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Abstract— This work presents a general method to design
continuous-time Σ∆ modulators with sine-shaped feedback
DACs. A discrete time to continuous time transformation tech-
nique is used to compute the continuous-time loop filter coeffi-
cients, taking into account the sinusoidal feedback. Examples of
high order lowpass and bandpass continuous-time Σ∆ modula-
tors are given as an illustration for the proposed design method.
A transistor level sine-shaped feedback DAC is also proposed
and compared to a recent circuit design. Finally, the sensitivity
of these circuits to clock jitter is studied and compared to the
traditional rectangular feedback pulse.

I. INTRODUCTION

Continuous-Time (CT) Sigma-Delta modulators have re-
ceived a significant interest in the recent years due to some
important advantages over their Discrete-Time (DT) equiv-
alents. Intrinsic anti-aliasing filter, lower thermal noise and
higher sampling rate make these modulators more suitable for
low-power or high-speed applications and commonly used for
analog to digital conversion in radio receivers [1].

The main drawback of CT Σ∆ modulators is their high
sensitivity to any non-idealities in the feedback path. Clock
jitter is probably the major imperfection that can significantly
degrade the performance of high speed CT Σ∆ modulators.

Most of the actual CT Σ∆ modulators are based on
rectangular feedback schemes (NRZ, RZ) which are quite
easy to design and work properly for intermediate sampling
frequencies. However, as sampling rates are getting higher and
higher, rectangular feebacks tend to look more like sinusoidal
ones, which forces the designer to review the design procedure
of these CT Σ∆ modulators. Furthermore, recent theoretical
work on sine-shaped feedbacks has proven that they are less
sensitive to clock jitter compared to rectangular feedbacks [2].

In this paper, we present a general method for designing
an nth order CT Σ∆ modulator with a sine-shaped feedback
DAC. This method is valid for the different lowpass and
bandpass topologies.

In Section II, we describe the procedure we have followed to
compute the CT loop filter coefficients. Section III gives some
design examples of lowpass and bandpass CT Σ∆ modulators
using sine-shaped feedbacks. Section IV discusses some circuit
design issues and conclusions about this work are drawn in
Section V.
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Fig. 1. Continuous-time Σ∆ modulator with loop delay, td, and feedback
compensation coefficient, ax.
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Fig. 2. Delayed sine-shaped feedback signal, hdac(t) = 1 − cos(ωt).

II. LOOP FILTER COEFFICIENTS FOR SINE-SHAPED

FEEDBACKS

The continuous time loop filter coefficients are calculated
using a DT-to-CT transformation technique [3], which consists
of equating the loop gains for both discrete and continuous
time modulators. To design the CT Σ∆ modulator, we will
therefore start from the DT loop filter coefficients and then
establish the DT-to-CT equivalence.

Fig. 1 shows a general form of a CT Σ∆ modulator with
feedback loop delay. The objective is to design the CT loop
filter Hc(s) for the proposed feedback DAC transfer function
HDAC(s), so that the CT Σ∆ sampled loop gain Gc(z) is
equal to the DT Σ∆ loop gain Gd(z). This can be expressed
by :

Gd(z) = Gc(z)
Hd(z) = Z [(Hc(s) − ax) HDAC(s)] (1)

where Hd(z) is the DT loop filter and ax is an extra feedback
coefficient added to compensate for the loop-delay [4] [5].
Notice that this compensation technique remains valid for
feedback delays up to one clock period.

We will start by calculating the feedback DAC transfer
function, then we will show the systematic design procedure
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that we have followed to find the CT Σ∆ cofficients.

A. Feedback DAC transfer function

The feedback signal for a sine-shaped DAC is shown Fig. 2.
We propose here to model the DAC logic circuitry delay and
any additionnal settling times in the feedback path as a total
delay td. The feedback DAC time response is then given by:

hDAC(t) = [1 − cos (ω(t − td))] [u(t − td) − u(t − td − T )]

where ω = 2πn
T , n being the desired number of sine pulses

per sampling period, T. Notice that the n parameter can take
any real value, but for jitter sensitivity reasons, it should be
kept to an integer value.

In the following study, we will suppose that the total
feedback delay never exceeds one clock period. Applying the
Laplace Transform to the time response, we get the following
feedback DAC transfer function :

HDAC(s) = L[hDAC(t)] =
ω2(1 − e−Ts)e−tds

s(s2 + ω2)

The presence of the e−tds term in the HDAC transfer
function will require the use of the modified-z-transform tech-
nique [6] to solve equation (1). While avoiding the complex
mathematics necessary to perform time-domain convolution,
this technique enables us to get the z-transform of signals
having variations between two sampling instants.

B. Modified z-transform

The loop gain transfer function of a CT Σ∆ modulator with
a delayed sine-shaped feedback can be written in the following
form:

Gc(z) = Z
[
(Hc(s) − ax)

ω2(1 − e−Ts)e−tds

s(s2 + ω2)

]
Using the modified-z-transform, we get:

Gc(z) = (1 − z−1)Zm

[
(Hc(s) − ax)

ω2

s(s2 + ω2)

]

where m = 1 − td

T .
To calculate the modified-z-transform of the CT Σ∆ loop

gain starting from the Laplace domain, we use the Residue
theorem [6]. Gc(z) can then be written in the following form:

Gc(z) = (1−z−1)
∑
pi

Residues of
(Hc(s) − ax)ω2

s(s2 + ω2)
emTs

z − eTs


pi

(2)
where:

pi = poles of
Hc(s) − ax

s(s2 + ω2)

Using equation (2), the loop gain of the CT Σ∆ can be
expressed in the DT domain. Comparing the coefficients of
the numerator and the denominator of Gc(z) with those of
the DT loop gain Gd(z), we should then be able to deduce
the coefficients of the CT loop filter Hc(s).

We take here the example of a 2nd order bandpass CRFF
CT Σ∆ modulator, where (gd1 , b1, b2) are the DT loop filter
coefficients and (gc1 , a1, a2) are the CT loop filter coefficients.

Implementing the DT-to-CT transformation using the symbolic
mathematical tool MAPLE [7], equation (1) becomes :

Gd(z) = Gc(z)

(b1 + b2)z − b1

z2 + (gd1 − 2)z + 1
=

α2z
2 + α1z + α0

z(β2z2 + β1z + β0)

where :

αi, βj = f(a1, a2, ax, gc1, td) (i, j) ∈ {0, 1, 2}
By cancelling the α0 term with the appropriate ax value,

we get an expression for the CT loop gain Gc(z) having the
same order as the DT loop gain Gd(z). The equivalence is thus
established and we can compute the CT loop filter coefficients.
Using MAPLE, we get for the 2nd order CRFF CT modulator:


gc1 = (π − arccos(−1 + gd1

2 ))2

a1, a2 = f(b1, b2, td)
ax = f(a1, a2, gc1 , td)

In the following section, we will show some design ex-
amples of high order CT Σ∆ modulators with delayed sine-
shaped feedbacks.

III. DESIGN EXAMPLES

Here we present a 5th order lowpass CIFF and a 4th order
bandpass CRFF Σ∆ modulators. A sine-shaped feedback DAC
with a total delay of td = 0.625 ∗ T is used within the CT
modulators.

The DT Σ∆ loop filter coefficients have been obtained
using Schreier’s Σ∆ Toolbox [8]. Using the design procedure
presented in the previous section, the CT Σ∆ coefficients were
then obtained for a sine-shaped feedback.

The coefficients of the DT, CT with a feedback of one
cycle per period (n=1) and CT with a feedback of three cycles
per period (n=3) are listed in Table I for a 4th order CRFF
bandpass modulator.

Fig. 3 and Fig. 4 show the Signal-to-Noise Ratio resulting
from the simulation of the DT modulators and the CT modu-
lators with sine-shaped feedback DAC (n=1 and n=3).

We clearly see that the performances of the CT Σ∆
modulators with sine-shaped feedback are very close to the
performances of the equivalent DT modulators.

TABLE I

4th ORDER BANDPASS CRFF Σ∆ COEFFICIENTS (f0=0.25fs, OSR=64).

DT CT n = 1 n = 3

b1 0.5587 a1 -0.13246 -0.13144

b2 -0.5587 a2 -1.11473 -1.18358

b3 -0.0158 a3 -0.34010 -0.36064

b4 -0.1999 a4 0.15810 0.16765

gd1 1.9717 gc1 2.42314 2.42314

gd2 2.0283 gc2 2.51205 2.51205

ax -0.03783 -0.42679
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Fig. 3. Fourth order bandpass CRFF (f0=0.25fs, OSR=64).
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Fig. 4. Fifth order lowpass CIFF (OSR=64).

IV. CIRCUIT DESIGN ISSUES

We present here a sinusoidal feedback DAC for CT Σ∆
modulators with high sampling frequencies and compare it
to the sine-shaped DAC proposed in [9]. Advantages and
drawbacks of both designs will be listed and clock jitter effects
will also be discussed.

A. Referenced sine-shaped DAC

In [9], the authors present a sine-shaped feedback DAC
for CT Σ∆ modulators. The circuit is based on a current
source controlled by a local oscillator, as depicted in Fig. 5. In
the ideal case, the sine-shaped feedback pulses are perfectly
locked to the DAC clock. Data switching occurs then at
zero values of the output current, which has the benefit of
considerably decreasing the clock jitter effects.

Since the input data and the oscillating waveform must be
locked to the DAC clock, the use of additionnal synchroni-
sation blocks and eventually a phase-locked loop might be
necessary.

B. Proposed sine-shaped DAC

The proposed sine-shaped feedback DAC is shown Fig. 6.
The circuit was designed using a 0.13µ CMOS technology.

Iout

Iout

fosc

fs

Driver
SwitchData

= 1.028 GHz

= 514 MHz

Fig. 5. Sinusoidal feedback DAC presented in [9], implemented in 1.8-V
0.18-µm CMOS technology.
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Fig. 6. Proposed sine-shaped feedback DAC, designed in 1.2-V 0.13-µm
CMOS technology, fs=9.768GHz.

Power dissipation is 1.2 mW with a 1.2-V supply voltage.
During return to zero, both switches N+ and N- are on and

steer a current −Iref each, which compensates for the constant
P source current +Iref and cancels the value of the resulting
output current. During the next phase and depending on the
input data, only one of the two switches remains on and steers
all the N source current −2Iref .

For sampling frequencies below 5 GHz, rectangular return
to zero current pulses are generated at the outputs, but with
higher sampling rates the output signals become nearly sinu-
soidal.

The output currents, for a sampling frequency of 9.768 GHz
and for a constant ’1’ at the input, are shown Fig. 7. The total
feedback delay was estimated here at a value of td = 0.625∗T .
This delay is mainly due to the response time and switching
transitions of the logic gates within the control circuitry.

Compared to the referenced DAC [9], we are not concerned
here by the synchronisation of the input data with the DAC
clock, as long as the quantizer response-time doesn’t exceed
half a sample period (return to zero phase).

On the other hand, the proposed architecture is more sub-
ject to clock jitter, as it will be explained in the following
subsection.

C. Analysis of Timing Jitter

In [2], the theoretical SNR limit due to clock jitter for the
sine-shaped feedback is given by:

SNR = 20 log10

(
α√
2

√
OSR

3.65 π2 f3
s σ3

t

)
(3)
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Fig. 7. Output currents of the proposed DAC (Fig. 6) at fs = 9.768 GHz.

where σt is the clock jitter standard deviation and α is the
input sine amplitude.

On the other hand, SNR limitation for a rectangular return-
to-zero feedback with T

2 pulse width is, [10] :

SNR = 20 log10

(
α√
2

√
OSR

2 fs σt

)
(4)

Fig. 8 shows the SNR of a 4th order bandpass CRFF Σ∆
with OSR=58 and α=0.5 in function of the clock jitter (% of
sampling period). The three plotted curves correspond to:

• SNR with jitter noise from (3) plus quantization noise
• SNR simulation results using ideal models for the loop

filter and quantizer, and a transistor level netlist for
the proposed feedback DAC (Fig. 6). Simulations were
performed by injecting clock jitter only at half periods
( mT

2 ± δt) and by keeping the sampling times at values
of mT .

• SNR with jitter noise from (4) plus quantization noise.
The SNR degradation of the proposed circuit compared to

the ideal sine shaped DAC lies in the way the jitter affects
the feedback signal. In [2], the DAC is designed in a manner
that the jitter affects the feedback signal only at the sampling
instants (zero value and zero slope of IDAC ). Whereas, for our
sine-shaped DAC, the jitter intervenes also at half periods, as
depicted in Fig. 9.

V. CONCLUSION

In this paper, we have presented a general method to calcu-
late the loop filter coefficients for CT Σ∆ modulators with a
sinusoidal feedback. The design procedure has been validated
through examples of high order lowpass and bandpass CT Σ∆
modulators. A sine-shaped DAC has also been proposed and
compared to a recent work on sinusoidal feedbacks. Although
the proposed design is more sensitive to clock jitter, it does
not require the use of synchronisation circuitry.
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