
TSUNAMI: An Integrated Timing-Driven Place And Route Research Platform

Christophe Alexandre1, Hugo Cĺement1, Jean-Paul Chaput1, Marek Sroka1,
Christian Masson1,2, Rémy Escassut3

1University Paris VI, LIP6/ASIM laboratory,2Bull SA, 3Silvaco

Abstract

In this paper, we present an experimental integrated
platform for the research, development and evaluation of
new VLSI back-end algorithms and design flows. Intercon-
nect scaling to nanometer processes presents many difficult
challenges to CAD flows. Academic research on back-end
mostly focuses on specific algorithmic issues separately.
However one key issue to address also is the cooperation
of multiple algorithmic tools. TSUNAMI, our platform, is
based on an integrated C++ database around which all
tools consistently interact and collaborate. Above this plat-
form a fixed die standard cell timing-driven placement and
global routing flow has been developed.

1. Introduction

The advent of nanometer silicon technologies has intro-
duced new challenges in physical design CAD, introducing
an almost intractable interdependence between the tasks of
synthesis, placement, global and detailed routing, timing
optimization and noise avoidance. Therefore new design
flows are being worked out with major objectives : avoid
iterations between levels of design, enable early assessment
of chip area and performance, reduce design uncertainty
on the feasibility of later design steps and provide scalable
tools against complexity increase.
The key issue is to let multiple algorithmic tools cooper-
ate through an integrated database providing a unified view
of the ongoing state of the design, in order to concurrently
refine all interacting design facets. This issue has been ad-
dressed by proprietary solutions into CAD industry. Re-
cently the OPEN-ACCESS initiative [3] has proposed an
open-source standard with the intent to improve interoper-
ability of CAD tools.
The TSUNAMI project is one of the first academic at-
tempts to develop a back-end platform where all algorithmic
engines operate on an integrated C++ database (HURRI-
CANE) around which they consistently interact and collab-
orate. This ongoing project currently addresses the timing-

driven placement and global routing of fixed-die standard
cell blocks.
In the following sections, we will briefly present the HUR-
RICANE database, the TSUNAMI flow currently imple-
mented and the main features of its algorithmic engines.

2. HURRICANE: the C++ database

HURRICANE is a lightweight C++ object oriented
database and programming platform which provides a uni-
fied and consistent modeling of hierarchical VLSI layouts
through all the design steps from logic description down to
detailed layout. It also consistently manages parasitic data
(RC trees) and the timing graph. For that purpose :

• It provides a powerful API for fast access and incre-
mental update which fully relieves the application program-
mer from memory management issues.

• It allows the seamless forward or backward transfor-
mation of net-list into a global routing or a detailed layout
(or a mix of those states), ensuring built-in connectivity in-
variance.

• It represents a hierarchical layout as a ”folded” mem-
ory data model (as usual), but provides a ”virtually un-
folded” view to the tools tracing, annotating or displaying
its content. For that purpose it manages the concept of ”oc-
currences” which virtually refer items anywhere within the
”unfolded” design hierarchy.

• User defined properties and relations can be attached
to any database object but also to occurrences (without the
need to ”unfold” or ”flatten” the design hierarchy). This
provides elegant ways to design algorithms for visiting, ex-
tracting and annotating hierarchical designs.

• It provides a rich (extensible) set of powerful query
objects (”collections”) for visiting database items or occur-
rence items.

• It embeds high performance 2D region query facilities,
a high speed graphical display engine and a graphical ”data
structure inspector”, significantly simplifying the develop-
ment and debugging of layout algorithms, editors and user
interfaces.
HURRICANE was developed by BULL S.A. in close co-

operation with UPMC/LIP6 and later with the support of
SILVACO. It has been focused on the fast development of
integrated RTL to silicon flows, full-custom layout gener-
ators and technology migration tools for highly hierarchi-
cal layouts (it has been used for the migration of a 40 M
transistors CPU IC from 120 nanometer 6 M layers to 90
nanometer 9 M layers CMOS process).

3. The TSUNAMI platform and flow

Above HURRICANE, the TSUNAMI platform provides
general services: input/output LEF/DEF interfaces, cell
library timing data inputs and utilitarians for building GUIs
above the Hurricane display engine.
It also provides a interpretative PYTHON interface both
as an extension language to HURRICANE API and as an
encapsulation facility for the algorithmic engines in order
to build and experiment different optimization flows and
easily integrate new engines.
Within this environment, each algorithmic tool is an engine
(a C++ object with its PYTHON wrapper) whose task is
to analyze or process the current state of the design. Are
currently implemented:

• A space manager, which plays a central commu-
nication role. It manages the recursive division of the
design area into bins, the fences separating them and the
pseudo-pins for nets crossing fences.

• A global placer, based on thehmetis multi-level
net-list quadri-partitioner [1], which refines cell location
into bins.

• A global router which refines or rebuilds the steiner-
tree topology of nets. It can operate both within placement
refinement steps and after placement finalization.

• A parasitics estimator which evaluates RC according
to the level of precision of the routing and a delay evaluator
which computes and stores Elmore delays.

• A static timing analyzer which, from interconnect
delays and library cell delays, determines critical paths and
valuates nets criticality to be fed back to placer and router.

• A detailed placer which finalizes and legalizes cell
locations in each terminal bin.
And those under development:

• A gate sizing and buffer placement tool.
• A detailed router driven by the global router directives.

The standard cell place and route flow developed and
under experimentation (figure 1) is a top-down progressive
refinement process which proceeds by a succession of
interleaved phases of quadri-partitioning, global routing
and net-list timing optimizations:

• The entry point of a refinement loop is the geometric
quadri-partitioning of all bins with more than 100 instances.
Then each net-list of those bins are quadri-partitioned (but

gate sizing

buffer planning
&Static Timing Analysis

RC Estimation

Edge/Net Criticality

placement

and bin
initial netlist

global
routing

refine

all bins

detailedfinalize
global
routing

quadri−partition
area of each bin
>

quadri−partition
correspondings

sub−netlists

buffer
physical
insertion

yes

 100 instances
 100 instances<

no

detailed
routing

Figure 1. Overview of the place&route flow

taking into account pseudo-pins and net criticalities, if
already available from a previous iteration).

• Then the global router (re)builds or refines the
steiner-trees of all nets whose cells have changed location.
It has multiple algorithmic tactics tailored for different net
configuration and timing criticalities, and tries to minimize
both wire length and congestion on fences.

• Then the RC trees are (re)evaluated and a new static
timing analysis is processed in order to compute updated
critical paths, slacks and criticality value on each arc of the
timing graph [2].This provides tighter directives to the next
placement and global routing step.

• At this step, data is available to proceed (in the future)
to gate sizing and buffer planning (virtual insertion in the
timing graph, not in the net-list).

At the end of the refinement loop (after buffers physi-
cal insertion) the simulated annealing detail placement
of each bin is completed. Global routing is then refined,
taking into account pin locations and obstructions. The
resulting global routing directives and net criticalities will
be fed to the detailed router under development.

References

[1] G. Karypis and V. Kumar. Multilevel k-way hypergraph par-
titioning. In Proceedings of the 36th ACM/IEEE conference
on Design automation, pages 343–348. ACM Press, 1999.

[2] T. T. Kong. A novel net weighting algorithm for timing-driven
placement. InProceedings of the 2002 IEEE/ACM interna-
tional conference on Computer-aided design, pages 172–176.
ACM Press, 2002.

[3] D. Mallis and D. Cottrell.OpenAccess: The Standard API for
Rapid EDA Tool Integration. Silicon Integration Initiative,
Inc., 2003.

