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ABSTRACT: In very deep submicron technologies, the parasitic capacitor and resistance can have a significant impact
on propagation delays. The Elmore delay metric is widely used due to its efficiency and ease of use. However, it is
well know that this method can have significant error on large RC-circuit. In this paper, we present a new method for
determining the analytic waveform of the RC-circuit outputs. The accuracy of this method is demonstrated on several
large RC interconnect circuits.

INTRODUCTION

Multi-million transistor circuits are made using the lat-
est processes. The features of these technologies include
an increased number of metal levels, thinner metal width,
increased wire height versus width ratio and smaller wire
spacing. These new features introduce new cause of fail-
ure. This is the reason why designers spend up to 80%
of a design on the verification step. Therefore, some new
verification tools are needed to check the robustness of
VLSI circuits against these causes within a reasonable
computation time.
It is well known that some up to lately neglected phys-
ical effects in submicron technologies, such as parasitic
capacitor and resistance, can significantly affect the be-
haviour of the circuit (timing and/or functional failure).
Nowadays, the design methodologies [1] and tools, such
as router [2] and verification tools, have to take into ac-
count these parasitic elements [3] [4] [5].
In real-size circuit, the RC-circuits can have a really im-
portant number of parasitic elements (near 1000 or 10000
resistances and ground capacitors) and have a complex
topology with crosstalk coupling capacitor. Thus, the par-
asitic RC-circuits can not be directly taken into account in
verification tools. We propose to reduce the complexity
of the RC-circuit by modeling the RC-circuits with a sim-
plified circuit wich can be used in verification tools. The
method is composed of two steps. First, we compute the
output waveform according to the input waveform. Then,
we determine the parameters of the simplified model. In
this article we expose the method used to compute the
output waveforms.
This paper describes an original approach for determin-
ing the analytic waveform of the RC-circuit outputs and is
organised as follow. We describe the two main methods
used to reduce the RC-tree. Then, in section 3 we give
a mathematical formulation of the problem. In section 4,
our method is developed, based on the frequency domain.
Section 5 shows some results. Finally, some conclusions
and future works are offered in section 6.

PREVIOUS WORKS

The two main methods used to reduce RC-circuit are the
Elmore delay metric and the first three moments method.

Elmore

The Elmore delay metric [6] is today widely used in cur-
rent physical design tool. The popularity of the metric is
mainly due to its efficiency and ease of use.
Elmore defined the 50% propagation delay at a given node
i as

xi(TDi) =
VDD

2
(1)

where xi is the voltage of node i.
TDi can easily be expressed when the RC-circuit is a tree
[7]. In this case, the 50% propagation delay at node i is

TDi =
∑

k∈δ

RkiCk (2)

where δ is the set of internal nodes, Rki is the common
resistance from input to the nodes i and k and Ck is the
capacitor at node k.
Let’s consider the RC-circuit of the figure 1. in is the
input signal and out the output signal.
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Fig. 1. Example of RC-circuit

The Elmore delay for the output signal is

TDout
=C1R1 + C2(R1 + R2) + C3(R1 + R2 + R3)

+C4R1 + C5R1 + C6R1

(3)



In order to compare the Elmore method with an electrical
simulation, we built a function fElmore such as

fElmore(t) = VDD(1 − e−
t
τ ) (4)

and we determine the time constant τ such as

fElmore(TDout
) =

VDD

2
(5)

Figure 2 shows the electrical simulation and the function
fElmore obtained with the Elmore method.
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Fig. 2. Electrical simulation and Elmore method

With the Elmore method, it is easy to determine the 50%
propagation delay of an RC-tree. However, if the RC-
circuit has some coupling capacitor, the expression of the
time TDe can not be expresssed easily. In addition, even
for a tree, this method can be inaccurate.

First Three Moments Method

Recently, the first three moments method [8] gives the
explicit expression for the delay as a function of the first
three moments of the impulse response.
This method is based on the transfert function, Hout, of
the RC-circuit in the frequency domain, defined as

Hout(s) =
Xout(s)

Xin(s)
(6)

where Xin is the input signal and Xout the output signal.
The output signal is then approximated as

x̂out(t) = k1.e
p1.t + k2.e

p2.t (7)

where k1, k2, p1 and p2

In the frequency domain the same expression can be writ-
ten as

Ĥout(s) =
k1

s − p1

+
k2

s − p2

(8)

A series expansion near s=0 gives

Ĥout(s)=−(
k1

p1

+
k2

p2

) − (
k1

p2
1

+
k2

p2
2

).s − (
k1

p3
1

+
k2

p3
2

).s2

−(
k1

p4
1

+
k2

p4
2

).s3
− · · ·

(9)

where p1 < p2 < p3 < · · · < pn

On the other hand, for each node i of the RC-circuit, the
expression of the node H̃i can be determined in the fre-
quency domain, with a series expansion around s=0 and
written as

Hi(s) = m0 + m1.s + m2.s
2 + m3.s

3 + ... (10)

where mi is the ith moment.
So, we can have the output function

Hout(s) = m0 + m1.s + m2.s
2 + m3.s

3 + ... (11)

Then, p1, p2, k1 and k2 can be obtained by matching m0,
m1, m2 and m3 with the coefficients of Ĥout(s).

p1 =
m2

m3

p2 = p1.

m0

m1

−
m1

m2

m1

m2

−
m2

m3

k1 =
1 + m1p2

p1 − p2

p2
1 k2 =

1 + m1p1

p1 − p2

p2
2

(12)

Let’s study an RC-circuit composed by two coupling ca-
pacitors 3. We suppose that the node in is in a steady-
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Fig. 3. RC-circuit with two coupling capacitors

state and that the aggressors a1 and a2 are making a tran-
sition from VSS to VDD . Figure 4 shows an electrical
simulation and the result obtanied with the first three mo-
ments method.
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Fig. 4. Electrical simulation and first three moments
method

We can see that the electrical simulation and the first three
moments method are not very closed. This is mainly due



to the series expansion. Indeed, without coupling capaci-
tor, an RC-tree is a low pass filter. That explains the use
of series expansion near s=0. The coupling capacitors are
the high pass filters and generate the inaccuracy of this
method.

PROBLEM FORMULATION

Let’s study a wire (V), called victim, coupled with several
thousand of wire (Ai) called aggressors. Each agressors
can be coupled with thousands of wire called secondary
victims. In deep submicron technologies, this set of wire
is modeled by a RC-circuit.
Now, let’s consider an RC-circuit composed by m + 1
nodes numbered of 0 to m. We note Xi(s) the ith-node
waveform in the frequency domain. We suppose 0 is the
ground voltage and X0(s) = 0. Some nodes, called input
nodes, represent the initial point of a wire. These nodes,
connected to output gates, have a known voltage. Some
node, called output nodes, represent the final point of the
wire. They are connected to input gates. Except for input
and output nodes, there are internal nodes, which are not
connected to gates.
Let’s consider a node i connected to the node l through
a resistor Ril and to the node k through a capacitor Cik.
Ci0 is the ground capacitor (see figure 5).
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Fig. 5. Node i connected to several nodes with a resistor
and a capacitor

We have the equation:

m
∑

j=0

xi − xj

Rij

+

m
∑

j=0

Cij(x
′

i − x′

j) = 0 (13)

Which can be written as:

Gi.xi + Ci.x
′

i =

m
∑

j=0

Gij .xj +

m
∑

j=0

Cij .x
′

j (14)

where

• Gi is the total conductance of node i: Gi =
m
∑

j=0

1

Rij

• Ci is the total capacitance of node i: Ci =
m
∑

j=0

Cij

• Gij is the conductance between node i and j: Gij =
1

Rij
. When the nodes i and j are not connected by

a resistor, Gij = 0 (particularly Gii = 0).
• Cij is the capacitance betweenœuds i et j. When

the nodes i and j are not connected by a capacitor,
Cij = 0 (particularly Cii = 0)

We note 0 the ground voltage. 1 to l are the internal
nodes, l + 1 to n the output nodes and n + 1 to m the
input nodes.

With the equation 14, a RC-circuit composed by m +
1 nodes is characterized, in the frequency domain, by a
system of n equations (Sl).
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





G1X1(s)+sC1X1(s)=
m
∑

j=0

G1jXj(s)+
m
∑

j=0

sC1jXj(s)

...

GiXi(s)+sCiXi(s)=
m
∑

j=0

GijXj(s)+
m
∑

j=0

sCijXj(s)

...

GnXn(s)+sCnXn(s)=
m
∑

j=0

GnjXj(s)+
m
∑

j=0

sCnjXj(s)

(15)
Note that for each i, j Cij = Cji and Gij = Gji.
We know that this system gives, for each node, the fol-
lowing differential equation

αnsnXi(s) + αn−1s
n−1Xi(s) + · · · + α0s

0Xi(s) = 0
(16)

and the solution is

Xi(s) =
n

∑

k=1

aik

s + hk

(17)

It gives in time-domain

xi(t) =

n
∑

k=1

aik.e−hk.t + ai0 (18)

where ai0 is the voltage when t → +∞ of the node i, aik

a coefficient in Volt and hk a frequency.

DETERMINING THE ANALYTIC WAVE-
FORM

In order to determine the n coefficients and the n fre-
quencies, the method is composed by five steps. First, the
system can be written with the following matrix equation

M.X(s) = 0 (19)

where M is

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G1+sC1 · · ·−G1l−sC1l · · ·−G1n−sC1nG1n+1· · ·−G1m

... · · ·

...
. . .

...
...

. . .
...

−Gl1−sCl1 · · · Gl+sCl · · ·−Gln−sCln Gln+1 · · ·−Glm

... · · ·

...
. . .

...
...

. . .
...

−Gn1−sCn1· · ·−Gnl−sCnl· · · Gn+sCn Gnn+1· · ·−Gnm

0 · · · 0 · · · 0 0 · · · 0
... · · ·

...
. . .

...
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. . .
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and

X =


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Xm(s)
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







(21)

Then, n−1 iterations of Gauss-Jordan elimination method
give the output waveform according to the input wave-
forms.

MGauss.Xl+1,m(s) = 0 (22)

where MGauss is
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where

Xl+1,m(s) =





















Xl+1(s)
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Xn(s)
Xn+1(s)

...
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So, for each output o ∈ [l + 1; n], we obtain

Poo(s)Xo(s) =

n
∑

i=m+1

Pi(s).Xi(s) (25)

where Pi(s) =
u
∑

j=1

pij .s
j and Poo(s) =

v
∑

j=1

poo.s
j .

Note that deg(Poo) < deg(Pi). In the initial matrix, the
polynomials of the column n + 1 to m are polynomials
of degree 0. If the polynomials of column 1 to n of the
initial matrix have a degree of 1, the polynomial Pnn of
the final matrix has a degree of 2n−1. Indeed, the first
iteration of Gauss-Jordan elimination multiplies by 2 the
degree of polynomials. n − 1 iteration of Gauss-Jordan
elimination are needed to obtained Pnn. So the degree of
Pnn is 2n−1.
We have seen in problem formulation section that the out-
put waveform of a RC-circuit composed by m nodes has
exactly n coefficients and frequencies. Thus, the polyno-
mial Poo(s) divided by the polynomial Pi(s) must have
a degree of n. This means that some roots of Poo(s) are

also roots of Pi(s). In order to simplify the equation, we
determine the greatest common divisor (GCD) between
Pi(s) and Poo(s) using the Euclidean algorithm.

Pi(s)

Poo(s)
=

GCD(s).Qi(s)

GCD(s).Qoo(s)
(26)

with Qoo(s) =
n
∑

j=1

qoo.s
j

So, we have

Xo(s) =
n

∑

i=m+1

Qi(s)

Qoo(s)
.Xi(s) (27)

Now, considering only one input i gives

Xouti(s) =
Qi(s)

Qoo(s)
.Xi(s) (28)

Xouti can be rewritten using partial fraction decomposi-
tion

Xouti(s) =

n
∑

j=1

bij

s + hj

Xi(s) (29)

where hj = −rj , rj are the root of Qoo and

bij =
Qi(rj)

n
∏

k=1

k 6=j

rk − rj

(30)

The roots are computed with the Newton-Raphson method.
Substitute this result into 27 to give

Xout(s) =

n
∑

i=m+1

n
∑

j=1

bij

s + hj

Xi(s) (31)

When the input makes a transition we have

Xout(s) =

n
∑

i=m+1

n
∑

j=1

bij

s + hj

1

s
.xi (32)

The inverse Laplace gives

xout(t) − xout(0) =

∫ t

0

(

n
∑

i=m+1

n
∑

j=1

bije
−hj .t0 .xi).dt0

(33)
We suppose the node out is in the steady-state VSS at
t = 0.

xout(t) = −

n
∑

i=m+1

n
∑

j=1

bij

hj

(e−hj .t
− 1).xi (34)

The experience has shown that the use of traditional float
(64 bits) is not appropriate because the range of the poly-
nomial coefficient is very important. We have used the
GNU Multiple Precision Arithmetic Library [9] to repre-
sent the floats with a variable number of bits.
The proposed method gives the numerical formulas of
the output signals. The accuracy of this method depends
mainly on the

• the number of bits used to represent the coefficients

• the precision of the root finding method



RESULTS

A prototype tool that implements all the concepts de-
scribed in this article has been developed. As shown in
figure 6, the prototype is composed by five steps : de-
termine the matrix equation, calculate the Gauss-Jordan
elimination, find the polynomial roots, modify the equa-
tion by using the partial fraction decomposition and make
the inverse Laplace.

Root finding method

Inverse Laplace

Partial fraction decomposition

Output waveform

Gauss−Jordan Elimination

Determining matrix equation

RC−circuit

Fig. 6. Prototype tool

This prototype has been tested over three kind of RC-
circuits : trees with one, two or three outputs and a vari-
able number of internal nodes ranging from 100 to 1000
(see fig. 7).
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Fig. 7. Benches

The results presented in this section are obtained on a 1

GHz PC computer with 1 GByte RAM.

Number Of Bits Used To Represent Floats

Figure 8 gives the number of bits used to represent floats
for each type of tree and different number of internal
node.
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We can see that the number of bits used to represent the
floats is globally linear with the number of internal node.
In addition, the trees with three outputs are more expen-
sive in bits than the trees with two outputs. For example,
near 2700 bits are needed to represent floats for a tree
with three outputs and 1000 nodes.

Execution Time

The figure 9 shows the execution time obtained to deter-
mine the frequencies hj . We can see that 25000 seconds
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Fig. 9. Execution time for determining the frequencies

are needed to compute the frequencies of a tree with one
output and 1000 internal nodes. This time execution is
not appropriate for verification tools.
To determine the constant times we used a Gauss-Jordan
elimination apply on polynomials (N 3). In addition, the
number of bits used to represent floats is linear with the
number of internal node. Thus, the complexity to com-



pute the frequencies is N 4 where N is the number of in-
ternal node.
Figure 10 shows the execution time obtained to compute
the coefficients aij . We can see that for a tree with one
output, 70s are needed to compute the coefficients. A
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Fig. 10. Execution time for determining the coefficients

partial fraction decomposition is used to determine the
coefficient. This gives a complexity in N 3.

CONCLUSION

Signal integrity is becoming a major issue in the verifi-
cation process of high performance designs. Coupling
capacitance and RC-circuit of interconnect are one of the
factors that may cause timing and functional failure in the
circuit.
In this paper, we have presented a method for determining
the analytic waveform of an RC-circuit output without
approximation, based on representation in the frequency
domain. The precision is exact but the computation time
is really important compared to an electrical simulation.
On the other hand, the electrical simulation gives numeri-
cal points whereas this method gives numerical functions.
The proposed method can be improved following two di-
rections. First, we can developed techniques to accel-
erate the method in decreasing the number of internal
node. We can analyse the RC-circuit and merge the node
which have the same constant time or we can split a RC-
circuit in several RC-circuits. Thus, the analytic wave-
form of each outputs is calculated more quickly. The sec-
ond improvement concerns the method. For very deep
submicron processes the inductance of the interconnect
can have a significant impact on the circuit. Thus, the
method has to be modified to take into consideration the
inductance of the interconnect.
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