
Automatic Biasing Point Extraction and Design
Plan Generation for Analog IPs

Ramy Iskander
Universit́e Pierre et Marie Curie

LIP6 Laboratory
4 Place Jussieu, 75252 Paris, France

Email: ramy.iskander@lip6.fr

Andreas Kaiser
IEMN-ISEN

41 Bld. Vauban, 59046 Lille Cedex, France
Email: andreas.kaiser@isen.fr

Marie-Minerve Loüerat
Universit́e Pierre et Marie Curie

LIP6 Laboratory
4 Place Jussieu, 75252 Paris, France
Email: marie-minerve.louerat@lip6.fr

Abstract— In this paper, an algorithm for automatic extraction
of DC biasing point towards generation of design plans is
presented. Initially, the circuit is described as a hierarchy of
modules and devices inside our dedicated framework CAIRO+.
Electrical information is propagated from higher level mod-
ules, to lower level ones, till reaching the device level. During
navigation through the hierarchy, a dependency subgraph is
generated for each device and module. Each subgraph expresses
electrical dependencies by choosing among a set of predefined
sizing operators. To obtain a final directed acyclic graph, existing
graph directed cycles are detected and removed. The resulting
graph represents the complete sizing procedure for the analog IP.
The calculated biasing point is compared against operating point
simulation. The algorithm is successfully applied to two analog
IPs: single-ended two-stages output transconductance amplifier
and differential cascode current-mode integrator.

I. I NTRODUCTION

Analog synthesis tools can be categorized in two different
classes: simulation-based and knowledge-based. A simulation-
based synthesis flow, like MAELSTROM [1], involves an
optimizer in a closed loop with an analog simulator. Both
communicate circularly till an optimal set of values is achieved
for circuit parameters and the specifications are met. The
simulation-based approach had the golden reputation of using
the actual commercial transistor models, hence, sizing accu-
racy is always ensured. As distinct from the simulation-based
approach, a knowledge-based synthesis flow, like OASYS [2],
is mainly based on approximate transistor models. In this
approach, the designer has to identify all the circuit equations
describing the specifications as functions of circuit parameters.
The designer must also identify the sizing procedure based on
these equations. Once determined, the sizing procedure can
be developed using a programming language as C or Matlab.
Despite of its tediousness, the knowledge-based approach is
more appealing to the designer than the synthesis-based one.
Designers may not trust simulation-based synthesis results or
may consider it incomplete. To resolve the problem of inac-
curate models, knowledge-based synthesis systems started to
incorporate accurate models borrowed from analog simulators.
Moreover, the selection of circuit parameters in simulation-
based synthesis systems in not so obvious. Most systems
directly optimise the dimensions of transistors. Many designers
tend to use currents and voltages instead of dimensions. In

knowledge-based systems, the designer has full control over
the choice of parameters.

Our general objective is to develop a language to document
designer’s expertise and use it later to synthesize and migrate
analog IPs. This language makes part of a more general
knowledge-based synthesis system that tries to automate de-
sign plan generation. This paper addresses the problem of
calculating the biasing point using accurate transistor models
and extracting sizing procedures.

Section II defines the problem and shows how to derive
circuit sizing procedure through circuit topology. Section III
presents biasing and sizing results of two analog IPs. Finally,
Section IV concludes the paper.

II. A UTOMATIC BIASING AND SIZING

A. Problem definition

Knowledge-based synthesis requires from the designer full
knowledge of the circuit. Expressing circuit specifications as
functions of selected device parameters becomes a tedious
task. Most specifications can be expressed in terms of small
signal parameters, which in turn, are expressed in terms
of device dimensions. Tuning dimensions should allow the
designer to reach the specifications required. In order to obtain
the dimensions from circuit specifications, the designer has to
write a complex sizing procedure. The procedure is fully based
on the designer’s expertise. Each designer may have different
guidelines.

Temp
Vin,i

Veg,i

Ib,i

Vout,i

Li

︸ ︷︷ ︸
Selected

Parameters

⇒

W1

W2

W3

.

.
Wn

︸ ︷︷ ︸
Device

Dimensions

⇒

gm1

gds1
Cgs1

.

.
gmn

︸ ︷︷ ︸

Small− Signal
Parameters

⇒

Ad

φm

Ft

.

.
PSRR

︸ ︷︷ ︸

Circuit
Specifications

Fig. 1. Mappings in the design space.

B. Objectives

Our aim is to automate the mapping process starting from
the selected circuit parameters till reaching the small signal
parameters. Starting with primary selected circuit parameters,
the automation should address the first three steps of the whole
mapping process illustrated in Fig. 1.

C. Biasing point extraction

To calculate the width of a transistor (Fig. 1), we need to
determine a priori the following quantities:temp, Ids, L, Veg

or Vgs, Vds, Vbs. Normally, temp, Ids, L, Veg are fixed by the
designer andVbs by the circuit topology. AsVeg = Vgs−Vth,
Veg fixes Vgs when an estimation forVth is available. The
only parameter that should be known a priori or should be
fixed through the topology connections is theVds.

g

d

Vp

s

d

g

s

d

d

s

g

s

g

g

d

s

Vdd
2

I/P O/P

M1

M3

M2

MA

MB

s

g

d
d Vdd

2

s
g

Fig. 2. Possible drain connectivity.

Based on the above observation, an arbitrary analog circuit
can be viewed as a set of connections fixing the drain
potentials of all the transistors. Actually, very few possibilities
are available to fix the drain potential. Let us assume that an
arbitrary circuit consists of transistorsM1, M2 and M3 as
in Fig. 2 . To size the three transistors, the potential of the
common drain node should be fixed. The following are the
only possible situations:

1) The drain terminal may be considered as an input
voltage. It should be fixed by the designer a priori

2) The drain terminal may be considered as an output
voltage. It should be fixed by the designer a priori

3) The drain terminal may be connected to the source of
transistorMA. It becomes an unknown

4) The drain terminal may be connected to the gate of
transistorMB . It becomes an unknown

Points 3 and 4 could be resolved by inverting the BSIM3V3
model. In other words, we will inverse numerically the
BSIM3V3 analytical model to calculateVs, Vg, Vth andW as
a function ofVd. The study of the inversion of the BSIM3V3
transistor model, resulted in developing the analogical sizing
operators described in subsequent sections.

D. Hierarchical synthesis in CAIRO+ framework

Analog circuits can be described in CAIRO+ framework [3]
as a hierarchy of interconnecteddevicesandmodules. Higher-

level modules instantiate lower-level modules and devices.
Devices and modules are available as libraries.

During instantiation, each device declares a complete syn-
thesis procedure. In the synthesis procedure, the device de-
clares electrical constraints and make a call to the synthesis
kernel. For modules, the synthesis procedure passes the values
of all known electrical quantities to child modules or devices
and then makes a call to the synthesis kernel. The synthesis
process is hierarchical in the sense that each device and each
module have no access to a higher scope. Each device and
module only encapsulates its own electrical dependencies.

0

1 2 3 4 5 6 7

8

Fig. 3. Dependency subgraph of a transistor.

TABLE I

NODE LEGENDS FOR A TRANSISTOR

Index Label Index Label

0 Vg 5 Vd

1 Temp 6 Vb

2 Ids 7 Vs

3 L 8 W
4 Veg

The result of the synthesis process is a directed acyclic
graph representing all the electrical dependencies between all
electrical parameters of the devices. In this graph, a node
represents one electrical device parameter and an edgev ← u
represents the dependency ofv on u. Fig. 3 shows an example
of a dependency subgraph for a transistor. Table I gives the
meaning of each node.

E. Sizing operators

Based on the principal ideas presented in sub-sectionsC
andD, some analogical sizing operators have been proposed
in this work. Each operator can be described mathematically
as follows:

OPxxx (RVALUEi , ...) : (1)

(LVALUEi , ...)⇐ (RVALUEgiven ,RVALUEi , ...)

whereOPxxx is the name of the operator.LVALUEi are the
unknown electrical quantities that are calculated by applying
this operator to the device.RVALUEgiven are the electrical
quantities given by the designer.RVALUEi are the known
electrical quantities fixed a priori by the designer that dictates
which version of the operator to apply. Operators are often
called dependency rulesor constraints. Table II summarises
the list of operators that could be applied to devices.

During navigation through the hierarchy, a set of depen-
dency rules is generated for each device. The dependency
rule is equivalent to one pre-defined sizing operator. As an
example, Fig. 3 shows the dependency rulesOPV G(Veg)
and OPW (Veg) under the assumption thatVg and W are

TABLE II

DEFINITION OF SIZING OPERATORS

Operator Definition

OPV S(Veg) (Vs,Vth,W) ⇐ temp,Ids,L,Veg ,Vd,Vb,Vg

OPV S(Vgs) (Vs,Vth,W) ⇐ temp,Ids,L,Vgs,Vd,Vb,Vg

OPV S(Veg , W) (Vs,Vth) ⇐ temp,Ids,W ,L,Veg ,Vd,Vb,Vg

OPV S(Vgs, W) (Vs,Vth) ⇐ temp,Ids,W ,L,Vgs,Vd,Vb,Vg

OPV G(Veg) (Vg ,Vth,W) ⇐ temp,Ids,L,Veg ,Vd,Vb,Vs

OPV G(Vgs) (Vg ,Vth,W) ⇐ temp,Ids,L,Vgs,Vd,Vb,Vs

OPV G(Veg , W) (Vg ,Vth) ⇐ temp,Ids,W ,L,Veg ,Vd,Vb,Vs

OPV G(Vgs, W) (Vg ,Vth) ⇐ temp,Ids,W ,L,Vgs,Vd,Vb,Vs

OPV GD(Veg) (Vg ,Vd,Vth,W) ⇐ temp,Ids,L,Veg ,Vb,Vs

OPV GD(Vgs) (Vg ,Vd,Vth,W) ⇐ temp,Ids,L,Vgs,Vb,Vs

OPV GD(Veg , W) (Vg ,Vd,Vth) ⇐ temp,Ids,W ,L,Veg ,Vb,Vs

OPV GD(Vgs, W) (Vg ,Vd,Vth) ⇐ temp,Ids,W ,L,Vgs,Vb,Vs

OPIDS(Veg) (Ids,Vth) ⇐ temp,W ,L,Veg ,Vd,Vg ,Vb,Vs

OPIDS(Vgs) (Ids,Vth) ⇐ temp,W ,L,Vgs,Vd,Vg ,Vb,Vs

OPW (Veg) (W ,Vth) ⇐ temp,Ids,L,Veg ,Vd,Vg ,Vb,Vs

OPW (Vgs) (W ,Vth) ⇐ temp,Ids,L,Vgs,Vd,Vg ,Vb,Vs

unknown. Then, for each device, the dependency rules are
merged to form the device subgraph. The subgraphs are then
merged to form the module dependency graph. In this graph,
nodes represent electrical quantities and edges represent the
dependency rules. The process continues until dependencies
of all modules and devices are presented in the final graph.

F. Synthesis kernel

Every device and module is considered as a generator. Each
generator makes one call to the synthesis kernel in order to
create its own dependencies. The synthesis kernel implements
the algorithm shown in Fig. 4:

function synthesize(generator)
for all children of the generator

call synthesize(child)
end for

if generator is a device
generate dependencies for the device
eliminate all redundant dependencies

else if generator is a module
create equipotentials
merge dependencies of all children generators
eliminate all redundant dependencies

end if
end function

Fig. 4. Outline of the synthesis function.

The algorithm performs a depth-first traversal by calling
recursively the synthesis kernel for all children generators. The
process continues until the root generator is synthesized. The
root generator is the uppermost module or circuit.

III. S IZING RESULTS

A. Single-ended two-stages OTA

The synthesis algorithm was applied to the OTA amplifier
shown in Fig. 5. First, the amplifier was described as a module

VDD

VOUT
VIN− VIN+

VBIAS

M1 M2

M4M3

M5

M6

M7

Fig. 5. Single-ended two-stages output transconductance amplifier.

instantiating a hierarchy of devices available as libraries in
CAIRO+. The different devices used are marked as dashed
boxes. Then, the synthesis procedure of the amplifier was
called in order to obtain the transistor dimensions and the
small signal parameters. The amplifier was successfully sized
and biased.

1) Device dependency subgraph:During synthesis, the
dependency subgraph for each device was automatically gen-
erated. Fig. 6 shows the dependency subgraph for the current
mirror consisting of M3 and M4. Table III clarifies the
meaning of each node in the subgraph.

0

1 23 4

5 6

7

8 9 10 11

Fig. 6. Dependency subgraph of current mirror consisting ofM3 andM4.

TABLE III

NODE LEGENDS FOR CURRENT MIRROR SUBGRAPH

Index Label Index Label

0 Vg,M3 = Vd,M3 = Vd1,cm 6 Vs,M3 = Vs,cm

1 TempM3 = TempM4 7 WM3 = WM4
2 Ids,M3 = Ids,M4 8 Tempcm

3 LM3 = LM4 9 Lcm

4 Veg,M3 = Veg,M4 10 Veg,cm

5 Vb,M3 = Vb,cm 11 Iref,cm

2) Module dependency graph:To obtain the dependency
graph of the OTA amplifier, all the device subgraphs are
automatically merged. The final graph of the whole OTA
amplifier is shown in Fig. 7. As illustrated, the graph is a
directed acyclic graph, or DAG . This means that the sizing
procedure evolves in a top-down approach. Later, the graph
could be converted into a C/C++ CAIRO+ code and compiled
into an executable generator.

3) Algorithm versus simulation:Executing the parame-
terised generator results in all the sizes and biasing voltages
for all transistors in the circuit. Table IV show the results
of sizing and biasing of the current mirror. The algorithm is
compared against the operating point simulation using ELDO.
The results shows that knowledge-based synthesis systems can
attain a precision comparable to an analog simulator by using
accurate BSIM3V3 transistor model.

0

1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2021

22

23

24

25

26 27 28 2930

31 32

33

34

35

36

37

38

39

40 41 42 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 7778 79808182 8384

Fig. 7. Dependency graph of the OTA amplifier.

TABLE IV

ALGORITHM VERSUS SIMULATION RESULTS OF THE CURRENT MIRROR

Transistor M3 andM4 M3 M4

Parameters Algorithm Simulation Simulation

Ids(µA) -50.0 -50.02 -50.014

Vgs(V) -0.442512 -0.44253 -0.44253

Vds(V) -0.442512 -0.44445 -0.44253

Vbs(V) 0.0 0.0 0.0

Vth(V) -0.342511 -0.34251 -0.34251

Vdsat(V) -0.107662 -0.10767 -0.10767

gm(fF)(mΩ−1) 0.72093 0.72115 0.72107

gds(µΩ−1) 3.02043 3.0085 3.0211

gmb(mΩ−1) 0.158339 0.15839 0.15837

Cgd(fF) 39.8595 39.838 39.862

Cgs(pF) 0.657911 0.65788 0.65789

Cgb(pF) 0.121221 0.12131 0.12131

Csd(fF) 0.182819 0.18032 0.18284

Cbd(fF) 0.354848 0.35009 0.35488

B. Differential cascode current-mode integrator

As a second example, the differential cascode current-mode
integrator [4] shown in Fig. 8 was synthesized using CAIRO+.
This example illustrates how incomplete knowledge affects the
generated dependency graph. Graph anomalies can be easily
detected. The detection of such anomalies can help direct the
designer to make an optimum choice, during the selection
of the minimum set of circuit parameters. The parameters
should be fixed a priori in order to synthesize the circuit.
As an example, the problem ofgraph directed cycleswill be
described briefly.

1) Graph directed cycles resolution:Fig. 9 shows a portion
of the final generated dependency graph of the integrator. The

M111

M333 M33 M3 M4

M6M5M55M555

M777 M77 M7 M8

M2M1M11

M88 M888

M66 M666

M444M44

M22 M222

VSN VSP

VDD

VSS

VCP

VBC

VBIAS

CC

Fig. 8. Differential cascode current-mode integrator.

0 1

2 3

4

5

6

7

8

9

10

11

12 13

14 15

Fig. 9. Portion of the dependency graph of the integrator.

most interesting aspect is the formation of directed cycles in
the graph. Namely, a pair of directed cycles can be identified:
{(Vbc, 5), (Vs,m3, 9)} and{(Vcp, 2), (Vs,m5, 3)}. Actually, the
appearance of one directed cycle is equivalent to the existence
of one unknown that should be specified by the designer prior
to the execution of generator. Once specified, it is guaranteed
to synthesize the circuit. The resolution of directed cycles is
essential as it converts the sizing procedure into a directed
acyclic graph. To resolve the directed cycles, the generator
warns the designer to specify one unknown from each set of
unknowns forming one directed cycle. As an example, one
designer can choose to set bothVbc andVcp.

After resolving the graph directed cycles, the minimum
total number of circuit parameters that the designer should
specify equals the sum of selected circuit parameters and the
unknowns resolving detected directed cycles. The whole set of
parameters always appears at the root level of the final graph.
The final choice of parameters for the integrator agrees with
[5].

IV. CONCLUSION

In this paper, an algorithm for automatic extraction of
biasing point and generation of suitable sizing procedure was
presented. The algorithm was implemented as part of our ded-
icated analog framework CAIRO+. It was successfully used to
synthesize two analog IPs: the single-ended two-stages output
transconductance amplifier and differential cascode current-
mode integrator. The synthesis in CAIRO+ is purely hierar-
chical. The simulation results of the OTA amplifier in a 0.13µ
technology showed that knowledge-based synthesis could be
as accurate as simulation-based synthesis. The synthesis results
of the integrator showed the ability of the algorithm to detect
designer’s incompletely specified knowledge.

REFERENCES

[1] M. Krasnicki, R. Phelps, R. A. Rutenbar and L. R. Carley,MAELSTROM:
Efficient Simulation-based Synthesis for Custom Analog Cells, Proceed-
ings of Design Automation Conference, pp. 945-950, June 1999.

[2] R. Harjani, R. A. Rutenbar and L. R. Carley,OASYS: A Framework for
Analog Circuit Synthesis, IEEE Transactions on Computer–Aided Design,
vol. 8, No. 12, pp. 1247–1266, Dec. 1989.

[3] P. Nguyen Tuong, M. M. Loüerat and A. Greiner,Guidelines for De-
signing Smart and Reusable Analog IP Cores, SAME Sophia Antipolis
Microeletronics Forum, Oct. 2004.

[4] S. Smith and E. Sanchez-Sinencio,Low Voltage Integrators for High-
Frequency CMOS Filters Using Current Mode Techniques, IEEE Trans-
actions on Circuits and Systems - II, vol. 43, No. 1, pp. 39–48, jan 1996.

[5] H. Aboushady and M. M. Loüerat, Low-Power Design of Low-Voltage
Current-Mode Integrators for Continuous-TimeΣ∆ Modulators, IEEE
International Symposium on Circuits And Systems, pp. 276–279, may
2001.

