
Energy estimation and optimization in architectural

descriptions of complex embedded systems

Ana Abrila, Habib Mehreza, Frédéric Pétrota, Jean Gobertb and Carolina Mirob

a ASIM/LIP6 Lab, University of Paris VI, 5, Place Jussieu, 75005 Paris, France ;
b Philips Digital Systems Laboratory, 51, rue Carnot BP 301 Suresnes, France

ABSTRACT

This paper proposes a method for energy consumption estimation and optimisation on hardware-software em-
bedded systems-on-chip. The aim of our work is to provide a simulation framework enabling power estimations
of high level descriptions (behavioural C models) of systems that include all the hardware components also the
new ones. Such analysis are needed to select the best hardware architecture and software organization for a
particular application in terms of power consumption and to apply low power techniques at system level.

The starting point is the architectural description of the system used for simulation. It employs very abstract
C-based models of the hardware components. We focus on the cycle-accurate level to improve the estimation
accuracy. Behavioural models are extended with energy models that take into account the operations executed
per transition into the state machines of the components.

The method has been tested in a MPEG4 decoder implementation. The error of the energy estimations was
estimated lower than 6% from physical measurements. Low power techniques were applied and analyzed like
another memory hierarchy, clock gating, voltage/frequency scaling, and some others. It has permitted to reduce
the consumption cost of the system on 93%.

Keywords: energy estimation, low power, hardware-software co-simulation, embedded system, System on Chip,
cycle-accurate, energy model

1. INTRODUCTION

The reduction of power consumption on integrated circuits demands the application of low power techniques in
all levels of the design flow but the most important savings are gained at the highest levels. At design start time,
important choices are made that will significantly influence the power consumption of the system because they
define the type and utilization of hardware components: Use of general purpose processors and/or dedicated
coprocessors, memory hierarchy, type of interconnects, etc.

This paper focuses on the architectural cycle-accuracy level. A new methodology for analysis and reduction
of the power consumption on SoC at architectural level is proposed. This level gives a good accuracy for a
very fast simulation time. The simulation of the complete system is performed using a cycle-accurate system
simulator that employs functional models of the hardware components to describe the system. The behavior of
each component is described in C-language as a state machine with data-path. Our experimentation is performed
using TSS, an event-driven simulator developed by Philips.1 Nevertheless, the proposed method can be use
with another cycle-accurate simulation environment like SystemC.

The energy estimation is performed by adding an energy view into the functional model of every hardware
component. This energy view consists of an estimation of the energy consumption dissipated by each operation
executed per transition into the state machine of the component. These energy values are included into the
simulation model without slowing down the simulation speed. That way, when the system is simulated with a
set of representative input data, energy estimations per component and for the whole system are obtained. We

Further author information: (Send correspondence to Ana Abril)
Ana Abril: E-mail: Ana.Abril@lip6.fr, Telephone: +33 (0)1 44 27 71 73
Habib Mehrez: E-mail: Habib.Mehrez@lip6.fr, Telephone: +33 (0)1 44 27 47 61

propose an approach to create the energy models of all the components of a typical embedded system, including
the new hardware blocks for which we do not have yet a low level implementation.

A brief discussion of the existing power estimation approaches is given in the section 2. Section 3 explains
our approach and introduces the simulation tool we used. In section 4, we describe the system model detailing
how to model the energy for each category of component. Section 5 illustrates the MPEG4 system exemple,
and section 6 gives the results for energy estimation and optimization. A conclusion is given in the concluding
section.

2. RELATED RESEARCH

A common approach to obtain fairly accurate power estimations of large circuits is to use a conventional RTL
simulator that models power consumption of the basic cells with parameters extracted from circuit level sim-
ulations (SPICE, PowerMill) or from the characteristics of a standard cell library. This information is then
embedded in the VHDL description of every basic cell so that the logic simulation allows to obtain the power
consumption of the circuit. DIESEL,2 the power estimation tool developed in Philips, uses this approach. This
method has some drawbacks. It takes place in an advanced phase in the design process so it can be used only
for analysis of an implementation and not for making choices that will optimize power consumption. Moreover
the simulation time for large circuits becomes very important making rather impracticable power estimations of
a complete hardware/software system.

Higher level energy estimations of embedded systems are proposed by some approaches, like the Simunic’s
one,3 Avalanche,4 Lajolo,5 Powerchecker6 or Orinoco.7 Most of them choose the simulation of the software
component of the system using an ISS (Instruction Set Simulator) enriched with power models of the processor’s
instructions (Simunic’s,3 Avalanche4 and Lajolo5). Some others also use high level RTL simulators incorporating
power models for the estimation of the hardware dissipation (Powerchecker6 and Lajolo5). Hardware-software co-
estimation is performed linking these two kinds of simulators (Avalanche4 and Lajolo5). If the power models are
well defined, these methods give a good accuracy, but they are quite slow because they use the RTL simulation.
The use of co-simulation improves the accuracy because it allows to obtain the interactions between modules
during their execution. Some of these methods give not only the total energy consumption at the end of
the simulation, but also its evolution in time (Lajolo5). Orinoco7 is the highest level estimation tool we know
(algorithm level), because it allows to compare the power consumption of different algorithms running in different
architectures.

Each one of these methods covers one stage on the highest levels of the design flow. However none enables
to estimate and optimize the energy dissipation of all elements of an architectural description of an embedded
system. A complete approach allowing this should be sufficiently:

1. Powerful, to allow power modeling of all the components of the SoC, and gives the total energy and the
energy evolution in time during simulation,

2. Fast, to allow energy analysis of a whole SoC in a reasonable time,

3. Accurate, to allow the energy comparison of several architectures and the application of dynamic low
power techniques,

4. Flexible, to allow dynamical manipulation of power parametres,

5. Easy to use, to not increase development time of designers.

In this paper, we present a new approach that, using some ideas from previous approaches, attempts to gather
all these needs.

3. PROPOSED APPROACH

An embedded system is a complex combination of components like processors, coprocessors (or hardware accel-
erators), memories and interconnections, connected as in the exemple on Fig. 1, and created to execute a given
application. Its design starts writing the algorithm that performs the application, following by the partitioning
of the algorithm functions in hardware and software tasks, and the choice of the hardware components to execute
the application in a particular architecture.

Cache
I D

Cache

Controller

Coprocessor

Coprocessor

Processor

BCU

SDRAM
Memory

Bus

Interface

Interface

Figure 1. Architecture of an embedded system.

At this time, a system simulation is required to develop the system architecture and the communications
between blocks and to support the software development of the low level drivers. That can be performed using
functional models of the components. Those models need to be sufficiently abstract because billions of simulation
cycles are required. The architectural simulation performed at cycle level allows a very fast analysis because the
simulation speed and the performance accuracy are very high for a short modelling time. Consequently, this
simulation allows the exploration of the whole system giving the possibility to find and solve problems on the
architecture design directly from the source. An exemple is showed in the paper of Jang.8

Our approach for the energy estimation consists of adding to the cycle level simulation a power consumption
estimation capability. It will allow to obtain power numbers of a complex embedded system very soon on the
conception flow and giving a good arrangement between accuracy, modelling time and simulation speed. There
exist several modelling methods at architectural level like TSS,1 CASS,9 and recently SystemC.10 They are all
event-driven. If the event is the clock, they perform cycle-accurate simulation. In these approaches, the hardware
components are modelled as states machines where the event (clock edge) produces the state transition. Even
if the simulation method and models description of the components are different for each one of these tools, the
modelling principle at cycle level is the same.

We use TSS, a cycle-accurate C-based simulation framework developed by Philips.1 TSS also enables
simulations with other tools, allowing to integrate Instruction Set Simulators (ISS), VHDL, Verilog and TSS
models. The TSS simulator is used for cycle-accurate functional simulation. In this paper we present how
the TSS models can be enriched with an energy view allowing to get energy estimations using cycle accurate
simulations.

The solution proposed is to analyze the basic functional states of the state machine of each TSS model in
order to estimate energy consumption per transition. An energy value is associated to each state transition
of the FSM (Functional State Machine) of the component. This energy value represents the dissipation of
the operations executed in the corresponding cycle. These energies per transition are accumulated during the
simulation of a particular application, giving the energy estimation per component and for the entire system

at point in time. This is not a completely accurate estimation but it is sufficient to find the best hardware
architecture scenario in terms of power consumption. This method can be generalized for all others simulators
that model the components at cycle level like states machines like SystemC. The whole energies per transition
of a component constitute its energy model. The way to build the energy models for all the components and to
add it to the TSS models is described in the next section.

4. SYSTEM AND COMPONENTS MODELS

The energy consumption for executing a task in the system can be observed at several levels. We analyze these
from higher to lower level. At the first level we can consider the total energy dissipation for the execution of
the whole application task in the target architecture. If m is the total number of components of the system, the
total energy consumption is obtained by accumulating the energies of all the components, according to (1).

Etotal =

m∑

i=1

Ecomponenti
(1)

At a second level we consider the total energy consumption per component, that is the accumulation of the
energy dissipation for all the transitions in the state machine of the component during the execution of the
application. If it needs n transitions, this energy is represented by the equation 2 (the number of transitions
and cycles is the same thanks to a property of the state machines definition that says that at every cycle there
is always a transition for a new or the same state).

Ecomponent =

n∑

j=1

Ecomponent,transitionj
(2)

Each component can have one or more state machines to simulate its behaviour. To simplify the notation,
we have considered only one state machine per component, but the method remains valid in all cases. The
transitions between states represent the functionality of the component per cycle. For each transition, one or
more basic operations are executed: read, write, operation1, operation2, wait, etc. Each operation has dynamic
and static energy consumptions associated. The energy associated to each operation of a component Ecomp,op,
corresponds to the lowest level of our model. The set of energies per operation for x possible operations is called
the energy model of the hardware block and is given in the equation 3.

Ecomponent = {Ecomp,op1, Ecomp,op2, ..., Ecomp,opx} (3)

In this way we define the energy dissipation per transition as a function of the operations executed during
the current transition in the state machine. An example for n transitions is showed in the equations 4.

Ecomponent,transition1
= Ecomp,op1

Ecomponent,transition2
= Ecomp,op4

+ Ecomp,op6

..........

Ecomponent,transitionn
= Ecomp,opx

(4)

In an example of embedded system like the showed in Fig. 1, the Etotal can be written as in (5).

Etotal = Eprocessor + Esdram + Ecoproc1 + Ecoproc2 + Ebus (5)

During simulation, each component is switching per cycle in a new or the same state depending on its
functionality and inputs. In fig. 2, we see the state machine of a component example with the energies per
operation associated to each transition.

E0

E (pJ)

�������
�������
�������
�������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

E5

E1 E2

E4

E3Eop5

Eop5

Eop3
Eop1

Eop5

Eop4 + Eop6

Eop4 + Eop6

Eop1

Eop1

Eoper3

Eop1

 +
Eop4

Eop6
 +

Eop4

Eop6 Eop2

Accumulated energy

Cycles

Eop4 + Eop0

Eop4 + Eop0

Eop2

1 432

100

150

200

50

0

Instantaneous energy
Eop2

Figure 2. State machine of a x component example

In fig. 2, the accumulation of the energies corresponding to the operations executed in the current state
transition, is calculated giving the instantaneous energy per cycle of the component. The detail of this calculation
is showed in the following equations 6.

Ecompx,transition1
= Ecompx,oper1

Ecompx,transition2
= Ecompx,oper4

+ Ecomp,oper6

Ecompx,transition3
= Ecompx,oper4

+ Ecomp,oper6

Ecompx,transition4
= Ecompx,oper2

..........

(6)

The accumulated energy gives the total energy per component with the equation 7.

Ecompx
=

Ecompx,transition1

︷ ︸︸ ︷

Ecompx,oper1
+

Ecompx,transition2

︷ ︸︸ ︷

Ecompx,oper4
+ Ecompx,oper6

+

Ecompx,transition3

︷ ︸︸ ︷

Ecompx,oper4
+ Ecompx,oper6

+... (7)

If there are m components in the system, the total energy dissipation is the addition of the accumulated
energies of each one, like shows the equation 8.

Etotale =

m components
︷ ︸︸ ︷

Ecompx
+ Ecompy

+ Ecompz
+ ... + Ecompm

(8)

The energy values per operation are calculated using several methods:

1. Macro-modelling, giving a library of values measured at low level.

2. Fast-modelling, using equations where parameters are easily estimated from technological, structural and
functional information.

3. Entropy, estimating the completely unknow parameters of the new hardware coprocessors using entropy
equations.

The processor and memory energy values are calculated using macro-modelling and the values come from
datasheet information. Hardware accelerators and interconnect use fast-modelling and the parameters of equa-
tions are estimated from low level information or using entropy.

The energy estimation flow proposed is showed in fig. 3. It begins with the parallel description of the
partitioned architecture at system level (C/C++, YAPI, SystemC). The task are associated to processors and

hardware accelerators, and the hardware components are described at cycle level in C-models (TSS, SystemC,
CASS). Some C-models can be already available like the memories or general processors.

The energy dissipation per state transition of each component is calculated and added to the model in a
well defined way according to the simulator functionning. The simulation starts with the corresponding current
energy parameters and inputs, and simulates the application behaviour. During the simulation and at the end,
the energy accumulated values can be observed and analysed. If there are all satisfactory, the conception flow
continues and the hardware description begins. Otherwise, several solutions can be proposed to correct the power
consumption results:

• Keeping the same partitionning but changing the model and system parameters (i.e. memory size, data/bus
width, frequency, voltage, etc).

• Keeping the same partitionning but modifying the functionnals models (i.e. including low power states).

• Changing the interfaces, the partitionning and the choices of architecture.

Simulation

No

Yes

.....

.....

Functional

modelling

Functional

changes

Energy

modelling

Parameters

Good
results?

HW/SW

Communications
synthesis

Hardware

estimation
Power

Power
optimization

changes
PartitionningParallel

description

cycle−accurate

modelling
C/C++
models

cycle−accurate

Parameters
changes

C−models
+ Energy

description
Software

development

models
VHDLAssembler

Drivers

Figure 3. Energy estimation flow at cycle level

Next subsections will explain in detail the energy models giving some energy values per component as exemple.

4.1. Processor energy model

The processor can execute two kinds of operations per cycle: the actives ones during the execution of instructions,
or the idle ones when there is a cache miss and processor stalls; and both in different modes of working: nominal,
voltage/frequency scaling and sleep. Nominal mode is the normal one, the scaling mode reduces the frequency
and voltage nominal values, and sleep mode employes clock gating techniques. The energy values per cycle can
be deduced from datasheets or can be measured at physical level per instruction and mode of working.

4.2. Memory energy model

The memory energy model corresponds to the energy consumption per cycle for each basic functionality of the
device. SDRAM memories are very complex and big structures where at each transition, an internal command
is generated to control the structure (e.g. idle, activate, read,...). We associate an energy value to the transition
of each command in the corresponding TSS model. For the others memories (SRAM, FIFO, etc), the energy
model is the same but only using read, write and idle commands.

The energy values per command are calculated from the voltage, current and frequency nominal values given
in datasheet, and scaled to current conditions of voltage using the Eq. 9 and 10.

Enom =
Inom × Vnom

fnom

(9)

E = Enom ×

(
V

Vnom

)2

(10)

where Inom, Vnom and fnom are the nominal values given in datasheets, and V the current voltage value used
in the system.

4.3. Hardware accelerators energy model

Hardware accelerators are modelled like state machines where different operations are executed for each state
transition. Each operation has associated an energy dissipation. All these energies constitute the energy model of
the component. Their values are calculated using fast modelling equations from the general equations of dynamic
power consumption on digital CMOS circuits. These equations use structural, functional and technological
parameters, that can be obtained from low level measures, or can be estimated using the available information
about the component or using techniques like the entropy.11

The energy value is the addition of the dynamic and static energies. The dynamic energy corresponds to the
switching activity in transistors and The total energy dissipation per operation is the addition of the combinatory
energy (gates) and the sequential energy (flip-flops). The static energy corresponds to the leakage currents in
transistors. Then the total energy consumption per operation is expressed as in the Eq. 11.

Etotal = Ecomb + Eseq (11)

The combinatory energy Ecomb is calculated using the Eq. 12.

Ecomb = µg × Egate × Ngates (12)

where µg is the gates activity (% of switching gates), Egate the energy consumption per switching gate for a
technology and Ngates the total number of equivalent gates in the component. The sequential energy Eseq is
calculated using the Eq. 13.

Eseq = [µff × Eff + (1 − µff) × Effck] × Nff (13)

where µff is the flip-flops activity (% of flip-flops with an output transition), Eff the flip-flop active energy
dissipation (the total energy required by a flip-flop to perform an output transition in a clock edge), Effck the
flip-flop clock energy dissipation (the energy dissipated by a flipflop in a clock edge without an output transition),
and Nff the total number of equivalent flip-flops. The static energy is negligible during the active cycles. However

it has to be account in idle cycles, especially in submicron technologies, where the static currents, Ifuite, become
very important. Its value is calculated using the equation 14.

Estat =
1

2
× (4Ngates × 16Nff) × Ileakage × Vdd × ∆T (14)

The parameters of the equations are obtained from low level measures or using entropy. We estimate these values
for all the working modes of the component: nominal, voltage/frequency scaling and sleep (clock gating).

4.4. Interconnect energy model

An embedded system can perform different types of transfers. The energy model is the same for all of them and
is made using fast-modelling. It consists of the energy dissipated for all the switching lines per cycle. If we have
Nswitch switching lines during the transition, with a capacitance Cline per interconnect line and a voltage switch
of Vdd, the energy used in the model is given by Eq. 15.

Einterconnect = Nswitch ∗Cline ∗ V 2

dd (15)

5. MPEG4 IMPLEMENTATION EXAMPLE

This approach has been tested on an example of embedded system for portable application: a MPEG-4 video de-
coder, implementing the simple profile. A preliminary HW/SW partitioning has been already made. The system
consist of an ARM processor with I+D caches, an SDRAM memory, hardware accelerators and interconnect. It
is illustrated in the fig. 4

ARM
940T

Cache

SW

ARM IF

AHB−DVP INT

DDRC SDRAM

SDRAM

BCU
AHB

ISIQ

AHB INT

Bus on−chip

IDCT
REC

BLW

MC

Memory

(SRAM)
AHB

Controler

DVP

AHB

Spy

Spy

Figure 4. MPEG4 system example

The energy model of the processor is based on Sinha work,12 that demonstrated that the energy consumption
in ARM processors varies only about 8% between the various instructions of a program. Therefore we can consider
an average energy per cycle for all the instructions of our application program. The TSS state machine detects
the active and idle cycles per transition, and accumulates the corresponding energy depicted in ARM data-sheet.

The memory used is a Micron 64x32 Mbits DDRC SDRAM memory, at 2.5 V and 83 MHz. The energy
values per command are deduced from datasheets information and inserted in the TSS model.

Several accelerators are used too, each one performing several operations per cycle. The energies per operation
are calculated using parameters calibrated from RTL measurements on a CMOS12 implementation and from
entropy estimations.

Two kinds of interconnect are used: onchip and offchip. The capacity and voltage parameters of each one
are deduced from other implementations, and the number of switching lines are detected using spy models in the
TSS simulation. An example of the energy values is showed in the table 1.

An example on our system is the IDCT, an accelerator of the MPEG4 decoder. It can perform two types
of operation per transition: idle and idct 1 Dimension (one or two times per transition). The values of their
parameters and the energies per operation in Philips CMOS12 implementation can be found in the table 1. There
are others accelerators in our system and their energy models are very similar to this one, but adapted for their
particular operations.

A TSS spy model detects the number of switching lines per cycle in the interconnections on the system. An
example of values for the amba-AHB bus is showed in the table 1.

Table 1. The energies per operation on the system

Block Mode Energy (pJ)
Active nominal (1.3V) 250

Processor Idle nominal (1.3V) 110
(ARM940T + caches) Active V/F different (1V) 150

Idle V/F different (1V) 60
Sleep (1.3-1V) 10

Block Command Energy (pJ)
Precharge standby 1407
Precharge power down 87
Operating 2993

DDRC SDRAM Active standby 1485
(Micron) Active power down 860

Read 4610
Write 3438
Precharge 1497
Refresh 4594

Block Parameters Value
N gates 6180
N ff 440
E gate (CMOS12) 10 fJ

IDCT E ff (CMOS12) 53 fJ
(Inverse Cosinus E ffck (CMOS12) 19 fJ
Discrete Transform) µ idct1D 36 %

E oper idle 8.269 pJ
E oper idct1D 41.253 pJ
E oper sleep 1.26 pJ

Block Parameters Value
wire capacity 1.1 pF

Interconnections voltage 1.2 V
E line AHB bus 1.6 pJ

6. EXPERIMENTAL RESULTS

We have decoded an INTRA images sequence in our TSS MPEG4 decoder implementation example. The format
is QCIF (176 pixels/line × 144 lines at 15 frame/s). The energy estimation results for one image decoded in the
normal working mode are showed in the table 2. The accuracy of these estimations depends on the accuracy of

the cycle-accurate functional modelisation and on the accuracy of the energy values. Our TSS models are well
defined and the energy values are calibrated from RTL measurements, so the error of the energy estimation is
considered lower than 6% from physical measurements.

The energy results show that the SDRAM memory is the most power consuming element, after the processor,
then the off-chip interconnect and finally the accelerators. This is because it is a very big and consuming memory,
and their off-chip accesses are quite slow, giving a lot of idle cycles in all elements. To reduce this energy we
apply low power techniques at architectural level, specially on the memory. The more interesting techniques
are another memory hierarchy, data embedded compression before memory stores, clock gating for all elements,
several frequencies between the components and voltage reduction on the processor. The percentage of power
reduction obtained using these techniques are showed in the 4rd column of the table 2 for each components and
in the fig. 5 for the whole system.

Table 2. The energy consumption of a MPEG4 decoder

Component Image Energy Low Power Percentage
(normal mode) Technique Reduction

ARM 641 µJ Voltage reduction 60 %
Sdram 5725 µJ Embedded SRAM 91 %
HW decoder 46 µJ F/Vdd reduction 90 %
Off-chip interconnect 366 µJ Embedded SRAM 100 %
On-chip interconnect 6 µJ - 0 %

Total energy 6784 µJ 475 µJ 93 %

Nb total cycles 3236532 2469759
Frequency 83 MHz 83 MHz

Total Power 174 mW 16 mW 91 %

20%
30%
40%
50%
60%
70%
80%
90%

10%

Power reduction on the system (%)

SRAM
−1T

Cloc
k G

ati
ng

CPU do
ub

le

fre
qu

en
cy

in
SDRAM

Embe
dd

ed

co
mpr

es
ion

Cloc
k G

ati
ng

ac
ce

ler
ato

rs

Vdd
 an

d f
req

.

red
uc

tio
n

ac
ce

ler
ato

rs

Vdd
 C

PU

red
uc

tio
n

Figure 5. Percentage of power reduction on the system per technique

We observe very important energy reductions in almost all the components. Techniques are applied per
component but the effect influences all the elements on the system and our approach allows to study this effect.

We observe also that the energy could be reduced much more with another system partitioning adding more
hardware accelerators to discharge the processor and the memory utilisation.

The maximum reduction obtained when all these techniques are applied together is 93%. This is a very good
result that confirms the interest of our approach for energy estimation and optimization at architectural level of
complex embedded systems.

7. CONCLUSIONS

We have presented an approach to estimate and optimize the energy consumption in architectural level descrip-
tions of embedded systems. We use the cycle-accurate simulation where functional models of the hardware
components are extended with an energy view. This consists of the energy per operation for each state transi-
tion of the component. The approach has been validated on a hardware/software MPEG-4 video decoder system
example, obtaining energy estimations during simulation. The results gives a very good accuracy of 6% because
the functional models and the energy numbers are sufficiently accurate. We have applied several low power
techniques and observe very important energy reductions 93%. It demonstrates the application of our approach
for the fast and early energy evaluation and optimizations of systems-on-chip at architectural level. This method
can be extended to others system simulation environments at cycle level like SystemC.

REFERENCES

1. F. Theeuwen, “Tss, system simulation at philips research,” Talk at the MEDEA Workshop on System
Simulation , May 1998.

2. Philips Electronic Design & Tools Group, Philips Research, DIESEL User Manual, version 2.5 ed.,
June 2001.

3. T. Simunic, L. Benini, and G. D. Micheli, “Cycle-accurate simulation of energy consumption in embedded
systems,” Proceedings of the IEEE 36th DAC, Design Automation Conference, pp. 867–872, 1999.

4. J. Henkel and Y. Li, “Avalanche: an environment for design space exploration and optimization of low-power
embedded systems,” Transactions on VLSI Systems 10, pp. 454–468, 2002.

5. T. M. Lajolo, A. Raghunathan, S. Dey, and L. Lavagno, “Efficient power co-estimation techniques for system-
on-chip design,” Proceedings of the IEEE DATE, Design Automation and Test in Europe conference, 2000.

6. BullDast, “Powerchecker: An integrated environment for rtl power estimation and optimization,” Version
4.0, http://www.bulldast.com.

7. ChipVision, “Orinoco: A high-level power estimation and optimization tool suite3,”
http://www.chipvision.com.

8. H. Jang, M. Kang, M. Lee, and al., “High-level system modeling and architecture exploration with systemc
on a network soc: S3c2510 case study,” Proceedings of the IEEE DATE, Design Automation and Test in
Europe conference, 2004.

9. D. Hommais, F. Petrot, and I. Auge, “A toolbox to map system level communications on hw/sw architec-
ture,” 2001.

10. “Systemc open source,” SystemC Version 2.0.1 User’s Guide, http://www.systemc.org.

11. M. Caldari, M. Conti, P. Crippa, and al., “Dynamic power management in an amba-based battery-powered
system,” Proceedings of the 6th IEEE ICECS, International Conference on Electronics, Circuits and Sys-
tems, pp. 525–528, 2002.

12. A. Sinha and A. Chandrakasan, “Jouletrack - a web based tool for software energy profiling,” Proceedings
of the IEEE 38th DAC, Design Automation Conference, pp. 220–225, 2001.

