplication, but uses simultaneous
different bases for constant encoding. The improvement ob-
tained from this specific operator is shown in table 1; con-
stants in this table originate from a real application (Discrete
Cosine Transform coefficients).

4 Summation

4.1 Algorithm

Wallace trees [10] are full adder trees allowing to sum
efficiently n two’s complement numbers, producing an out-
put in redundant notation (carry save). We use Dadda’s
method [3] witch improve Wallace trees architecture, doing
the minimal necessary summands matrix reduction at each
level to keep the same number of levels as required by Wal-
lace. The resulting complexity of the operator O(log 3

2

(n)).

Table 1. Multi-base constant multiplier com-
pared to Booth 4 variable.variable multiplier
(AMS 0, 35µm)

Constant Surface
µm2

Delay
ns

Power cons.
µW/Mhz

Booth4 mult. 158642 ref. 4.77 ref. 139 ref
0.707107 36939 77% 3.00 37% 29 79%
0.92388 25836 84% 2.21 54% 21 85%

0.382683 18417 88% 1.53 68% 13 91%
0.980785 16838 89% 1.61 66% 14 90%
0.83147 46387 71% 3.29 31% 35 75%
0.55557 24530 85% 1.93 60% 17 88%
0.19509 16811 89% 1.55 68% 12 91%

Back conversion to two’s complement notation can be done
with a standard adder.

4.2 First design

First we consider that the tree inputs are the N two’s
complement encoded outputs from the multipliers. The
multipliers output being encoded on a sx + sa − 1 bits, the
results uses sr = sx +sa−1+ log2Nbits. As the inputs are
signed, the sign of each multiplier output must be extended
to sr bits in order to produce a valid result. We adapt the
Dadda algorithm to limit the tree growth to sr bits.

4.3 Second design

In our previous design we did not take our application
in account. The IEEE-754 double format normalized filter
coefficients have been converted into a fixed point constant
using up to sa bits. Since the coefficients are normalized
(−1 < ai < 1), the converted values often use less than
sa bits. The input samples are unsigned and encoded on
sx bits; their maximal value is xmax = 2sx − 1. We can
compute realistic maximum and minimum output values :

ymax =
∑

ai>0

(xmax.ai) ymin =
∑

ai<0

(xmax.ai) (3)

From these values we can deduce the real minimal number
of bits sy needed to encode the output result. We now only
need to extend the sign up to sy bits and the result is on sy

bits.
sy = size(max(|ymin|, ymax) + 1 (4)

4.4 Final design

Reference [6] explains how to avoid partial products
sign-extension in a multiplier. By extending this algorithm
to the general case we can avoid sign extension in our filter.
First, we anticipate the sign-extension by adding a constant

bs br

��������������������������������������

��
��������������������������

��������������������������
��������������������������

Y

Res−1 Res Res+1

(R−1=S0+S1)

3−outputs−adder OP

adder−tree output

A+B A+B+1 A+B+2
COUT

S1

S0
Part to round Part to cut

Figure 2. Rounding with the 3-outputs-adder

equal to the sum of all sign-extensions (including the sign
bit) that would be done if all numbers were negative. Then
by inverting the sign-bit of every summand, useless sign ex-
tensions are canceled.

However, in our case, we extend the sign bit of the first
term to sy bits thus forcing the sign bit on the msb (the
output still being encoded on sy bits).

If this technique has the drawback to add, in the worst
case, a stage to the adder tree by adding a constant, the
hardware gain in surface and power consumption widely
balance the potential small delay increase (one more full-
adder in the long chain). For example, with the simplest fil-
ter we generated, a N = 19 coefficients lowpass filter with
sa = 16 bits and sx = 10, we switch from 442 full adders
and 8 half-adders to 387 full-adders and 15 half-adders for
the adder tree.

5 Rounding

With our adder tree, our output format is in redundant
notation. To convert to a classical notation (two’s comple-
ment, simple position numeration or fixed point) we must
use an adder and eventually truncate the result.

Rather than truncating the result as we often do on DSP
filters, we will take advantage of a little known particular
adder which will allow us to round at nearly the same cost
as a truncation, still providing more accuracy.

If we want to round the result r to rg bits we need the
br bit which immediately follows the rg group and also the
result bit sign bs. Then, the rounded result being rr we have
4 possible cases:

Filter netlist

Cells library

|A|

t

Extraction

Place

Routing

Test vectors
(Dirac impulse)

zZ

zzzz

Generator

xt = a

cstt = c
yft = b

|A|

ω

N coeffs

Settings

Template

Timing analysis

Figure 3. Generation flow

1. bs = 0, br = 0 then rr = r

2. bs = 0, br = 1 then rr = r + 1

3. bs = 1, br = 0 then rr = r

4. bs = 1, br = 1 then rr = r − 1

To do the rounding operation we need r, r +1 and r−1.
Reference [1] describes the architecture of a 3-outputs adder
computing “A + B, A + B + 1, A + B + 2” from A and B

inputs, with a complexity of the order than a Carry Look
Ahead adder (CLA), one of the fastest adder O(log2N).
This special adder is constructed from a CLA with slight al-
terations of the last stages. We note that though the changes
producing a “A+B−1, A+B, A+B+1” 3-outputs adder
aren’t complex, we however chose a simpler way. We just
modify the adder tree so that the output is A + B − 1 by
decreasing the Fadavi constant by one. The resulting archi-
tecture is represented on figure 2.

6 Results and Validation

The final generator can be used following the genera-
tion flow on figure 3. First, the coefficients are extracted
from the filter template, with a tool such as Matlab. Then,
these coefficients are transmitted to the generator together
with the filter implantation parameters. The generator, us-
ing these parameters and a standard cell library produces a
netlist in the user selected format along with a Dirac signal
vector used later for the validation process. The resulting
netlist is then placed and routed before timing analysis.

The validation flow (figure 4) consists in simulating the
netlist with a Dirac signal as input, the filter output corre-
sponding to the filter coefficients. These coefficients are

Filter netlist

Simulator
(asimut)

|A|

ω

Template

Matlab

|A|

t

Result vectors

(Dirac impulse)
Test vectors

extractor
Coefficients

Coefficients

Figure 4. Validation flow

Table 2. FIR Filter generator results
Filter Class Freq.

(Mhz)
Transistors
(number)

Ripple/Template (dB)

passband stopband

lowpass 1 37 140701 10
−3 4

lowpass 2 44.6 56586 10
−3 1.4

bandpass 38.44 136555 10
−2 0.3-3.1

highpass 37.93 178898 10
−3 7

bandstop 39.84 129462 10
−3-10−2 1

then forwarded to a filter analysis tool which produce the
implemented filter template. Finally, we compare the ob-
tained results with the initial template to check the filter va-
lidity.

This validation process was done with a set of typical fil-
ters templates: lowpass (N = 51 and N = 19), bandpass
(N = 51), highpass (N = 67) and bandstop (N = 47).
The benchmarking of these filters was done according to the
generation flow. All filters were generated with input data
encoded on 10 bits, constants on 16 bits and maximum out-
put accuracy. The simulation, placement and routing were
done with the open source Alliance CAD System [7] using
AMS 0, 35µm technology. The netlist was mapped onto Al-
liance sxlib portable standard cells library. From simulation
results, filter magnitude response were extracted and com-
pared with the corresponding refence filters (figure 5 and
table 2).

7 Conclusion

Results analysis show that our generator can provide a
wide range of FIR filter netlists. Resulting filters provide
highly increased performances compared to the basic archi-
tecture implementation ussually obtained through synthesis
tools. With these generators the designer is allowed to eval-
uate various architectures in short time. Time and flexibility
gained by using generators show the interest of a generators
framework allowing fast and safe development.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−180

−160

−140

−120

−100

−80

−60

−40

−20

0

20

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Generated filter
Ideal filter

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

−6

−4

−2

0

2

4

6

8

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Generated filter
Ideal filter

0.001 dB

0.568 0.57 0.572 0.574 0.576 0.578 0.58

−84

−82

−80

−78

−76

−74

−72

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Generated filter
Ideal filter

4 dB

Figure 5. original and implanted lowpass filter
(N = 51), : magnitude response (top), pass-
band (left), outside passband (right)

References

[1] R. Avot. Architectures matérielles pour l’arithmétique
stochastique discrète. PhD thesis, Pierre et Marie Curie uni-
versity, 2003.

[2] A. Booth. A signed binary multiplication technique. Quar-
tely J. Mechanics and Applied Mathematics, 4(2), 1951.

[3] L. Dadda. Some schemes for parallel multipliers. Alta Fre-
quenza, 45:574–580, 1976.

[4] R. Daouphars and L.-S. Didier. Use of multiple number rep-
resentation in automatic arithmetic data-path design. in Pro-
ceedings of the SPIE - Advanced Signal Processing Algo-
rithms, Architectures, and Implementations XIII, 2003.

[5] Y. Dumonteix. Optimisation des chemins de données
arithmétique par l’utilisation de plusieurs systèmes de
numération. PhD thesis, Pierre et Marie Curie university,
2001.

[6] J. Fadavi-Ardekani. Mxn booth encoded multiplier genera-
tor using optimized wallace trees. IEEE Transaction on very
large integration (VLSI) Systems, vol. 1:no. 2, 1993.

[7] A. Greiner and F. Pecheux. A complet set of cad tools for
teaching vlsi design. Third EuroChip Workshop on VLSI
Design Trainning, september 1992.

[8] A. Houelle, H. Mehrez, and N. Vaucher. On portable macro-
cell fpu generators using the 754-ieee standard. ICSPAT.

[9] Y. Lim and S. Parker. Fir filter design over a discrete powers-
of-two coefficient space. IEEE Trans. Acoust., Speech, Sig-
nal Processing, vol. ASSP-31:pp.583–591, june 1983.

[10] C. Wallace. A suggestion for a fast multiplier. Prc. Techno,
90,12(11):14–17, 1964.

