
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 1

Platform based design from parallel C specifications
Ivan Augé, Frédéric Pétrot, François Donnet and Pascal Gomez

Abstract— This paper presents Disydent, a framework ded-
icated to System on a Chip (SoC) platform based design for
shared memory multiple instructions multiple data (MIMD)
architectures. A platform based design problem is a triplet
(system, application, constraints) where the system is both an
operating system and a hardware template that can be enhanced
with dedicated co-processors. Our contribution is firstly the
definition of a complete flow for platform based design, from
application to integration including all necessary intermediate
steps, and secondly a set of tightly bound, operational, tools to
implement the flow.

Disydent is based on 4 tools. DPN is a C library for describing
Kahn Process Network-based applications. ASIM0 is a multipro-
cessor target platform running a micro-kernel. This platform
can be enhanced with co-processors generated by the UGH high
level synthesis tool. CASS is a high performance cycle-accurate
simulator.

The main steps of the design flow are Kahn Process Network
modeling, functional validation, design space exploration, high-
level synthesis and temporal validation. The design flow starts by
modeling the application as a Kahn Process Network. This initial
description is done in C using the DPN library. The functional
validation is performed by running the initial description directly
on the host. Without modifying the initial description, the user
can simulate a hardware/software partitioning by indicating
the number of processors and the processes that are to be
migrated to hardware. This simulation is done at the cycle-
accurate level for the whole system, except for the migrated
processes for which the user must provide estimated time models.
The description of the processes that are selected for hardware
implementation must be translated into a subset of C and then
synthesized. This new description is still compatible with the DPN
library, so it can be used for functional validation. The temporal
validation is done at the cycle-accurate level using the initial
description for the software processes and cycle-accurate models
automatically generated from the C subset description for the
hardware processes.

Disydent’s strength relies on its formal Kahn Process Network
model that ensures a behavior that is independent of the overall
system scheduling, its fast cycle-accurate validation that is several
order of magnitude faster than classical event driven simulators,
and its single description of a process that is used as input of
DPN, CASS and UGH.

Index Terms— Platform based design, System modeling, Cycle-
accurate simulation, High-level synthesis.

I. INTRODUCTION

THE term co-design is used in the literature every time a piece of
software and a piece of hardware are designed together. Some

Manuscript received November 7, 2003, revised March 22, 2004, June 25,
2004, September 9, 2004 and November 24, 2004.

I. Augé and P. Gomez are with the LIP6 laboratory, Université Pierre et
Marie Curie, Paris, France.

F. Pétrot was with the LIP6 laboratory, Université Pierre et Marie Curie,
Paris, France. He joined the TIMA laboratory of the Institut National
Polytechnique de Grenoble in September 2004.

F. Donnet was with the LIP6 laboratory, Université Pierre et Marie Curie,
Paris, France. He joined the m2000 company in January 2004.

approaches to co-design result in a large portion of hardware and a
smaller one in software, and vice-versa. For instance [1], [2], [3], [4]
take one loop nest and generate a systolic accelerator. In particular, [4]
takes as input a parameterized static nested loop program described in
Matlab and generates a network of synthesizable virtual processors.
In [5], [6] the software part is reduced to the driver that allows to
exchange data in the order demanded by the synthesized accelerator.
In the opposite direction [7], [8], [9] extend existing processors with
a few hardware modules and put efforts in the detection of hardware
modules in the original software. In between stands work such as [10]
and [11], in which an application is specified and a parameterized
target architecture is defined. The focus is then on how to realize
the application in both software and hardware, and how both worlds
communicate.
The final implementation may be very different. It may be a PC with
a FPGA board, an existing DSP board with dedicated coprocessors,
an existing board with a processor and FPGAs, a system either on
chip or on an ad-hoc board.
The underlying co-design techniques are quite different. [8], [9]
use a VLIW approach that extracts the instruction level parallelism
to generate a MISD machine. [1], [2] use spatial and temporal
projections of the loop nest to generate a SIMD machine. [11], [12],
[13] extract coarse grain parallelism to generate a MIMD machine,
whose actual implementation may be shared or distributed memory.
Finally, the implementation can be done from scratch or using
existing hardware, or on top of an existing system that already
includes hardware and software components.

This paper presents Disydent, a framework dedicated to System
on Chip (SoC) MIMD shared memory platform-based design. The
starting point of the approach is an application described as a set
of communicating processes exchanging data exclusively through
blocking, lossless, point to point, FIFO channels, known as Kahn
Process Networks (KPN)[14]. The endpoint of the approach is an
actual implementation that instantiates predefined and synthesized
Intellectual Properties (IPs) on top of which runs a parallel applica-
tion. The choice of the KPN model of computation[15] is motivated
by the fact that the KPN behavior is deterministic. It only depends
on the data flow and not at all on the scheduling as long as the
blocking semantic of the channel access is preserved. This property
is very interesting in co-design because the scheduling overhead can
significantly vary when the number of processors changes or when
a process migrates from software to hardware and vice-versa. The
drawback of using KPN specifications is that it cannot describe all
the applications. However, the class of applications covered by the
KPN model is large. It contains all statically schedulable applications
and many non statically schedulable ones.

The paper defines the platform based design problem from the
point of view of a system integrator, then details the design flow using
a Motion-JPEG decoder example and finally describes the tools.

II. RELATED WORK

The idea of doing system level design from C-like specifications
is not new. A major early contribution was done by Gupta and De
Micheli with HardwareC[12]. The entry point is a set of processes
in HardwareC, a superset of C with specific communication prim-
itives allowing the exchange of a single data or event. The target
architecture is made of a single processor, memory and coprocessors.
FIFO channels are used for communication between the software and
the hardware. The authors present an algorithm that automatically
allocate the processes on hardware or software based on high-level
cost models for the processor and the communications. High-level

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 2

estimation does not accurately take into account cache effects, bus
contention, bus arbitration policies, or the cost of the operating
system. This approach does not support multiprocessor systems,
although they are often useful in practice, because the nonrecurring
engineering cost (NRE) can be lowered by using several existing
processors, rather than specific hardware.

[11] presents Symphony, a distributed multiprocessor architecture
with coprocessors on which CSP[16] applications are mapped. Their
focus is on communication synthesis. They introduce ad-hoc parame-
terized hardware components to implement the hardware part as well
as the software part of a hardware/software communication channel
implementing the synchronous wait protocol. From a user point
of view, the implementation is hidden behind the communication
primitives, in C++ for the software part and in synthesizable VHDL
for the hardware part. Mapping an application consists of assigning
processes either to a processor or a coprocessor. This is a co-design
platform generator, but no details are provided on how to use these
primitives in a micro-kernel or how to evaluate the performances of
the co-designed application.

More recently, the Polis[17] initiative outlined the interest of a
clear separation between functionality and architecture. Polis uses a
single model, based on Codesign Finite State Machines specified in
Esterel, and it is dedicated to reactive systems. This model imposes
constraints for defining a design flow going from specification to
implementation. Polis is more dedicated to real-time systems and
formal validation than to general purpose or signal processing appli-
cations and simulation. Furthermore, Polis is not a fully integrated
environment (simulator, kernel, synthesis tools are external tools), and
thus engineering work is required for the adaptation to these external
tools.

Cadence VCC[18] extends Polis to other application domains.
However, it relies on models provided by the user at the different
levels of abstraction (functional, temporal estimation, cycle accurate).
This makes VCC difficult to use in daily life because of the initial ef-
fort in model development, at least as long as it has not been accepted
as a standard by the IP providers. An in-depth experimentation of this
approach, also starting from a KPN description has been performed
by Brunel et al.[19]. This experimentation has shown us that handling
the various descriptions of each component was hardly manageable
and difficult to understand for the application designer.

Metropolis[20] is an approach that aims at relaxing constraints
of Polis, such as its discrete event model of computation used as
input specification. It introduces a meta-model capable of capturing
functionality, architecture, and the mapping of the former on the
latter. The meta-model has precise semantics, allowing simulation
and formal analysis. This approach is attractive, because it is general
enough to handle many application domains, and allows formal
reasoning. However, it suffers the same integration difficulties as its
predecessor, because the burden of library development still rests on
the designer’s shoulders. Also the tight integration of all the tools
used from specification to integration has yet to be proposed.

[11] proposes a platform generator based on a template, but not
an easy way to develop applications on it. [12] proposes a restricted
platform with synthesis tools, but not accurate performance estima-
tion. [18], [20] cover the required modeling levels, from functional to
temporal estimation to cycle-accurate. However, going from one level
to another requires either different descriptions of the component or
complex configuration parameters.

For the application designer, none of these approaches is a solution
starting from the application specification to the final hardware
integration. To solve this problem, we use a KPN specification for
its deterministic property as in [19], a platform template to quickly
target a solution, as in [11], a synthesis tool, as in [12] and the
three simulation levels of [18] for functional validation, design space
exploration and temporal validation.

III. DISYDENT PRINCIPLES

A. Definition of platform based design
The problem we face is to enhance an existing device (i.e. PDA,

Cellular phone) by integrating a new application.
We define the platform based design problem as a (system,

application, constraints) triplet in which the system already exists
and the application is not supported by the system. By existing
system, we mean a collection of hardware and software that run
applications. However, the hardware can eventually be incrementally
enhanced by adding hardware accelerators. Fitting into an existing
system generally implies that hardware accelerators use the system
frequency whenever possible for simplicity reasons, and compulso-
rily use the same target technology. Furthermore, software drivers
and hardware components are needed for HW/SW communications.
Finally, a functional and temporal validation is necessary for the new
application within the system, especially when the target system is a
SoC.

B. Inputs
To make an implementation of his (system, application, con-

straints) triplet, the user has to provide two inputs for describing
the system and the application, the constraints are not Disydent
inputs but design properties (area, duration of a treatment, ...) that
the implementation must respect. The first input is a model of
the application in the form of a restricted Kahn Process Network
(KPN)[21] written in the C language. The restricted KPN is a set
of sequential processes communicating through lossless FIFOs of
finite size. The FIFOs have a single producer and a single consumer,
the read primitive is blocking if the FIFO is empty, and the write
primitive is blocking if the FIFO is full. Parks[22] proved that
bounding the sizes of the FIFOs and having a blocking write conserve
the determinate behavior property, however the restricted KPN may
introduce deadlocks. In the rest of the paper, we keep using the name
KPN for this kind of network. The second input is an extended
system built by adding coprocessors to the basic ASIM0 system
(see Figure 1). This system is a fairly standard architecture with
components plugged on a bus and an operating system.

RAM

Coprocessor

FIFO
InterfaceTimer

Controller
Interrupt ROM

BCU

Coprocessor

FIFO
Interface

CPU

ICache DCache

CPU

ICache DCache

CPU

ICache DCache

CPU

ICache DCache

on chip bus

Basic ASIM0 board

Fig. 1. Extended hardware.

The KPN specification does not permit the user to describe
all the applications. At the user’s level, the KPN input limits the
communication to FIFOs. However, the FIFOs are implemented using
solid, hand-optimized components that internally use shared mem-
ory, semaphores and interrupts and more complex communication
schemes such as direct memory access (DMA). Designing by using
this approach is quick, because it avoids repeated creation of similar
communication schemes [19].

Nevertheless, we cannot prevent a user from using a hidden shared
variable in the C description. Such a variable is usable if the processes
that share it all end up in software. If it is not the case, communication
and high level synthesis will not be able to implement it. Identically, a

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 3

HW/SW mapping

temporal resultsfunctional resultssources tools user actions

Loop 1

Loop 2

Synthesis and validationSequential implementation

Parallel specification

C description
parallel

parallel
C/UGH−C description

DPN
simulation

simulation
board

sequential
C description

DPN
simulation

simulation
board simulation

extended boardparallel
C description

+
H/S partition

parallel
C/UGH−C description

+
H/S partition

extended board
simulation

synthesis
of UGH−C description

parallel
C description

+
H/S partition

Fig. 2. Disydent design-flow.

hardware process can ignore the hardware FIFO protocol by writing
to (or reading from) a FIFO without checking if the FIFO is full
(or empty), or even abandon the deterministic world of Kahn by
performing a select between several FIFOs.

The final system is an extension of the ASIM0 platform. This
can be seen as a limitation, but the target board and system are the
part of the specification. By setting the target system early in the
design process the application designer is freed from hardware design,
netlist creation, addition of drivers to operating systems, and software
problems, such as cross-compilation of the application, library ports,
co-simulation (e.g. VHDL and C), and so on. Furthermore, this
reflects what is done presently in the industrial world. There are
semiconductor houses who create platforms for the system houses.
There exist also operating system houses that provide OS for the
platform.

C. Tools
Disydent is based on 4 tools that permit the user to move from

the functional specifications to the actual implementation. Each tool
is briefly described below and detailed in Section V.
DPN is a C library that implements the FIFO communications of the
Kahn model using the POSIX threads,
ASIM0 is a target platform (see Figure 1). The hardware is basically
composed of one or more MIPS R3000 CPUs with instruction and
data caches, a PI-Bus[23], interrupt controller, RAM and ROM,
and can optionally be extended with FIFO interfaces and hard-
ware coprocessors. For multiprocessor architectures, the memory
coherency is ensured by the use of a write-through cache with bus
snooping. The RAM and ROM sizes are parameters that should be
adjusted depending on the application. All the components share the
same clock, and the maximum frequency is 133MHz for a 0.35µm
technology. Peak performances are 1 instruction per cycle for the
R3000s and one transfer per cycle for the PI-Bus.
CASS is a cycle-accurate simulator[24]. CASS modules are written
in C. Furthermore, each component of ASIM0 has a CASS simulation
module.
UGH is a synthesis tool[25]. Its inputs are a C program and the
clock frequency. It produces both a synthesizable VHDL model and
a CASS simulation module.

IV. DESIGN FLOW

The Disydent design flow is based on 4 main phases, as shown in
Figure 2. The sequential implementation is a bare C program without
any parallelism. The parallel specification is the application rewritten
as a Kahn Process Network to exhibit coarse grain parallelism. In
the HW/SW mapping stage, the designer looks for suitable HW/SW
partitions among the processes of the parallel specification. Finally,

synthesis and validation includes synthesis of processes mapped to
hardware and the temporal validation of the triplet.

The design flow is not a fully automated approach in that the
designer plays a central role in each phase. At every iteration,
Disydent provides information that guides the designer to a solution
and prevents him to enter a track that leads to a dead end.

A. The Motion-JPEG decoder example
In this paper, we illustrate the Disydent design approach with a

video decoder. The decoder reads a stream of JPEG[26] images,
called Motion-JPEG, from an input peripheral and writes pixels into
an output ramdac. The general structure of JPEG decoding is shown
on Figure 3. The Motion-JPEG triplet is defined as follows:
Motion-JPEG = (system: ASIM0 with an input stream peripheral and
an output ramdac; application: Motion-JPEG decoder for 256-level
grayscale images; constraints: frequency of 50 MHz, 25 frames/sec
for 128x128 images, area of added hardware less than 35 mm2).

We target a 0.35 µm technology. In this technology, the area of
a MIPS R3000 with two 2 Kbyte caches occupies 15 mm2, and 1
Kbyte of static RAM occupies 1 mm2. The initial specification of
the Motion-JPEG is a C program that reads the compressed images
from a file and writes their pixel maps into a file.

Coefficients
DC Frames

Bitmap

Image
Size

Quantization
Tables

Frames
JPEG

Huffman
Tables

Coefficients
AC

VLD ZZ IQ IDCT

LIBUDEMUX

Fig. 3. Motion-JPEG Decoding principle.
1) DEMUX dispatches the input stream to the other blocks,
2) VLD performs a Huffman variable length decoding,
3) ZZ reorders the stream of coefficients,
4) IQ performs the inverse quantization,
5) IDCT performs the inverse discrete cosine transform,
6) LIBU is not a JPEG operation, but is necessary to adapt the pixel stream to a

given output controller.

B. Sequential implementation
Goals One must enter the application into the system and then

get profiling information to help in the next phases.
Designer work

The initial description is in C for general purpose comput-
ers. It is necessary to modify the input/output functions to
adapt them to the I/O components of the target platform.
In our example, we plug a traffic generator into the bus
(camera, videophone, ...) and a ramdac (screen) to replace
the I/O files.

Disydent run
The designer executes the sequential application on the
target platforms simulated using CASS. CASS gives the
duration in cycles of the run. If these timings fit the
constraints, then the design is over. If constraints are
close to being met, then it is worthwhile to optimize the
application.
If not, the application is executed again while profiling
information is gathered. The profiling information is the
number of cycles spent in each function.

Example
We modify the C description to read the data from the
stream generator and write the pixels into the ramdac.
The execution takes n = 124 · 106 cycles at a frequency
of f = 50 MHz, the duration is d = n/f = 124

50

or 2.5 seconds, so the number of frames per seconds
is fps = 25/d = 10. So, we need a speedup of
2.5. The sequential implementation does not satisfy the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 4

constraints, so the application is executed again to gather
profiling information. The Motion-JPEG requires 6 steps,
as illustrated Figure 3. Table I presents the percentages
of CPU time spent in the main functions of the decoder.
Table II presents the average amount of bytes exchanged

TABLE I
MOTION-JPEG SEQUENTIAL PROFILE

VLD ZZ + IQ IDCT others
23% 22% 46% 9%

TABLE II
AMOUNT OF EXCHANGED DATA PER FRAME

input → DEMUX : 3024 bytes
DEMUX → VLD : 2691 bytes
VLD → ZZ+IQ : 65536 bytes
ZZ+IQ → IDCT : 65536 bytes
IDCT → LIBU : 16384 bytes
LIBU → output : 16384 bytes

per frame between the different functions. The DEMUX
and VLD functions work on Huffman encoded data, and
their size depends on the size of the image.
The entries in the table give the average size for the
example used in the experiments of Section VI. ZZ, IQ
and IDCT are working on macroblocks in the frequency
domain, the size is constant (A 16 × 16 grid of 8 × 8

macroblocks with 32 bit coefficients). LIBU processes
128 × 128 pixel images, with each pixel represented by
an 8 bit value.

C. Parallel specification
Goals To increase the performance, the application must be

parallelized and/or pipelined. The Disydent approach ad-
vocates a MIMD solution using Kahn Process Networks,
as formalized in [13]. To describe the KPN, Disydent
provides the DPN library that implements the KPN com-
munications, with the restriction that the FIFOs have a
finite depth.

Designer work
The user defines a KPN of the application using profiling
information gathered during the sequential execution and
his knowledge of the application. He then describes the
KPN in C. This last point consists firstly of restructuring
the sequential source. Each Kahn process is described
by a C function that has DPN FIFOs as parameters and
interprocess communication is performed using solely the
DPN I/O primitives (using global variables for this purpose
is not allowed). Secondly, it consists of writing the main
function that creates the DPN FIFOs and then runs the
Kahn processes as POSIX threads.

Disydent run
The KPN application is compiled with the DPN library
on the host machine, and executed on the host to check
its behavior. Once the parallel specification is functionally
validated, it must be embedded on the target platform.
This is done by cross-compiling the KPN application, and
by generating several platforms. The platforms differ by
their number of processors. Due to the limited amount
of parallelism, the execution time reaches a plateau for
a given number of processors. Either the timing and
area/power constraints fit, and the design is finished, or
the constraints are violated, and the application is executed
again and profiling information is gathered. The profiling
information consists of the number of cycles spent in each
process, the number of cycles spent in the system (context

switches of the process and interprocess communications),
and the bus load.

Example
Obtaining a KPN description from a sequential one is not
an easy task. The main difficulty is due to the large number
of possible solutions. For the Motion-JPEG triplet, one
can search for parallelism and use an image as granularity
(Figure 4), one can search for pipeline using this time the
8×8 pixel block as granularity (Figure 5). Of course, every
combination of the former approaches is also possible
(Figure 6). The parallelism at frame level is costly in
memory, since each VLD+ZZ+IQ+IDCT process must
be able to store at least an entire image and the FIFOs
size must be around the image size. For a design that is
pipelined at macroblock level, far less memory is required
because the FIFOs size is around the block size, but the
communication cost is much higher because there is a
constant overhead in starting a communication and process
wait more often for a communication to occur, resulting
in more process context switches.
A full software solution based on Figure 4 needs at
least three processors to meet the 25 images per second
constraint. In a solution with three processors, 80% of each
CPU processing power is required for decoding, so only
20% is available for synchronization and data exchange.
This seems too tight to meet the timing constraint. A 4
processors solution would be more feasible, but the area
constraint is violated (3 × 15 > 35 mm2). A solution
based on Figure 5 at the frame level would not be much
more efficient than the solution at the block level (due to
the IDCT bottleneck) but would require 64 times more
memory for the FIFOs. For these reasons, we will focus
in the rest of the paper on solutions based on the KPN of
Figure 5 at the macroblock level. The KPN of Figure 6
that is more promising will be used if no solution is found.
We execute this graph on the host using DPN for func-
tional validation. We simulate the execution of the KPN
without modification of the ASIM0 system using CASS,
then we enhance the ASIM0 system by adding processors
and simulate it again. For each simulation CASS provides
the duration in cycle, resulting in the frames per second
figures presented in Figure 7.
These results show that with 1 processor, we need a
speedup of 5 and with more than 1 processor we need
a speedup of 3. From 2 to 7 processors, there is a 1.3
ratio between the performances of the sequential and KPN
implementations. That is unexpected with such a KPN.
With a processor devoted to each process, one can expect
that the KPN implementation runs at least at equal speed
and even faster than the sequential implementation. So
these results need some investigation. The bus load is
31% for the sequential implementation and 82% (or 87%)
for the KPN one on a 2 (or 7) processors board. For
busses on which masters request ownership randomly, a
bus load of more than 80% means bus saturation that
induces large latencies. Concerning the cache misses, we
have a miss rate of 7% for the sequential implementation
and of 2% per processor for the KPN implementation on
a 6 processors board. The amount of data transfered due
to the misses in the 6 processors board is 2.15 (2×6

7
×

10

8
,

where 10

8
is the ratio of execution times) times greater

than in the uniprocessor board. The KPN communications
increase the number of bus accesses and the number of
cache misses, so the caches fight to get control of the
bus and often wait and lock their associated processors.
To reduce the number of cache misses, we simulate the
execution of the application with larger caches. Figure 8
shows the results and the performance conforms to our
expectations.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 5

Legend:
• The bold arcs represent the decompression flow,
• The dotted arcs represent configuration parameters, described as global variables in the initial

specification.

BYTES
(pixel)

BYTE
(table)

BYTE
(table)

WORD
(data)

IMAGE

IMAGE
IMAGE

IMAGE

TG RAMDACBUILDER
LINE

IQ+IDCT
VLD+ZZ

IQ+IDCT
VLD+ZZ

DEMUX

Fig. 4. Parallel KPN at the image level
BYTES
(pixel)

BYTE
(table)

WORD
(image size)

BYTE
(table)

BLOCK BLOCKBLOCKWORDWORD
(data)

BLOCK

TG ZZDEMUX VLD IQ IDCT RAMDAC
LINE

BUILDER

Fig. 5. Pipelined KPN at the block level

BYTE
(table)

BYTE
(table)

BYTES
(pixel)

WORD
(image size)

BLOCKWORDWORD
(data)

BLOCK

BLOCK BLOCK

BLOCK
TG DEMUX VLD

IDCT

ZZ + IQ RAMDAC
LINE

BUILDER

IDCT

Fig. 6. Pipelined/Parallel IDCT KPN at the block level

The conclusion of these experiments is that hardware
accelerators are still needed.
The previous results are obtained using cycle-accurate
simulation that take into account communication, compu-
tation, system costs and cache misses. As shown by these
measures, this level of accuracy is important in identifying
bottlenecks that would be difficult to diagnose without it.
For instance, for the Motion-JPEG triplet, a designer that
uses a simulator that doesn’t take accurately the cache
misses in account would get results similar to those of
Figure 8 instead of those of Figure 7. If the constraint was
20 frames per second, he would guess that optimizing the
software would be enough to reach the constraint.
All the experiments presented in the rest of the paper are
done with 2 Kbyte data caches.

fps

25

20

15

10

5

0
proc7654321

constraint
sequential (2Kb cache)

kpn (2Kb cache)

Fig. 7. Performance of the software implementations with small caches.

fps

25

20

15

10

5

0
proc7654321

constraint
sequential (32Kb cache)

kpn (32Kb cache)

Fig. 8. Performance of the software implementations with large caches.

D. Hardware/software mapping

Goals Hardware design has a high manpower cost, so prior to
starting a new design, it is necessary 1) to be sure that it
will be useful and 2) to estimate the speedup necessary to
satisfy the constraints. This second point is crucial because
achieving a speedup of 5 or of 100 has different costs in
manpower and in area. The problem is to find one or more
groups of processes that are good candidates for hardware.
To estimate the appropriateness of a selection, Disydent
proposes an exploratory migration approach. It consists of
hiding the C description of each process in the system
within a FIFO interface. This is done through a wrapper
that translates the DPN communication primitives into
CASS primitives. Concretely, the migrated process per-
forms at most only one read or only one write of a single
item in each cycle. All computations between two I/Os

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 6

TABLE III
BUS LOAD OF GROUPS USING THE EXPLORATORY MIGRATION FOR NW

SET TO 15 ON A UNIPROCESSOR BOARD

ALL (VLD IQ IDCT) (VLD IDCT) (IDCT)
40% 33% 34% 40%

take NW (Number of Wait) cycles, NW being fixed
by the user independently for each process. So, a NW
of zero gives the upper bound on system performance
assuming infinitely fast computation and communication
performance. This NW is a user’s estimate that will
become a constraint for the high level synthesis tool.

Designer work
The user has to select a subset of the Kahn processes,
based on profiling and intuition of fitness of a particular
function for HW implementation. Furthermore, to get a
system with these processes migrated to hardware, he
must generate the wrappers for each process by running a
utility that takes as parameters the FIFO names and access
modes. He then extends the board description by attaching
each process wrapper to a FIFO interface. Finally, the
user modifies the main function of the parallel description
by parameterizing the FIFOs that communicate with the
hardware and suppressing the creation of the threads
corresponding to the processes migrated to hardware.

Disydent run
The extended board running the application is simulated
using CASS with different values of NW . Either the
execution time seems to give enough margin to realize
hardware that will respect the constraints (this decision
can be taken only by a RTL designer) and the HW
design can start, or the constraints are violated or very
closely matched, and then a new group of processes
must be selected. If no more groups are available, the
overall system design should be restarted at the ”parallel
specification” step. If the user finds no new KPN, then
the problem represented by the Motion-JPEG triplet has
no solution.

Example
The former profilings indicate that the IDCT process must
be hardwired, and that the VLD and IQ processes are
also good candidates. Furthermore LIBU should not be
hardwired because it needs a pixmap of eight times the
maximum image width, which is costly in area. So we
select four groups: ALL=(VLD IQ ZZ IDCT), (VLD IQ
IDCT), (VLD IDCT), (IQ IDCT), (IDCT).
We simulate using CASS each group with different values
of NW on a uniprocessor board. The results of the bus
load for NW set to 15 are presented in Table III. They
clearly show that the system bus is not a bottleneck.
The results, in frames per second as a function of NW ,
are plotted Figure 9. Strangely enough, the number of
frames per second tends to slightly increase when the
time between two I/Os increases. This is due to changes
in the scheduling of software processes that result in less
context switches for these intermediate values. The almost
constant curves begin to go downwards when NW is
around 100. Figure 10 presents the number of frames per
second as a function of the number of processors with
NW sets to 0. These results imply that:

(IDCT), (IQ IDCT) no hardware latency can satisfy the
constraint.

(VLD IDCT) no hardware latency can satisfy the
constraint with 1 processor (we tried
with 2 processors and we reached
about 29 frames/second).

(VLD IQ IDCT) we almost satisfy the constraint of
25 frames per second, so this solu-
tion can be considered.

ALL we get more than 40 frames/second,
so this solution can be considered
too.

fps
60

50

40

30

20

10

NW45403530252015105

constraint
all

vld iq idct
vld idct
 iq idct
 idct

Fig. 9. Performance of groups using the exploratory migration on a
uniprocessor.

fps
60

50

40

30

20

10

proc7654321

constraint
all

vld iq idct
vld idct
 iq idct
 idct

Fig. 10. Performance of groups using the exploratory migration with NW =

0.

A RTL designer knows that these three designs are easy
because Figure 9 shows that he has approximately 50 cy-
cles to perform a computation between two I/O operations.
This is largely enough because either the complexity of the
computation is low (VLD[27] IQ) or its parallelism is such
that it can be exploited at the hardware level (IDCT[28]).
To conclude, there are three potential solutions: (VLD
IDCT) with 2 or more processors, (VLD IQ IDCT) with
1 processor and ALL with 1 processor. For these designs,
the emphasis should be more on area optimization than
on delay optimization.

E. Process synthesis
Goals Now it is time to design the coprocessors selected previ-

ously. Note that at this point the time constraint for each
process is well known. To help the designer, Disydent
provides the synthesis tool UGH.

Designer work
The designer must adapt each process description to UGH.
He must eliminate pointers, define a draft of the data-path
(DDP) and modify the C Kahn Process description so that

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 7

so that each C variable has an associated register in the
DDP, unless its assignment can be inlined in the statements
that use it.
This adaptation is relatively easy from a syntactic point of
view, unless the process description uses many functions
with pointer parameters. However, the above adaptation is
often inefficient, and a new hardware oriented algorithm
needs to be defined. This induces a complete rewriting
of the process. Given the state of the art in behavioral
synthesis, this cannot be avoided. Furthermore, it is much
easier to rewrite the process for UGH than to convert to
synthesizable VHDL or SystemC.

Disydent run
The C description of the process for UGH is still compat-
ible with the DPN primitives, so it can be executed on the
host machine and simulated on the target platform using
CASS. This allows one to check quickly the behavior
prior to the actual synthesis (see loop 1 in Figure 2). The
synthesis of the process is performed for the frequency of
the platform to get a cycle-accurate CASS module. The
platform is extended with the modules of the hardwired
processes and the application is run on this new platform
to get the real timings (see loop 2 in Figure 2).
If the timings fit the constraints, UGH is run again to get
the structural VHDL description. This description must be
synthesized using classical CAD tools to obtain the cost
(area, power, ...). If both timing and cost constraints are
met, the design is finished. Otherwise, the designer has
to enhance either the micro-architecture of the hardware
processes, choose different processes to implement in
hardware, or even choose a better KPN partitioning of
the application.

Example
We adapt the VLD, IQ and IDCT C descriptions, and
validate them using DPN. Then we run UGH using a
50 MHz frequency to generate the cycle-accurate CASS
modules. We then plug the modules into the board and
simulate the application using CASS.
For the solution ”(VLD IQ IDCT) with 1 processor”,
we get 28 frames/second and 32 frames/second for the
”(VLD IDCT) solution with 2 processors”.
We run UGH again to get the RTL VHDL description
of the coprocessors and synthesize them with CAD tools
using a 0.35µm technology. We get 13.2 mm2 for the
VLD, 1.2 mm2 for the IQ and 10.9 mm2 for the IDCT
coprocessors.
For the solution ”(VLD IQ IDCT) with 1 processor”, we
need 3 hardware FIFOs (FIFO interfaces as shown in
Figure 1) of 64 coefficients of 4 bytes and 1 hardware
FIFO of 64 pixels of 1 byte, that is to say less than 1
Kbyte so around 1 mm2. The area increase is 26.3 mm2

(13.2 + 1.2 + 10.9 + 1). Similarly, for the ”(VLD IDCT)
solution with 2 processors”, the area increase is 39.6 mm2

(13.2 + 10.9 + 0.5 + 15) that violates the area constraint.

F. Outputs

The outputs of Disydent are one or several solutions to a platform
based design problem. More precisely, for each solution, this consists
of the main software that initializes the hardware components and
starts the software tasks, the C code of the software tasks and for the
hardware components, the synthesizable VHDL descriptions and the
cycle-accurate CASS models.

The choice of the solution and its implementation into the final
product is done by the system integrator taking into account both
technical parameters and commercial issues.

V. TOOLS

A. DPN
For the Kahn process network description, the user has on one

hand to create the FIFOs and the processes and on the other hand to
describe the behavior of each process.

The FIFOs are created using the channel
channelOpen(width, depth) DPN primitive, where
width is the item width in bytes and depth is the number of slots of
the FIFO channel.
The process creation is performed using the "pthread_create"
primitive of the POSIX threads. So from the user point of view,
each behavior is a C function that takes a single array argument.
Each element of the array is a channel descriptor.
The behavior of a process is written in C with 2 DPN
primitives to exchange data through the FIFOs. Reading is
done using channelRead(channel, buffer, nItems),
that reads nItems FIFO items from channel descriptor channel
into the buffer starting at buffer, and writing is done with
channelWrite(channel, buffer, nItems), that writes
nItems FIFO items to the channel referenced by the channel
descriptor channel from the buffer starting at buffer. The size of the
item is defined at channel opening time. The functions return only
when nItems items have been transfered.

Using DPN is not difficult. However, not every application is suited
to a parallel implementation (i.e a VLD cannot be decomposed in
an efficient KPN). Also the time needed to transform a sequential
description into a DPN network depends more on its coding style
than on the intrinsic complexity of the application.

B. ASIM0 system
The ASIM0 system is composed of synthesizable VHDL models of

the communication components and of the MUTEX micro-kernel [29].
The communication components are the PI-Bus[23] controller, the
interrupt controller, the slave FIFO, the master FIFO, and the point
to point hardware FIFO. The synthesizable VHDL models of the
processor and its caches are not provided.

Most components comply with the VSI Alliance Virtual Chip
Interconnect (VCI[30]) standard. Since the ASIM0 system uses a PI-
Bus as an interconnect back-bone, Disydent also provides the VCI/PI-
Bus wrappers.

1) Hardware: In ASIM0, all components share the same clock
and the system is therefore fully synchronous.
Processor and caches

The processor is a MIPS R3000 as described in [31]. It
has separate instruction (read-only) and data (read/write)
caches. The caches are direct mapped, and use a write-
through policy. The number of cache blocks and the size
of the block can be set independently for both caches. The
depth of the write buffer is also a parameter of the data
cache. Since ASIM0 is based around a shared bus, the
data cache maintains memory coherency by snooping the
writing transfers on the bus, and invalidating the block in
case of a hit. The memory consistency issue is solved
by waiting for a transfer to be acknowledged prior to
starting another transfer (as usual with buses, unless split
transactions are allowed).

Interrupt controller
This module, pictured in Figure 11, groups up to 32 inter-
rupt inputs lines into 1 output line. Each line consists of an
interrupt request signal and of an interrupt acknowledge
signal. At run time, it is possible to change the interrupt
vector attached to a line, and to individually mask, set and
clear an interrupt request.

FIFO As shown in Figure 12, the FIFO component is connected
to the coprocessor and the system bus. Its parameters are
the number of input and output FIFOs. An input FIFO
allows the coprocessor to fetch a datum from the system

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 8

INT_REQ
INT_ACK ...

COPRO_INT_REQ
COPRO_INT_ACK

Interrupt
Controller

Fig. 11. Interrupt controller.

Output FIFO

Input FIFO

Coprocessor configuration and status

SCONFIGi

SSTATUSi

SROK

SWOK
SDOUTi
SWRITEi

SDINi
SREADi

V
C

I −
 S

ys
te

m
 b

us
 w

ra
pp

er

Coprocessor

Sy
st

em
 b

us

Fig. 12. FIFO interface overview.

bus. An output FIFO allows the coprocessor to emit a
datum to the system bus.
From the coprocessor side, the data read action from
a FIFO is shown Figure 13. In the READ state, the
coprocessor asserts the SREAD signal and loads the
SDIN signals’ data into an internal register. If SROK
is not asserted, it means that the FIFO was empty, and
the state must be run again because the loaded value is
not significant. Otherwise the value loaded on SDIN is
significant, and it is popped out of the FIFO (because
SREAD is asserted). The writing action is similar to the

SROKREAD

SROK

SWOKWRITE

SWOK

Fig. 13. Usual FSMs for reading and writing FIFOs.

reading action.
From the bus side, each FIFO may be either a slave or a
master. The processors explicitly read or write the slave
FIFOs. The processors must configure the master FIFOs
by writing parameters into memory mapped registers, then
the master FIFOs work like a DMA controller.
The latency is 2 cycles for the slave FIFO and 5 cycles
for the master FIFO. For burst transfers, a throughput of
1 item per cycle is achieved in both cases.

Point-to-point FIFO communication
This interface allows direct communication between two
coprocessors without using the bus. It implements FIFO
queues and provides the same interface as the slave and
master modules.

2) Software:
Multi-thread and multiprocessor kernel

Disydent provides a lightweight kernel that implements the
POSIX threads API in kernel mode. This kernel comes in
two kinds.

1) Symmetric multiprocessor, that allows the migration
of processes from processor to processor, depending
on the availability of the resources. This flavor
assumes that the cache coherency is ensured by the
hardware.

2) Asymmetric multiprocessor, for which each process
is assigned to one processor. Local and shared
memory are distinguished so as to allow for more
optimized access (through the cache) to local data
and still correct access (uncached) to shared data.

Both kinds assume relaxed memory consistency, i.e. a lock
protecting a data will not be unlocked before the data is
updated[32].

Communication services
A communication layer that performs the exchange of data
between processes is available for processes implemented
as either hardware or software. The SW/SW communi-
cation is basically the same as the DPN version. The
HW/SW and SW/HW communications use semaphores
and interrupts. The HW/HW communications that occur
through the bus need little software intervention, usually
only to set the transfer address, length and repetitive
behavior at initialization time. In practice, several alter-
natives can be used for a given communication type,
depending on the amount of data to be transfered. A
precise explanation of these services can be found in [33].

C. CASS
CASS is a cycle-accurate simulator for register transfer level mod-

els. It allows the user to simulate an interconnection of components
described as a VHDL structural netlist. Conceptually, a CASS model
is a Finite State Machine (FSM) with a specially identified clock
input. To be simulated by CASS, a component must be modeled
by the three C functions detailed below. An example is provided
Figure 14.
Instantiation and registration function

It is called once at the beginning of simulation to define
the interface and the internal resources of the component.
If the component is a Mealy FSM, it also declares the
input ports that may modify the output values.

Sequential function
It is called at every cycle and it executes the behavior of
the current cycle depending on the internal state of the
component and the current input signals. It implements
both the transition function and the output function that
only depends on the state (Moore outputs). This function
uses a fire-and-return modeling approach, in which the
state is explicit and the function must return, as opposed
to an approach in which wait operations are embedded in
the code,

Combinational function
It is called at the end of a cycle to compute the Mealy
outputs. It does not exist if the component has only Moore
outputs.

The CASS simulation algorithm does not propagate events[34]. In-
stead, it uses a static scheduling technique that ensures firstly that the
evaluation order of the simulated components is not data-dependent
and secondly that no model will be executed more than once during
a clock cycle, provided there are no combinational loops between
models [35]. This restriction could in principle be avoided, leading
to multiple evaluations of combinational parts of the components.
However a compile time ordering strategy still allows one to minimize
the number of re-evaluations [36]. This strategy is possible because
the Mealy outputs are given by the combinational functions and the
structural netlist indicates the relationships between the modules.
There are actually few models that have Mealy dependencies, and
even fewer belong to a combinational loop, so the time spent in the
evaluation of the combinational part of a system is usually negligible.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 9

This compile time approach is also usable to simulate systems that
have multiple clock domains if and only if the ratios of all frequency
pairs are rational numbers. This constraint is due to the fact that
CASS must be able to compute the least common multiple of all
clock frequencies to statically schedule the system.

The use of a precompiled schedule achieves high simulation
performances for complex systems, and this is particularly useful
when booting a kernel and debugging software.

#include "gcd.h"
void SequentialGcd(GCD *gcd)
{ /* Transition function */
 if (!CassRead(gcd, resetn)) {
 gcd−>state = GCD_READA;
 } else
 switch (gcd−>state) {
 case GCD_READA :
 if (CassRead(gcd, rok)) {
 gcd−>a = CassRead(gcd, din);
 gcd−>state = GCD_READB;
 }
 break;
 ...
 case GCD_WRITE :
 if (CassRead(gcd, wok))

 break;
 }

 gcd−>state = GCD_READA;

 /* Generation function */
 switch (gcd−>state) {

 case GCD_READA :
 case GCD_READB :
 CassWrite(gcd, read, 1);
 CassWrite(gcd, write, 0);
 break;
 ...
 case GCD_WRITE :
 CassWrite(gcd, read, 0);
 CassWrite(gcd, write, 1);
 CassWrite(gcd, dout, gcd−>ra);
 break;
 }
}

#include <cass.h>
enum _state {GCD_READA,
 ...,
 GCD_WRITE};
typedef struct {
 enum _state state;
 port resetn;
 port read, rok, din;
 port write, wok, dout;

}

 unsigned int a, b;
} GCD;

GCD *CreateGcd(void)
{
 GCD *gcd = malloc(sizeof(*gcd));
 /* Registers the ports */

 ...
 return gcd;

Fig. 14. CASS model of a GCD coprocessor.

D. UGH

C description
Draft Data−Path

frequency
physical circuit
cycle precise
C description

cell

library
synthesis

tool

UGH

Fig. 15. UGH User view.

#include <ugh.h>
/*** the communication channels ***/
ugh_inChannel32 inFIFO;
ugh_outChannel32 outFIFO
/*** registers ***/
uint32 a,b;
/*** behavior ***/
void ugh_main(void)
{
while (1) {
ugh_read(inFIFO, &a);
ugh_read(inFIFO, &b);
while (a != b) {
if (a < b) b = b−a;
else a = a−b;

}

ugh_write(outFIFO, &a);
}

}

Fig. 16. UGH-C for Euclid’s GCD algorithm.

Disydent provides the User Guided High Level Synthesis tool for
the synthesis of control-dominated coprocessors[25].

1) User view: The user view of UGH is presented Figure 15, it
shows that UGH needs to be tightly connected to a synthesis tool,
(currently Synopsys) and that it also needs a library of characterized
standard cells.

We take Euclid’s GCD algorithm to illustrate the use of UGH.
a) Inputs: The first input is the frequency of the target

coprocessor.
The second input (see Figure 16), is the C description of

the coprocessor. The entry point is the ugh_main function. The
ugh_inChannelxx and ugh_outChannelxx types define com-
munication ports compatible with the hardware FIFO components.
The ugh_read and ugh_write functions generate the automata
shown in Figure 13. The standard C types are allowed but UGH also
defines the intxx and uintxx to precisely size the variables and
the registers that will contain them. Most C constructs are allowed,
but pointers, recursive functions and the use of external functions
(e.g. printf, strcat, ...) are forbidden. Furthermore, all variables must
be either global or static unless their assignments can be inlined in
the statements that use them.

The last input (see Figure 17.a) is a simplified structural description
of the target data-path called Draft Data-Path (DDP). The DDP
is a directed graph (Figure 17.b) whose nodes are functional or
memorization operators and whose arcs indicate the authorized data-
flow among the nodes. For instance, the 2 arcs that point to the a
input of the Subst node indicate that in the final data-path, the bits
of this input can be driven by: a) constants, b) bits of the q port of
the A register, c) bits of the q port of the B register, d) any bitwise
combination of the former cases. Furthermore, note that the DDP
neither sets the bit size of the operators associated to the nodes, nor
sets the bit size of the arcs.

The C input and the DDP are interdependent. A global or static
variable (respectively: array) of the C input must correspond to a
register (respectively: register file or static ram) of the DDP having
the same name. For each statement of the C input there must be at
least a sub-graph of the directed graph that can execute the statement.

b) Outputs: UGH generates a VHDL structural description of
the circuit. The top level entity is composed of a Moore finite state
machine and a data-path. The finite state machine is described in
synthesizable VHDL, the data-path is a structural description whose
leafs are standard cells of the input cell library.
UGH also generates the simulation module in C for the CASS
simulator that exactly reproduces the cycle by cycle behavior of the
circuit.

c) Options: UGH supports several synthesis directives. The
two major ones are presented below.
UGH accepts a partially connected DDP. In this case if there is no
sub-graph in the DDP graph to implement a statement of the C
input, UGH will automatically create one. So with this option the
minimal DDP only contains the memorizations and the functional
cells. Our experiments show that using minimal DDPs produces
circuits with an area (respectively: an execution speed) a few percent
larger (respectively: slower) than using fully connected DDPs.
By default, an ”if” statement of the C input is micro-controlled, and
becomes a state with two transitions in the FSM of the target circuit.
UGH provides a pragma to hard wire a ”if” (speculative computation).
In this case, the ”if” is executed combinatorially within the data-path
using added hardware. All the ”if” statements can be wired knowing
that wiring an ”if” automatically wires all its nested ”if”’s.

2) Synthesis steps: The synthesis process, presented in the Fig-
ure 18, is split into 3 main steps: First, the Coarse Grain Scheduling
(CGS) is run, resulting in allocation and translation of C statements
into RTL instructions; then the mapping is performed to get the
physical data-path and the temporal characteristics; finally the Fine
Grain Scheduling (FGS) is run, resulting in the scheduling of the
RTL instructions taking as constraints the annotated timing delays of
the data-path.

a) CGS: CGS starts with a consistency check. Enough regis-
ters must have been instantiated to store all the non-trivial variables.
Each statement of the C description must correspond to at least one

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 10

{
DFF A, B;

B.d = Subst.s, inFIFO;

A.d = Subst.s, inFIFO;

Subst.b = A.q, B.q;

Subst.a = A.q, B.q;

outFIFO = Subst.s;

}

SUB subst;

EQ eq;

MODEL GCD(IN inFIFO; OUT outFIFO)

(a) (b) (c)

Fifo

in

s

B

qd

A

d q

Subst

z

coa

b

Fifo

out

z
i0

i1
d

i1

i0

qdz
i0

i1
z

i1

i0
a

s

b

z

q z op

co

M2

M1

M3

M4 Subst

sel_m1 we_ra sel_m4 inf zero

op_substsel_m3we_rbsel_m2ck

din

dout

B

A

Fig. 17. Draft Data-Path of the GCD example.

Depends on the
Synthesis tool

VHDL
FSM/C

VHDL
Data−Path

CASS
Simulation

Model

VCC
Whitebox C

Model

VHDL
FSM/F

VHDL
Data−Path

Annotations
TimingSynthesis +

Caracterization

Cell
Library

CK

UGH−MAPPING

UGH−CGS

C subset
Behavioral Draft

Data−Path

UGH−FGS

Fig. 18. Main scheme of UGH.

sub-graph of the DDP.
Then the binding begins: Each node of the DDP corresponds to a
cell of the data-path, its bit size it deduced from the bit size of
the C variables, the input connectors of the cells are connected to
output connectors either directly or using a multiplexer when inputs
are driven by different sources. The resulting data-path of the GCD
example is shown in Figure 17.c.
Finally the coarse FSM is elaborated, where coarse means that the
operations are only partially ordered like in soft scheduling[37].
The algorithm used in CGS must choose a DDP sub-graph for each
C statement and then coarsely order them. These choices and this
ordering are done by maximizing the intrinsic parallelism while
trying to reduce the data-path area. The degrees of freedom for
reducing the area are the minimization of the input numbers of
the added multiplexers and the binding of operations of the same
type and similar bit sizes to the same node. Its temporal constraints
are: multipliers need 2 cycles, adders and subtracters need 1 cycle,
and all other functional cells have negligible propagation times. This
algorithm is detailed in [38].

b) Mapping: The mapping step is seldom described in the
literature. The synthesis tools most often generate a VHDL standard
cell netlist. The circuit is obtained by placing and routing the VHDL
netlist. The generated circuit will probably not run at the expected
frequency. The main reasons are that the FSM has been constructed
with estimated operator and connection delays, and that often the
FSM is a Mealy one and its commands may have long delays.
Furthermore it is also possible that the circuit does not run at any
frequency if it mixes short and long paths. This happens frequently
in circuits having both registers and register files.
Of course, these problems also occur with designs done by hand:

in that case the designer solves them by adding states to the FSM,
adding buffers to speed up or down some paths. This is not easy, and
it takes time, but it is possible because he has an intimate knowledge
of the design. After high level synthesis, these problems can not be
corrected because the designer has lost the knowledge of the design.

From our point of view the mapping is an issue that must be dealt
with, and not a minor one, because the generated circuit must run
as it comes out of the tool. If it is not the case the synthesis tool is
simply unusable.

In UGH, the mapping consists of generating the behavioral VHDL
with its constraints (i.e. maximum fan out for the connectors) for
each operator of the data-path, and shell scripts to automatically
run the synthesis of the whole data-path using a cell library. The
execution of these scripts invokes the Synopsys Design Compiler
to generate structural VHDL files respecting the given constraints.
UGH starts up again, reading all the structural VHDL files, parsing
the file describing the cell library to get their timing equations and
computes the propagation delays, the setup and the hold times of all
the operators of the data-path.
Of course this step may be quite long, several hours for large
processors. For this reason, UGH gives the possibility to bypass the
mapping during design tuning and use pessimistic estimated delays.

c) FGS: FGS adapts the coarse FSM to the characterized data-
path to ensure that the circuit will run at the given frequency. Once
the FSM is computed, back-ends generate the cycle-accurate models
for CASS and the VHDL FSM.

FGS extracts the register transfer instructions from the coarse FSM
and then reschedules them taking into account the propagation delays,
the setup and hold times of the cells and the intrinsic parallelism
supported by the data-path. This algorithm is detailed in [39].

3) Main points: Like classic HLS algorithms UGH supports
multi-cycle operators. For instance, if the statement ”A = B1 ×B2”
is part of the input and if the given clock period is smaller than the
propagation times from the Bi to A plus the setup time of A, the
statement is scheduled in several cycles. Similarly for the statement
”A = B1 + B2 + B3”, the data-path contains a chain of two adders.
If the clock period is greater than all of the propagation times from
Bi to A plus the setup time of A, the statement is scheduled in one
cycle.

Like classic HLS algorithms, operators chaining is supported too.
Furthermore, for the same statement, for the given clock period T
and the propagation times pi from Bi to A plus the setup time of
A, if 2 T ≤ pi ≤ 3 T , the statement is scheduled in 3 cycles. So
UGH supports the multi-cycle chaining as opposed to classical HLS
schedulers that would introduce a register to save the result of the
first adder and schedule the statement in 4 cycles.

UGH correctly handles pipelines. For instance in the sequence
”A = 1; B = A + B; A = 2”, the ”A = 2” assignment
will be scheduled in the same cycle than ”B = A + B” if the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 11

performance constraints of the data-path allow it. Furthermore, even
wave pipelining [40] is handled.

Finally, UGH also supports multifunction operators, for instance
if there are the statements ”A = B +C; A = A− 1” in the C inputs
and only one adder/subtracter is given in the DDP, it is shared by the
2 instructions.

The HLS tools usually propose an iterative approach to explore the
design space. The user runs the synthesis, the result being the FSM
graph and various cross-reference tables (between states and source
statements, between cell and source statements, ...). Then, using
pragma in the source file, the user can force specific allocations. He
runs again the HLS synthesis to get the new results and so on until he
obtains the expected design. This iterative approach is difficult to use
primarily because: 1) For large designs the time between iterations
is too long, 2) The tables are difficult to interpret. The analysis of
the results to set judicious pragma requires to rebuild the data-path
from the cross-reference tables, and this is a very long and tedious
work. 3) This latter work must be done again at each iteration. So
the iterative approach is unsuitable for large designs.
UGH is only aimed at VLSI designers. The designer does not have to
change his working habits. He provides a data-path and a FSM, the
only difference is that for UGH a data-path draft is needed (DDP)
and that the FSM is a C program. So designers can obtain designs
very close to the designs they would do by the hand.

Most of the HLS tools let the low level synthesis adapt the data-
path to the frequency. This approach neither ensures that the circuit
can be generated (low level synthesis tools can not respect the clock
frequency) nor ensures that the generated circuit runs at the given
clock frequency (even at any) if the circuit mixes short and long paths.
Furthermore, this approach generates very large circuits when the low
level synthesis tools enter into speculative computation techniques.
Taking an opposite view, UGH adapts the FSM to the data-path.
This has three advantages over the usual approach. Firstly, the data-
path is small because we do not give specific constraints about the
critical path to the low level synthesis tool. Secondly, any frequency
is reachable if all the memorization cells of the data-path support it
and if the FSM synthesis tool can synthesize the resulting FSM for
this frequency. Thirdly, our approach only acts on the scheduling,
therefore it only modifies the FSM by adding a few states, so the
area cost is null or very low.
The only disadvantage is that communication with the external world
must be synchronized with handshaking because the communication
cycles are set by FGS and depend on the electrical characteristics of
the data-path and the target frequency.
Finally the last point is the comparison of the execution speed of the
resulting circuits. When UGH generates a circuit in which it adds
states to the FSM, an execution needs more cycles, and thus the circuit
is less efficient than the circuit generated by the tools that rely on
logic synthesis to optimize the data-path performance. Nevertheless,
if the added states are not in the main execution loop or if they are
in the main loop but the main loop has a lot of states and/or many
branches, the execution speeds will be very similar. Furthermore, if
UGH added states, it is because there is at least one path in the data-
path whose propagation time is greater than the given clock period.
In this case, the usual approach will give this period as a constraint to
the low level synthesis tool. The risk here is to compare the execution
speed of a unsynthesized virtual circuit (the low level synthesis tool
has not been able to satisfy the constraint or has generated too large
of a circuit) with a working one.

VI. RESULTS

Currently, Disydent is operational and allows one to solve actual
platform based design problems. The benchmark used is the Motion-
JPEG. The input stream contains 25 images. Experimentation was
done on a 1.7 GHz PC running Linux.

Running the sequential Motion-JPEG application directly on the
host takes 5 ms. Running the DPN Motion-JPEG application with
the pthread linux implementation as backend takes 20 ms. The
simulation times of the extended platform for several configurations

are presented in Table IV. For these simulations, all CASS models
of the bare ASIM0 platform are cycle-accurate and bit-accurate,
the NW parameter of all the exploratory migration models is
set to 0 and the models generated by UGH are cycle-accurate
and bit-accurate. The simulation times range from 5 minutes
to 15 minutes, and are acceptable for design space exploration.
Thus, it is possible in one day to perform functional and temporal
verifications for movies of around 100 seconds on a ASIM0 platform
with UGH coprocessors. This times must be compared with the
VHDL simulation of the same board that we estimate to 3000
minutes (3000 = 20 x 150: 20 is the number of components of the
board; 150 is the time spend for the VHDL gate level simulation of
the synthesized VLD coprocessor.).

TABLE IV
CASS CYCLE-ACCURATE BIT-ACCURATE SIMULATION PERFORMANCE

nb CPU cycles/
proc. times second

sequential 1 5m 36s 268142
KPN software 1 17m 43s 268257

5 11m 52s 234647
E M: ALL 1 05m 07s 95242
E M: VLD IDCT 1 11m 04s 130122

2 06m 50s 119764
E M: VLD IQ IDCT 1 09m 23s 104659
UGH: VLD IDCT 1 16m 48s 71685

2 9m 16s 70191
UGH: VLD IQ IDCT 1 15m 27s 60697
E M: simulation using the exploratory migration
UGH: simulation using the model synthesized by UGH

We synthesized 900 lines of C code and obtained coprocessors
requiring 25 mm2 and 952000 transistors in a 0.35µm technology.
The synthesis times for the coprocessors are given in Table V. The
’UGH’ column gives the time spent to generate the cycle accurate
simulation model using default delays. These times are acceptable
for micro-architectural design space exploration. The ’delay compu-
tation’ column shows the CPU time needed by Synopsys to generate
the data-path and the time spent by UGH to extract the delays.

TABLE V
UGH PERFORMANCE

C UGH delay computation
lines sum = UGH + Synopsys

VLD 200 56.1s 126m41s = 4m40 + 122m01s
IQ 100 0.9s 10m25s = 0m05 + 10m20s
IDCT 600 11.2s 80m50s = 0m54 + 79m56s

Donnet[38] has compared UGH with the CoCentric SystemC
Compiler of Synopsys that, like UGH, is a control dominated HLS
tool. The VLD and IDCT circuits generated by UGH are 2 times
smaller and 1.3 and 1.5 times faster respectively.
He has also compared UGH to GAUT[41] (a data-dominated HLS
compiler) on the IDCT description that is completely data-flow
(Table VI). The IDCT circuit generated by UGH is 2 times smaller
but the GAUT circuit is 2.5 times faster. In one day of designer work
he rewrote both the C input and the DDP of the IDCT. The result of
UGH with this new description is smaller and faster than the circuit
generated by GAUT. This proves that UGH allows the designer to
get precisely the expected design.

VII. CONCLUSION

The configuration of Disydent for a new platform is a complicated
task. Firstly, it requires the definition of a basic system (hardware
components, communication schemes, operating system, ...). Sec-
ondly, the design at the RTL level of the hardware components

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 12

TABLE VI
COMPARISON OF IDCT SYNTHESIS

Execution Area
time µs mm2

Cocentric 34.5 19.9
Gaut 9.2 19.0
Ugh 24.9 10.9
Ugh-revised 7.8 18.4

is needed. Thirdly, a CASS simulation model must be written for
cycle-accurate simulation. However, once this is done, the application
designer just extends the platform and tunes it for the application.
The SoC design approach we propose is efficient. The user input
being a C program using the KPN primitives, the functional validation
is performed on the host with very high performance: real time
decoding of MPEG2 streams is possible for a small image size. This
is several orders of magnitude faster than the performance of RTL-
level simulators. The temporal validation is one to two orders of
magnitude faster than classical event driven simulators (VHDL or
SystemC).
The approach is also simple, because the functional validation at the
KPN level is sufficient to ensure the functionality of the application
on the target platform. This is due to the KPN property that ensures
that the relative execution speed of the processes does not influence
the global behavior[14].
Last but not least, the tight integration of the tools allows one to
develop the Motion-JPEG example in a few weeks.

• The description of the Kahn Process Network is runnable as is
on the local host, and also on the platform.

• The description of the Kahn Processes can be synthesized by
the Disydent synthesis tool. It generates directly a cycle-accurate
simulation module, as opposed to other synthesis tools that most
often generate VHDL gate netlists. To simulate a synthesized
coprocessor within the whole system, co-simulation between the
cycle-accurate simulator and the VHDL simulator is needed.
This is not very efficient and it requires engineering work.

• The exploratory migration does not require any engineering
work. It allows the designer to quickly estimate the temporal
constraints on a coprocessor, taking into account the communi-
cation delays.

The most negative aspect is the rewriting of the process following
UGH style. This requires one to have two descriptions of the same
object. Although the UGH-C may be used instead of the initial DPN
description, its performance when running in software is significantly
worse. So, both forms are really needed. Algorithms for hardware
are very different from algorithms for software. The hardware form
exhibits both hardware parallelism through a sequential description
that complicates the code, and many bit level computations that are
easily realized in hardware but are lengthy to perform in software.

ACKNOWLEDGMENTS

We would like to thank Denis Hommais for his participation at the
beginning of this work. We also would like to thank the anonymous
reviewers of the Transactions for their numerous and constructive
remarks that have greatly improved the quality of this paper.

REFERENCES

[1] P. Quinton and V. van Dongen, “The mapping of linear recurrence
equations on regular arrays,” Journal of VLSI Signal Processing, vol. 1,
no. 2, pp. 95–113, Oct. 1989.

[2] J. Xue and C. Lengauer, “The synthesis of control signals for one-
dimensional systolic arrays,” Integration, the VLSI journal, vol. 14, no. 1,
pp. 1–32, 1992.

[3] P.-Y. Calland and T. Risset, “Precise tiling for uniform loop nests,” in
Proc. of Int. Conf. on Application Specific Array Processors, 1995, pp.
330–337.

[4] C. Zissulescu, T. Stefanov, B. Kienhuis, and E. Deprettere, “Laura:
Leiden architecture research and exploration tool,” in Proc. of the 13th
Int. Conf. on Field Programmable Logic and Applications, Lisbon,
Portugal, Sept. 2003, pp. 911–920.

[5] S. Derrien, A. C. Guillou, P. Quinton, T. Risset, and C. Wagner, “Auto-
matic synthesis of efficient interfaces for compiled regular architectures,”
in Proc. of Int. Samos Workshop on Systems, Architectures, Modeling
and Simulation, Samos, Greece, July 2002.

[6] P. Coussy, “Synthèse d’interface de communication pour les composants
virtuels,” Ph.D. dissertation, Université de Bretagne Sud, LESTER, Dec.
2003, (in french).

[7] G. Goossens, J. V. Praet, D. Lanneer, W. Geurts, and F. Thoen,
Programmable Chips in Consumer Electronics and Telecommuncations
– Architectures and Design Technology. Kluwer Academic Publishers,
1996, pp. 135–164.

[8] S. Aditya, B. R. Rau, and V. Kathail, “Automatic architectural synthesis
of VLIW and EPIC processors,” in Proc. of the Int. Symp. on System
Synthesis, 1999, pp. 107–113.

[9] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Homewood, “Lx:
a technology platform for customizable VLIW embedded processing,”
in Proc. of the 27th Int. Symp. on Computer architecture. New York,
NY, USA: ACM Press, 2000, pp. 203–213.

[10] P. H. Chou, R. B. Ortega, and G. Borriello, “The chinook Hard-
ware/Software co-synthesis system,” in Proc. of the Int. Symp. on System
Synthesis, Cannes, France, Sept. 1995, pp. 22–27.

[11] S. Vercauteren, B. Lin, and H. D. Man, “Constructing application-
specific heterogeneous embedded architectures from custom HW/SW
applications,” in Proc. of the Design Automation Conf., Las Vegas,
Nevada, June 1996, pp. 521–526.

[12] R. K. Gupta and G. D. Michelli, “Hardware-software cosynthesis for
digital systems,” IEEE Design and Test of Computers, vol. 10, no. 3,
pp. 29–41, Sept. 1993.

[13] E. de Kock, G. Essink, W. Smits, P. van der Wolf, J.-Y. Brunel,
W. Kruijtzer, P. Lieverse, and K. Vissers, “Yapi: Application modeling
for signal processing systems,” in Proc. of the 37th Design Automation
Conf., June 2000, pp. 402–405.

[14] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. of Information Processing 74, Stockolm, Sweden, Aug.
1974, pp. 471–475.

[15] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,
“Design of embedded systems: Formal models, validation, and synthe-
sis,” Proc. of the IEEE, vol. 85, no. 3, pp. 366–390, Mar. 1997.

[16] C. A. R. Hoare, Communicating Sequential Processes. Prentice Hall,
1985.

[17] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,
C.Passerone, A. Sangovnanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara, Hardware-software co-design of embedded systems: the
Polis approach. Kluwer Academic Publishers, 1997.

[18] M. Santarini, “Cadence adds system-level design tool to eda flow,” EE-
Times, Jan. 2000, http://www.cadence.com/technology/hwsw/ciertovcc/
articles/.

[19] J.-Y. Brunel, W. M. Kruijtzer, H. J. H. N. Kenter, F. Pétrot, L. Pasquier,
E. A. de Kock, and W. J. M. Smits, “Cosy communication ip’s,” in Proc.
of the 37th Design Automation Conf., Los Angeles, CA, June 2000, pp.
406–409.

[20] F. Balarin, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, and Y. Watanabe, “Metropolis: An integrated environment
for electronic system design,” IEEE Computer, vol. 36, no. 4, pp. 45–52,
Apr. 2003.

[21] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. of the
IEEE, vol. vol. 83, no. 5, pp. 773–801, May 1995.

[22] T. M. Parks, “Bounded scheduling of process networks,” Ph.D. disser-
tation, Electronics Research Laboratory, Berkeley, 1995.

[23] T. N. et al, “Draft Standard OMI 324: PI-Bus,” Open Microprocessor
Initiative, Tech. Rep., Dec. 1996, rev. 0.3d.

[24] F. Pétrot, D. Hommais, and A. Greiner, “Cycle precise core based hard-
ware/software system simulation with predictable event propagation,” in
Proc. of the 23

rd Euromicro Conf., Budapest, Hungary, Sept. 1997, pp.
182–187.

[25] I. Augé, R. K. Bawa, P. Guerrier, A. Greiner, L. Jacomme, and F. Pétrot,
“User guided high level synthesis,” in VLSI: Integrated Systems on
Silicon, R. Reis and L. Claensen, Eds., IFIP. Gramado, Brazil: Chapman
& Hall, Aug. 1997, pp. 464–475.

[26] J. committee, http://www.jpeg.org/, JPEG is standardized in ISO/IEC IS
10918-1/2.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH YEAR 13

[27] M. Bakhmutsky, “High-performance variable length decoder with two-
word bit-stream segmentation,” in Proc. Digital Compression Technolo-
gies & Systems for Video Communications. Berlin: SPIE Vol. 2952,
Oct. 1996, pp. 634–640.

[28] C. Loeffler, A. Ligtenberg, and G. Moschytz, “Practical fast 1-D DCT
algorithms with 11 multiplications,” in Proc. Int. Conf. on Acoustics,
Speech, and Signal Processing, 1989, pp. 988–991.

[29] F. Pétrot, P. Gomez, and D. Hommais, “Lightweight implementation
of the posix threads api for an on-chip mips multiprocessor with vci
interconnect,” in Embedded Software for SoC, A. A. Jerraya, S. Yoo,
D. Verkest, and N. Wehn, Eds. Kluwer Academic Publisher, Nov.
2003, part 1, chapter 3, pp. 25–38.

[30] O.-C. B. D. W. Group, “Virtual component interface standard version
2,” VSI Alliance, Tech. Rep., Apr. 2001, oCB 2 2.x www.vsia.org.

[31] G. Kane and J. Heinrich, MIPS RISC Architecture. Prentice Hall, 1992.
[32] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and

J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in Proc. of the 17th Int. Symp. on
Comp. Arch. ACM, May 1990, pp. 15–26.

[33] D. Hommais, F. Pétrot, and I. Augé, “A practical toolbox for system
level communication synthesis,” in Proc. of the 9th Int. Symp. on
Hardware/Software Co-design, Apr. 2001, pp. 48–53.

[34] G. Jennings, “A case against event driven simulation for digital system
design,” in Proc. of the 24th Annual Simulation Symp., New Orleans,
LA, Apr. 1991, pp. 170–175.

[35] F. Pétrot, D. Hommais, and A. Greiner, “A simulation environment for
core based embedded systems,” in Proc. of the 30th Int. Simulation
Symp., Atlanta, Georgia, Apr. 1997, pp. 86–91.

[36] D. Hommais and F. Pétrot, “Efficient combinational loops handling for
cycle precise simulation of system on a chip,” in Proc. of the 24th
Euromicro Conf., Vesteras, Sweden, Aug. 1998, pp. pages 51–54.

[37] J. Zhu and D. D. Gajski, “Soft scheduling in high level synthesis,” in
Proc. ot the 37th Design Automation Conf., New Orleans, June 1999,
pp. 154–157.

[38] F. Donnet, “Synthèse de haut niveau contrôlée par l’utilisateur,” Ph.D.
dissertation, Université Pierre et Marie Curie, LIP6, Jan. 2004, (in
french).

[39] I. Augé, F. Donnet, and F. Pétrot, “Retiming finite state machines to
control hardened data-paths,” in Proc. of the 16th Symp. on Integrated
Circuits and Systems Design, So Paulo, Brazil, Sept. 2003, pp. 41–47.

[40] C. T. Gray, W. Liu, and R. K. C. III, “Timing constraints for wave-
pipelined systems,” IEEE Trans. Computer-Aided Design, vol. 13, no. 8,
pp. 987–1004, Aug. 1994.

[41] C. Jego, E. Casseau, and E. Martin, “Architectural synthesis of digital
signal processing applications dedicated to submicron technologies,” in
IEEE International Conference on Electronics Circuits and Systems,
ICECS 01, Malte, Sept. 2001, pp. 533–536.

Ivan Augé received the engineer degree in
Computer Science from ”Conservatoire National
des Arts et Métiers”, Paris, France, in 1983, and the
PhD in computer science from the same university
in 1990. He joined Philips research labs in Paris
from 1990 to 1994 where he worked on the Alma
compiler, a high-level synthesis tool and lossless
data compression adapted to networks.

He joined the engineering school Institut
d’Informatique d’Entreprise, Evry, France in 1995
as an Assistant Professor in computer science.

His research interests include computer-aided design of integrated systems,
high-level synthesis, operating systems and local area network configuration.

Frédéric Pétrot received the DEA degree in Com-
puter Science and Electrical Engineering from Uni-
versité Pierre et Marie Curie, Paris, France, in 1989,
and the PhD in computer science from the same
university in 1994. He has been Assistant Professor
in Computer Science at Université Pierre et Marie
Curie until September 2004. From 1989 to 1996,
Prof. Ptrot was a main contributor of the open source
Alliance VLSI CAD system. Since 1996, he works
on the definition and implementation of the Disydent
system-level design environment.

He is now professor of computer architecture at the Institut National
Polytechique de Grenoble. His main research interests concern computer-aided
design of VLSI circuits and system architecture, with a particular emphasis
on system integration, kernels and multiprocessor SoCs.

François Donnet received the DEA degree in Com-
puter Science and Electrical Engineering from Uni-
versité Pierre et Marie Curie, Paris, France, in 1999
and the PhD for the same University in 2004. During
all this period, he contributed to the Alliance VLSI
CAD system and to the Disydent co-design tools. Dr.
Donnet is currently research engineer at the m2000
company. His research interests are in high-level and
logic synthesis for ASICs and FPGAs.

Pascal Gomez is a PhD candidate in the department
of computer science at Université Pierre et Marie
Curie, Paris, France. His research interests include
system level design and operating systems for multi-
processor SoC. Gomez received the DEA degree in
Computer Science and Electrical Engineering from
Université Pierre et Marie Curie, Paris, France, in
2000.

