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ABSTRACT 
We present a routability-driven top-down clustering 
technique for area and power reduction in clustered 
FPGAs. This technique is based on a multilevel 
partitioning approach. It leads to better device 
utilization, savings in area, and reduction in power 
consumption. Routing area reduction of 15% is 
achieved over previously published results. Power 
dissipation is reduced by an average of 8.5%. 

1. INTRODUCTION 
Field Programmable Gate Arrays (FPGAs) have gained 
rapid commercial acceptance thanks to their 
reconfigurability and low cost. Speed and area efficiency 
of an FPGA are directly related to the granularity of its 
logic blocks. If the logic blocks are fine grained, the 
circuit to be implemented will be distributed over a larger 
number of logic blocks. This has a negative impact on 
routability since more blocks need to be interconnected. 
Recently FPGA vendors have introduced hierarchical 
FPGAs consisting of logic clusters: figure1 (a). In these 
architectures several Look Up Tables (LUTs) are clustered 
into one logic block to provide better performances 
specially for communication and to exploit signal sharing 
among LUTs. Our work focuses on the way to adapt an 
existing multilevel partitioning tool to the FPGA 
clustering problem. In fact, some constraints imposed by 
the architecture (number of pins and cluster size) must be 
respected. 
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figure 1: (a)  Logic cluster  (b) basic logic element 

2.  PREVIOUS WORK 
 
Prior research on clustered FPGA architectures has 
focused mainly on area and delay optimisation. Betz et al. 
[1] proposed a packing/clustering algorithm: Vpack for 
hierarchical FPGAs [5]. The main idea in their work was 
to pack a technology-mapped circuit into clusters of a 
given size and input/output pin constraints. The same 
authors introduced a tool, T-Vpack [2], using a timing 
driven packing approach based on the idea of packing 
blocks on timing-critical paths to exploit fast local 
interconnects. The clusters generated using T-vpack use 
an average of 12% fewer tracks than the clusters generated 
using Vpack for the same array size. A recent work, R-
pack [3] presented a routability-driven packing algorithm 
which first identifies routability factors and prioritizes 
these factors into an improved clustering function. This 
approach produces routing track counts comparable to 
those generated by T-Vpack. 

3. ARCHITECTURE OVERVIEW 
The FPGA we are targeting is of island-style structure. 
The circuit is composed of clustered logic blocks (CLBs), 
switch blocks, connection blocks, and I/O blocks. Each 
CLB, which implements the user’s logic, has inputs and 
outputs connected by the routing network. It contains N 
basic logic elements (BLEs) grouped together. Each BLE 
contains a k-input 
lookup table (a K-LUT) followed by a bypass flip-flop. 
The LUT inputs are chosen from among a set of shared 
cluster inputs. In our case k = 4. 
The Connection block connects the input and output pins 
of a CLB to the routing channel, and the Switch block 
connect the wires of two intersecting channels. The 
number of tracks between any two neighboring clusters is 
uniform and is called the channel width.  
We assume that a cluster of size n has (2n + 2) input 
pins and n output pins. Indeed, this is sufficient to 
achieve full logic connectivity as shown by Betz in 
[1]. In addition we assume that all segments are of 
length 1. 

4. MULTILEVEL LOGIC 
CLUSTERING APPROACH 

Clustering is done in 2 phases. First we apply a k-way 
partitioning to the circuit. So having a circuit consisting of 
set of modules and set of signal nets, we want to divide it 



into k clusters such that the number of inter-cluster signal 
nets is minimized. As we will use an existing partitioning 
tool we can not impose several constraints in advance like 
the number of pins per cluster. That is why in the second 
phase we have to move some vertices among the partitions 
to respect such constraints. 

4.1 Partitioning running 
In this phase, we present the multilevel partitioning 
algorithm that we have applied to divide the BLEs into 
clusters. As in the FPGA partitioning problem, BLEs must 
be divided into k roughly equal parts, we use an algorithm 
that computes directly the k partitions: hMETIS-Kway 
[4]. The hMETIS-Kway is k-way partitioning algorithm 
based on the multilevel paradigm. 
As shown in figure 2, the hypergraph is coarsened 
successively and it is directly partitioned into k parts. 
Then this k-way partitioning is successively refined as the 
partitioning is projected back into the original hypergraph.  

figure2: The various phases of the multilevel clustering 
approach 

 
If during the clustering special properties of the 
interconnect can be exploited, significant gains can be 
obtained in terms of routability. when we run the 
partitioning we choose an objective function that 
minimizes the number of external nets and eliminates nets 
with high density: A net with a larger number of terminals 
is harder to route. 

4.2 Respecting constraints 
When the k-way hMetis partitioning is run, it is 
impossible to impose the constraints concerning the size 
of partitions and the number of inputs per cluster. As it 
can be seen in figure 1 a “constraints enforcing” step was 
added at the end of the uncoarsening phase. First we have 
to verify for each cluster if the number of blocks exceeds 
the limit imposed by the FPGA architecture. In this case 
we have to move some blocks from some clusters and to 
place them in other ones. In a second step we have to 
verify if the number of external input nets exceeds the 
number of cluster’s input pins allowed by the architecture. 
In this case we have also to move some blocks. When we 
do such moves we will modify the partitions that we have 
obtained and this can have a bad effect on the objective 
function. So in both cases we have to select the candidates 
to move with the best gain.  The gain is defined as the 

number of external nets (~number of pins per cluster) to 
reduce when we move a block B from a cluster C. 
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Now we present how the gain for each net is computed. 
Note that each block output pin is accessible from outside 
and there is no sharing among the output pins. Therefore 
there would be no output pin constraints for the clusters. 
According to this observation, saving on output pins does 
not bring any gain.  

 
figure 3: Logic block being moved from a cluster 

 
In figure 3, we show a candidate basic block B and a 
cluster C. The nets N1, N2, N3 and N4 have different 
contributions to the gain of moving the block B.  
N1 is connected to input pins of two blocks inside the 
cluster C. So N1 has no improving effect since the 
external input pin will be kept. So the gain obtained by 
moving B from cluster C corresponding to net N1 is 0. 
However since all terminals of the net N2 are inside the 
cluster (internal net), one input pin of the cluster would 
be used for N2 if we move the block B. So the gain of 
moving logic block B to the cluster due to N2 in terms of 
used input pins per cluster is -1. N3 is connected to only 
an input pin of the block B in the cluster C. So when we 
move B an input pin gets free and the gain is 1. The 
driving pin of N4 is the output of the logic block B. There 
is an input pin of net N4 inside the cluster C. If we move 
the block B we need to use an input pin of the cluster to 
connect the net N4 to other terminals of the net outside 
the cluster. According to this reason the net N4 has a 
contribution to the block gain equal to -1. 
Once we have selected the candidate block to move, we 
must select the best cluster receiver. The cluster receiver 
must verify that number of blocks is less than the limit 
number imposed by the architecture and number of input 
pins does not exceed the number imposed by the 
architecture. 
When we add a block to a cluster we must not exceed the 
number of inputs. So we compute a gain function for each 
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cluster. The gain is the number of the inputs that will be 
added (negative value) or reduced (positive value) when 
we insert the block into the cluster. 
 

 
 

figure 4: Logic block being inserted in a cluster 
 

In figure 4, a block B and a candidate cluster C are 
presented. Block B has two common nets with cluster C: 
N1 and N2. An input pin of the net N1 is inside the cluster 
C. By adding the block B to the cluster, another input 
terminal of the net N1 would be inside the cluster. This 
will not lead to any change concerning the input pins, the 
gain is equal to 0. The driving pin of net N2 is the output 
of the logic block B. There is an input pin of net N2 inside 
the cluster C. If we insert the block B there will be no 
need to use an input pin of the cluster to connect the net 
N2 to other terminals of the net outside the cluster. By 
adding block B to cluster C, an input pin of the cluster 
gets free and can be used for another net connection. The 
gain corresponding to this net is eqaul to 1. Net N3 has no 
pins inside the cluster C. One pin of the cluster will be 
used for N3. So the gain of moving logic block B to the 
cluster due to N3 in terms of used input pins per cluster is 
-1. The gain for each block inserting in cluster C can be 
computed as follows: 
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g(I, Nets(C), B) is defined as the gain obtained in input 
pins of cluster C. 

5. EXPERIMENTAL RESULTS 
We have implemented our clustering technique, on the top 
of VPR [5], we have used a Pentium-4 machine 3 GHz. 
We placed and routed 18 of the largest MCNC random 
benchmark circuits [6] on clustered FPGAs. Cluster size 8 
was used in our experiments.   

5.1 Routability 
Table 1 shows the routing tracks results for T-VPack [2], 
RPack [3] and our clustering technique. For the same 

number of clusters T-VPack and R-Pack use about 15% 
more tracks than our clustering technique. Less number of 
tracks means saving wiring area.  

 
Table 1: Routing tracks  

  T-Vpack R-Pack Ours 
Circuit
s 

Clusters Channel Channel Channel 

alu4 192 26 34 26 
apex2 240 34 35 29 
Apex4 165 37 35 30 
bigkey 214 17 15 11 

des 200 17 18 15 
diffeq 189 20 19 17 
dsip 172 14 24 11 

elliptic 454 37 32 30 
ex1010 599 41 42 31 
ex5p 139 37 36 31 
frisc 446 39 34 33 

misex3 178 29 32 29 
pdc 582 52 56 51 

s38417 802 29 25 18 
s38584 806 32 26 20 

seq 221 33 37 32 
spla 469 42 48 39 
tseng 133 21 21 13 

average 344.48 30.49 31.16 25.8 

5.2 Circuit speed and run time 
Now we will check the effect of our clustering method on 
circuit speed. We placed and routed the same benches on 
clustered FPGAs using a timing-driven algorithm. Table 2 
shows the critical path results for T-VPack [2] and our 
clustering technique. We have almost the same speed 
performance. Our clustering method can deal with the area 
and speed problems in the same time. 

 
Table 2: Critical path and run time 

 T-Vpack Ours 
Circuits C.Path 

(ns) 
Run time 

(s) 
C.Path 

(ns) 
Run time 

(s) 
alu4 59.8 47.3 55.3 50.2 

apex2 76.0 100.2 69.1 90.3 
Apex4 65.7 71.5 63.4 57 
bigkey 43.6 58.2 29.6 38 

des 46.5 68.3 54.9 62.4 
diffeq 43.7 41.5 56.7 39.1 
dsip 52.4 45.4 33.4 41.9 

elliptic 81.29 260.5 99.7 265.3 
ex1010 86.8 525 98.6 495.4 
ex5p 110.6 65.2 108.3 56.7 
frisc 53.9 280.3 60.0 290.8 
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misex3 59.3 59.3 57.5 60.7 
pdc 126.7 818.7 121.7 825.5 

s38417 87.3 360 77.7 341.4 
s38584 59.3 420.3 55.9 413.8 

seq 63.5 79.5 62.7 88.2 
spla 98.1 314 98.7 320.7 
tseng 51.3 33.3 50.4 35 

average 70.2 202.7 69.6 198.5 

The time consumed in our partitioning method is 
relatively important and this is due essentially to the 
“uncoarsening” and the “constraints respecting” phases.  
In table 4 we show the time consumed to run clustering, 
placement and routing in both cases. We notice that by 
spending more time in the clustering stage we reduce the 
time that will be consumed in the placement and routing 
phases. 

5.3 Power consumption 

Dynamic power consumption is a major concern in 
FPGAs. FPGAs consume significantly more power than 
their ASIC counterparts. For example, a Xilinx 4000 
series device can consume as much as 100nW/MHz/gate 
whereas its ASIC counterpart consumes only 20-
30nW/MHz/gate. Moreover, power consumption for 
commercial FPGAs grows linearly with an increase in 
frequency. For example, Xilinx [7] estimates that Virtex 
device clocked at 250MHz and consisting of 13000 CLB 
slices can consume more than 21W of power. So to 
introduce the embedded FPGA on SOC, it is very 
important to deal with such problem. 

By reducing the overall routing area and wire-length, we 
can directly impact power dissipation.  

controlclockicerconnecttotal PPPPP +++= logint     (1) 

Since we do not increase the array size, and we assume no 
clock gating, the last two components in (1) remain fairly 
constant. Hence, any change in power dissipation is 
mainly due to changes in  erconnectPint  and icPlog . 

Therefore:   icerconnecttotal PPP logint ∆+∆=∆      (2) 

icPlog∆  is equal to 0 since we use the same number of 

active LCs as the other tools. So totalP∆  is a function of 
the total wire-length of the routed circuit, i.e. 

segmentsinactivesegmentsactivetotal PPP −− ∆+∆≈∆  

Table 3: Active power dissipation-0.18µ technology 

Segment Power (mW/segment) 

Active(loaded) 0.54mw 

Inactive(unloaded) 0.0385mW 

Table 1 shows the total power contribution by both a 
loaded and unloaded wire-segment 18µ 1.8V technology 
at 250 MHz [8]. This table clearly shows that active wire 
segments contribute the majority of the total interconnect 
power consumed. Our clustering technique is able to 
reduce the average wire-length by around 15%. Assuming 
that interconnect and logic resources consume 
approximately 70% of the total dissipated power, and that 
interconnects occupy around 80% of the total device area, 
we can save approximately 8.5% of the total device power 
by using our clustering technique. 

6. CONCLUSION 
In this paper we proposed a multilevel partitioning method 
for cluster-based FPGAs. This method improves the 
routability by decreasing the number of required tracks in 
the FPGA routing and reduces the consumed power. This 
method has also a good effect on optimising the critical 
path. Those improvements were achieved thanks to the 
multilevel partitioning and the choice of the objective 
function. Those results in terms of area and power 
reduction are important for FPGA embedding on SOC.  
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