
Cache coherency and memory consistency in NoC based shared
memory multiprocessor SoC architectures

Frédéric Pétrot and Alain Greiner
Département ASIM du LIP6

Université Pierre et Marie Curie
France

Abstract— This paper briefly reviews cache coherency and
memory consistency problems in general purpose, non bus based,
shared memory multiprocessors. These problems have been
extensively studied in the past, and a huge amount of litterature is
available on the subject. Although the SoC context is not (yet) the
general purpose computing context, the increasing acceptance of
NoC technology is such that the shared memory multiprocessor
SoCs are already encountering these problems.

SoC benefit on the one hand from better knowlegde of the
applications, no address translation, and lower interconnect
latencies, but on the other hand suffer from more tight design
constraints. Taking these specificities into account, we try to
define simple and yet efficient solutions to both problems.

I. INTRODUCTION

The increasing integration density will allow the building
of Systems on Chip (SoCs) with from several dozens to
hundreds of virtual components (or IP cores) within a four
billion transistor chip before the end of this decade [1].
Interconnecting those components becomes the main archi-
tectural issue. Some recent works [2] have proposed the use
of integrated switching networks as an alternative approach to
interconnect IP cores in SoCs. IP core reuse is mandatory for
such systems, and this reuse relies either on a clear separation
between virtual component design and interconnect design or a
widely accepted de facto standard. Open solutions, such as the
Virtual Component Interface (VCI) standard [3] of the VSIA
consortium or the OCP initiative of Sonics, advocate the use of
wrappers that perform protocol conversion. Other well known
proprietary solutions, for which separation of communication
and conputation is not an issue, are also de facto standards,
such as AMBA in several versions, including its announced
AXI specification.

All these solutions conceptually involve point-to-point con-
nections, implemented either as Network on Chip or as a
bus hierarchy. In both cases, the interconnect is not a single,
centralized, set of wires.

The paper first explains why caches are necessary even
in the SoC domain, then briefly remind the reader with
the cache coherency and memory consistency problems, and
presents several actual solutions. From these solutions, we
extract what we think is a good tradeoff beween complexity
and performance for NoC based SoC, and present a few
simulations to confirm this.

II. USE OF CACHES

Many SoC designs are cost constrained and caches take
area. Many SoC designs have real-time constraints and caches
add undeterminism on execution delays. However, SoC design

are also power constrained, and caches are saving power,
and latency and thoughput may simply not be sustainable
on demanding non-hard real-time applications like audio or
video decoding. Also, a general trend in system on chip
is the growing part of software components in embedded
applications[4], and the knowledge of general purpose com-
puting is that cache is a simple and efficient mean to increase
software performance.

III. THE PROBLEMS

We make the following general assumptions1:
• The architecture contains two types of components

plugged on the interconnect: initiators and targets. Initia-
tors take the initiative of a read or write transfer. Targets
are waiting for initiator requests to fullfill the read or
write transfer. The initiators may cache data in order to
firstly benefit from burst transfers to access data they will
likely need and second to work on their local copy when
several access to a data are required,

• The target architecture is build around a shared address
space. All system components are connected to an inter-
connect that, if is latency is ignored for now, behaves as a
cross-bar, allowing every initiator to request each target.
The addresses are alike for all initiators. This means that
an address uniquely identifies a datum in memory or a
resource in a peripheral.

The figure 1 presents the reference shared memory archi-
tecture of the litterature. In this architecture, the request and

Target 0 Target 2Target 1 Target n−1

Initiator 0 Initiator 1 Initiator 2 Initiator p−1

ICache DCache ICache DCache ICache DCache ICache DCache

Request

Response

Network interconnect

Fig. 1. Generic system architecture

response networks are independent, to avoid deadlocks, and
many requests can concurently be pending or served.

1We use the VCI terminology here.



A. Cache coherency

The problem of cache coherency is illustrated on figure 2.
This problem appears when data area are shared between
threads running on different processors. If the processor P1

writes a new value at address X , and the X address is
cached by processor P0, the data cached by P0 should be
invalidated or updated to reflect the fact that the value of the
data at this address has changed. The classical approach to
cache/memory coherency is to snoop the system bus[5]: As all
cache controllers are directly connected to the system bus, each
cache controller can spy the bus transfers and be informed of
all write transactions between any processor and the memory
banks. This allows the cache controllers to take actions if they
cache a data at the address of the write operation. The action
depends on the delayed (copy-back) or immediate (write-
through) nature of the write. This approach unfortunately does
not scale well due to the limited bus bandwidth.

CPU

ICache DCache

CPU

ICache DCachex

Memory

x x

write(x) read(x)

Network interconnect

Fig. 2. The cache/memory coherency issue.

B. Memory consistency

All initiators can concurrently access targets, and a given
target can receive requests from several initiators in sequence.
In packet switched networks on which several routes are
possible, there is no garanty that requests send in the network
by a given initiator are recieved in the order of emission by the
target. Furthermore, requests coming from different processors
may have identical addresses. In that situation, the question is
in which order should the requests be served ? This is what
memory consistency is all about. For a complete dissertation
on memory consistency issues, we refer the reader to [6].

Memory consistency is different from cache coherency in
the sense that it is related to the programming model in use.
We classically assume here that a multiprocessor program is
a set of parallel threads, each thread being a sequence of
machine instructions. We further assume that shared data are
protected by locks. An acquire operation on a lock delays
all the memory accesses occurring after the operation until
the lock is indeed gained. A release operation frees the lock,
but it can be seen that it is not necessary to wait until the
completion of the release to perform the subsequent memory
operations since they are by nature not protected by any lock.
The compiler is allowed to reorder the memory access outside
of the acquire/release blocks (as long as it does not violated
data dependencies), but not inside such blocks.

This model is called release consistency, and it assumes that,
for a given processor, the hardware will deliver the request to

the same address in the order of emmission, and when several
processors are involved, this will also be garanteed if a lock is
aquired before the memory operations and released after them.

Having these constraints in mind, the problem is to enforce
these orderings on packet switched networks.

IV. THE SOLUTIONS

A. Cache coherency

There are four main solutions to solve this problem:
• The first solution is to suppress all data caches in the

system. Some applications such as network processing
can run without data caches, but this cannot be a general
solution,

• The second, purely hardware, approach is called directory
based and was introduced back in 1978 by Censier
and Feautrier[7]. It has been experimented in massively
parallel shared memory multiprocessor architectures, and
a recent and well known user of this approach is the
DASH project[8]. This approach has a great advantage:
it does not require any modification of the software.
However, it is quite costly, as it implies to implement on
the memory side a logically centralised, yet physically
distributed directory. In this approach, the memory must
be able to initiate a transfer, although it usually is a target,
and it also requires the caches to be the target of control
transfer, whereas caches are by definition initiators. The
memory overhead in cache memory (2 bits per block)
is negligible (and identical to what’s required for copy-
back coherency on busses) but the memory devoted to
the directory grows like O(m

b
p2), where p is both the

number of processors and memory banks, m is the total
memory size and b the cache block size. According to [8],
this easilly reaches 20% of the total memory. If such a
cost is acceptable for high-end parallel machines, this is
clearly a dead-end for consumer electronic SoC designs,

• The third, purely software, approach is called software
cache coherence. The idea is to invalidate, by software,
a cache line when accessing a data that is known to
be shared and dirty. If the shared nature is known by
the program, the dirtyness of the data is dynamic and a
conservative approach leading to systematic invalidation
is required. This approach is costly in CPU time, leads
to many unnecessary invalidations, and requires the use
of write-through write buffers since otherwise the copy-
back coherency would have to be handled by hardware
some way,

• The fouth approach is also software oriented, but instead
of trying to benefit from the cache behavior, it simply
makes the shared data uncached and the local, non-shared
data, cached[9].

B. Memory consistency

To ensure correct behavior regarding release consistency,
the hardware, initiator, targets and network must garanty the
following points:

• Packets issued by a given initiator to the same target
are delivered in-order. This ensures the sequentiality of
memory access for a processor,



• If a given initiator needs to send requests to two different
targets, then it awaits the response from the first target
prior to send the request to the second target. This avoid
the situation where the release of a lock travels faster than
the data it protects on a network, which clearly leads to
inconsistency if an other initiator access the lock and the
data,

• the interconnect is not allowed to arbitrary drop packets
when it cannot handle them.

V. THE PROPOSED METHOD

In the SoC context, having the shared data uncached and
the local data cached seems promising because:

• the system integrator that maps the application on the
target SoC plate-form knows well the data that are shared
and the data that are not,

• the multiprocessors micro-kernels used in SoC are simple
enough to be adapted to these programming constraints,

• the number of shared and local memory banks can be
adapted to the application to minimise contention,

• the NoC latency is one order of magnitude smaller than
parallel machine networks,

• the CPU directly use physical addresses, avoiding lengthy
TLB flushes,

• it incurs no hardware cost at all.
For the illustration of the method, we assume that the

parallel application is written as a set of t POSIX threads.
We remind the reader that by default all the threads share the
same address space, which is adequate for our programming
model.

A. Tasks and data allocation model

The application programmer statically binds the t threads
onto the p processors: Each processor is identified by an index,
and this index is an explicit parameter of the thread creation
primitive.

The memory is statically partitionned into two types of
segments: local segments and shared segments.

A local memory segment Li is defined for each processor
Pi, therefore there are p local segments. This local memory
segment Li contains all private data used by the Tij threads
bound to the Pi processor. This includes (a) the execution
stacks (automatic variables + caller and callee saved registers),
(b) global per thread variables (POSIX key), (c) locally
dynamically allocated memory (using a dedicated function)
and (d) contexts of the Tij threads.

As many shared segments Si as necessary can be defined.
We call the number of shared segments n. There must exist at
least one such segment because the global variables are shared
by definition. The number of shared segments is an output
of the analysis of contention on the shared variables. Shared
variables must be explicitly declared as such by the system
integrator. All shared data (such as interthreads communication
buffers) must be allocated in a shared segment.

B. Synchronisation

The synchronisation is necessary to gain exclusive access
to data to ensure the release consistency model.

Having atomic test and set (or equivalent atomic operation)
around a network is a difficult issue. A read modify write
(RMW) opcode may exist. In that case, if the thread Tij

running on processor Pi makes a RMW access to a memory
location X in shared memory, the thread Tij gets an exclusive
ownership of X until the next write access to X by the same
Tij thread. This semantic must be enforced by the target,
and thus necessitate that all adresses in the target keep the
indentifier of the initiator that performed a RMW transaction
on it. In practice, this is not possible because it costs log

2
p

(if the processors are the only initiators of the system) control
bits per word. A typical implementation will simply prevent
any other initiator to access the whole target, possibly leading
to artificial deadlocks.

To overcome this practical limitation, we suppose that the
architecture contains a semaphore engine that has a special
behaviour: A read access is interpreted by the semaphore
engine as an atomic read then set to 1. The thread that reads
the value 0 at address X gets exclusive ownership of the X

lock. A thread that reads a 1 is required to wait until it reads
a 0. There is a strong software assumption: all threads should
consider a 1 as a non crossing barrier and only the thread that
owns the lock is authorised to reset it by issuing a write with
value 0.

All locks in the system must be allocated in specific shared
memory segments, that will be mapped on dedicated targets.
Several targets may be necessary if for some reason a single
semaphore engine becomes the system bootleneck.

C. Memory consistency

The required hardware behavior can be enforced as follows:
• in-order delivery to a given target can be done by tagging

each request by an (initiator-id, packet-id) couple as
suggested in VCI. The target memory is in charge of
consuming the packets in increasing order of packet-id
for a given initiator-id,

• avoiding that a memory operation overtakes the lock op-
eration that protects it can be done by the initiator. When
switching targets (the locks are in a specific semaphore
engine), the initiator waits for the acknowledges of all
requests to the first target before doing a request to the
second target. (It requires that the initiator knows the
targets mapping in memory).
This illustrates the necessity of a response even in case of
write operations. It is worth to note that the first version of
OCB did not acknowledge the write, making it impossible
to maintain memory consistency.

VI. THEORETICAL PERFORMANCE EVALUATION

The proposed approach allows the design to benefit from
the cache efficiency with no hardware cost and at moderate
software cost for the system integrator. In order to estimate the
performance improvement, we compute the average number
of cycles per instruction (CPI) obtained for a multithreaded
application running on a multiprocessor architecture using
the proposed software approach for cache coherence. Then
me make the same CPI computation when all the data are
considered uncached.



We make the following assumptions:
• Each processor executes one RISC instruction per cycle.

We neglect the performance degradation introduced by
the miss on the instruction caches,

• With a word width of 32 bits, and a typical network on
chip, the average memory read latency is l = 40 cycles,

• All data caches implement a write-through policy, and the
posted write buffers make negligible the cost of write,

• For the considered application the percentage of read
instructions is 20%, we note this percentage r = 0.2.
Among all read instructions, 10% address shared (un-
cached) data, we note this ucr = 0.1.

• The average data cache miss rate, noted mr, is 15%.
The CPI is by definition computed as the time spent in

each instruction times the percentage of occurence of the
instruction. With our hypothesis, the general CPI formula is:
CPI = (1−r)+r ·(ucr ·(l+1)+(1−ucr)·((1−mr)+mr ·(l+1)))

On a system with all data in uncached memory, we have
80% of the instructions that are not read and take 1 cycle to
execute and 20% that are uncached reads and take 41 cycle to
complete, thus: CPIuncached = (.8 + .2 · 41) = 9

With the proposed approach, we have 80% of the instruc-
tions taking 1 cycle. On the remaning 20%, 10% are uncached
and 90% are cached and hit the cache 85% of the time, thus:
CPIproposal = .8 + .2 · (.1 · 41 + .9 · (.85 + .15 · 41)) = 2.88

As expected, exploiting the fact that only a small fraction of
the data are actually shared improves the global performance
by a factor of 3.

VII. PRACTICAL PERFORMANCE EVALUATION

These theoretical results must be confirmed by the experi-
mentation. We use a Motion-JPEG decoder made of 6 tasks
of different granularity that allows to decode p image flows
concurently, each processor executing one decoding flow.
The architecture includes a single semaphore engine and as
many shared memory segment as processors. The processors
are MIPS R3000, and each processor has independant 1K
word instructions and data caches sharing the same NoC
interface. The simulation is done at the cycle accurate level
using the CASS simulator [10], available within the Disydent
environment [11].

Since our interest is to measure the system performances ei-
ther using a fully uncached approach or our proposed approach
used in different context, the experiments are as follows:
(1) Execute the application without data caches, (2) Execute
the application with thread resources in local segments and
communication resources in shared segments, (3) Execute the
application with thread resources and communication buffers
are in local segments,

The results, for 48×48 pixels movies of 24 images, are
given in the figure 3. They confirm, on this example, the
theoretical analysis.

VIII. CONCLUSION

The issues of cache coherence and memory consistency
are more and more important in multithreaded applications
running on SoC multiprocessor architectures.

0

2

4

6

8

10

12

14

16

18

20

4 8 16 24 32

C
yc

le
s 

pe
r i

ns
tr

uc
tio

n

Number of CPUs

cpi cached
cpi buffer uncached

cpi all uncached

Fig. 3. CPI for the three experiments

We propose a simple, software oriented solution, taking
advantage of the specific features of most systems on chip:
No virtual memory, a single multithreaded application, and
a large number of memory banks, thanks to the modularity
permitted by integration on a single chip.

The performance improvement is expected to be at least
a factor 3, versus the fully uncached solution. Cycle accu-
rate simulations have confirmed those theoretical performance
evaluations.

These experiments do not give an upper bound on perfor-
mance, as it would be achieved (at a much higher hardware
cost) by a directory based approach. How far is the current
proposal from this has still to be appreciated.

REFERENCES

[1] L. Benini and G. D. Micheli, “Networks on chips: A new soc paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[2] P. Guerrier and A. Greiner, “Architecture for on-chip packet-switched
interconnections,” in Proc. of Design Automation and Test in Europe,
Paris, France, Mar. 2000, pp. 250–256.

[3] Virtual Component Interface Standard (OCB 2 1.0), VSI Alliance,
On-Chip Bus Development Working Group, Mar. 2000. [Online].
Available: http://www.vsi.org/library/specs/summary.htm#ocb

[4] “Medea+ eda roamap 4th release,” 2003. [Online]. Available:
http://www.medea.org

[5] M. Hill, S. Eggers, J. Larus, G. Taylor, G. Adams, B. Bose, G. Gibson,
P. Hansen, J. Keller, S. Kong, C. Lee, D. Lee, J. Pendleton, S. Ritchie,
D. Wood, B. Zorn, P. Hilfinger, D. Hodges, R. Katz, J. Ousterhout,
and D. Patterson, “Design decisions in spur: A vlsi multiprocessor
workstation,” IEEE Computer, vol. 19, no. 11, Nov. 1986.

[6] K. Gharachorloo, “Memory consistency models for shared-memory
multiprocessors,” Ph.D. dissertation, Stanford University, Dec. 1995.

[7] L. M. Censier and P. Feautrier, “A new solution to coherence problems
in multicache systems,” IEEE Trans. Comput., vol. c-20, no. 12, pp.
1112–1118, Nov. 1978.

[8] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hen-
nessy, M. Horowitz, and M. Lam, “The stanford dash multiprocessor,”
IEEE Trans. Comput., vol. 25, no. 3, pp. 63–79, Mar. 1992.

[9] F. Zandvelt, “On caches for a (rt) multiprocessor environment,” Unpub-
lished, Philips Research, Apr. 1998, prepared for the VSI/OCB working
group.

[10] F. Pétrot, D. Hommais, and A. Greiner, “A simulation environment for
core based embedded systems,” in Proc. of the 30th Int. Simulation
Symp., Atlanta, Georgia, Apr. 1997, pp. 86–91.

[11] I. Augé, F. Pétrot, and D. Hommais, “A pragmatic approach to the
design of embedded systems,” in Proc. of Design Automation and Test
in Europe. Munich, Germany: IEEE, Mar. 2001, pp. 170–174.


