
Hierarchical FPGA clustering based on multilevel partitioning approach
to improve routability and reduce power dissipation

Zied Marrakchi, Hayder Mrabet, Habib Mehrez
LIP6-ASIM Laboratory, Université Paris 6, Pierre et Marie Curie

e-mail : zied.marrakchi@lip6.fr

ABSTRACT
We present a routability-driven top-down clustering
technique for area and power reduction in clustered
FPGAs. This technique is based on a multilevel
partitioning approach. It leads to better device
utilization, savings in area, and reduction in power
consumption. Routing area reduction of 15% is
achieved over previously published results. Power
dissipation is reduced by an average of 8.5%.

1. INTRODUCTION
Field Programmable Gate Arrays (FPGAs) have gained
rapid commercial acceptance thanks to their
reconfigurability and low cost. Speed and area efficiency
of an FPGA are directly related to the granularity of its
logic blocks. If the logic blocks are fine grained, the
circuit to be implemented will be distributed over a larger
number of logic blocks. This has a negative impact on
routability since more blocks need to be interconnected.
Recently FPGA vendors have introduced hierarchical
FPGAs consisting of logic clusters: figure1 (a). In these
architectures several Look Up Tables (LUTs) are clustered
into one logic block to provide better performances
specially for communication and to exploit signal sharing
among LUTs. Our work focuses on the way to adapt an
existing multilevel partitioning tool to the FPGA
clustering problem. In fact, some constraints imposed by
the architecture (number of pins and cluster size) must be
respected.

I inputs N outputs

(a)

 k inputs output

 ck

(b)
figure 1: (a) Logic cluster (b) basic logic element

2. PREVIOUS WORK

Prior research on clustered FPGA architectures has
focused mainly on area and delay optimisation. Betz et al.
[1] proposed a packing/clustering algorithm: Vpack for
hierarchical FPGAs [5]. The main idea in their work was
to pack a technology-mapped circuit into clusters of a
given size and input/output pin constraints. The same
authors introduced a tool, T-Vpack [2], using a timing
driven packing approach based on the idea of packing
blocks on timing-critical paths to exploit fast local
interconnects. The clusters generated using T-vpack use
an average of 12% fewer tracks than the clusters generated
using Vpack for the same array size. A recent work, R-
pack [3] presented a routability-driven packing algorithm
which first identifies routability factors and prioritizes
these factors into an improved clustering function. This
approach produces routing track counts comparable to
those generated by T-Vpack.

3. ARCHITECTURE OVERVIEW
The FPGA we are targeting is of island-style structure.
The circuit is composed of clustered logic blocks (CLBs),
switch blocks, connection blocks, and I/O blocks. Each
CLB, which implements the user’s logic, has inputs and
outputs connected by the routing network. It contains N
basic logic elements (BLEs) grouped together. Each BLE
contains a k-input
lookup table (a K-LUT) followed by a bypass flip-flop.
The LUT inputs are chosen from among a set of shared
cluster inputs. In our case k = 4.
The Connection block connects the input and output pins
of a CLB to the routing channel, and the Switch block
connect the wires of two intersecting channels. The
number of tracks between any two neighboring clusters is
uniform and is called the channel width.
We assume that a cluster of size n has (2n + 2) input
pins and n output pins. Indeed, this is sufficient to
achieve full logic connectivity as shown by Betz in
[1]. In addition we assume that all segments are of
length 1.

4. MULTILEVEL LOGIC
CLUSTERING APPROACH

Clustering is done in 2 phases. First we apply a k-way
partitioning to the circuit. So having a circuit consisting of
set of modules and set of signal nets, we want to divide it

into k clusters such that the number of inter-cluster signal
nets is minimized. As we will use an existing partitioning
tool we can not impose several constraints in advance like
the number of pins per cluster. That is why in the second
phase we have to move some vertices among the partitions
to respect such constraints.

4.1 Partitioning running
In this phase, we present the multilevel partitioning
algorithm that we have applied to divide the BLEs into
clusters. As in the FPGA partitioning problem, BLEs must
be divided into k roughly equal parts, we use an algorithm
that computes directly the k partitions: hMETIS-Kway
[4]. The hMETIS-Kway is k-way partitioning algorithm
based on the multilevel paradigm.
As shown in figure 2, the hypergraph is coarsened
successively and it is directly partitioned into k parts.
Then this k-way partitioning is successively refined as the
partitioning is projected back into the original hypergraph.

figure2: The various phases of the multilevel clustering
approach

If during the clustering special properties of the
interconnect can be exploited, significant gains can be
obtained in terms of routability. when we run the
partitioning we choose an objective function that
minimizes the number of external nets and eliminates nets
with high density: A net with a larger number of terminals
is harder to route.

4.2 Respecting constraints
When the k-way hMetis partitioning is run, it is
impossible to impose the constraints concerning the size
of partitions and the number of inputs per cluster. As it
can be seen in figure 1 a “constraints enforcing” step was
added at the end of the uncoarsening phase. First we have
to verify for each cluster if the number of blocks exceeds
the limit imposed by the FPGA architecture. In this case
we have to move some blocks from some clusters and to
place them in other ones. In a second step we have to
verify if the number of external input nets exceeds the
number of cluster’s input pins allowed by the architecture.
In this case we have also to move some blocks. When we
do such moves we will modify the partitions that we have
obtained and this can have a bad effect on the objective
function. So in both cases we have to select the candidates
to move with the best gain. The gain is defined as the

number of external nets (~number of pins per cluster) to
reduce when we move a block B from a cluster C.

∑
∈

=
)(

)),(,(),(
BNetsi

BCNetsigCBGain

Now we present how the gain for each net is computed.
Note that each block output pin is accessible from outside
and there is no sharing among the output pins. Therefore
there would be no output pin constraints for the clusters.
According to this observation, saving on output pins does
not bring any gain.

figure 3: Logic block being moved from a cluster

In figure 3, we show a candidate basic block B and a
cluster C. The nets N1, N2, N3 and N4 have different
contributions to the gain of moving the block B.
N1 is connected to input pins of two blocks inside the
cluster C. So N1 has no improving effect since the
external input pin will be kept. So the gain obtained by
moving B from cluster C corresponding to net N1 is 0.
However since all terminals of the net N2 are inside the
cluster (internal net), one input pin of the cluster would
be used for N2 if we move the block B. So the gain of
moving logic block B to the cluster due to N2 in terms of
used input pins per cluster is -1. N3 is connected to only
an input pin of the block B in the cluster C. So when we
move B an input pin gets free and the gain is 1. The
driving pin of N4 is the output of the logic block B. There
is an input pin of net N4 inside the cluster C. If we move
the block B we need to use an input pin of the cluster to
connect the net N4 to other terminals of the net outside
the cluster. According to this reason the net N4 has a
contribution to the block gain equal to -1.
Once we have selected the candidate block to move, we
must select the best cluster receiver. The cluster receiver
must verify that number of blocks is less than the limit
number imposed by the architecture and number of input
pins does not exceed the number imposed by the
architecture.
When we add a block to a cluster we must not exceed the
number of inputs. So we compute a gain function for each

i0 out
i1
i2
i3

i0 out
i1
i2
i3

i0 out
i1
i2
i3

i0 out
i1
i2
i3

N4

N2

 Block B

 Cluster C

Uncoarsening
phase

Constraints
enforcing

N1

N3

Coarsening
phase

cluster. The gain is the number of the inputs that will be
added (negative value) or reduced (positive value) when
we insert the block into the cluster.

figure 4: Logic block being inserted in a cluster

In figure 4, a block B and a candidate cluster C are
presented. Block B has two common nets with cluster C:
N1 and N2. An input pin of the net N1 is inside the cluster
C. By adding the block B to the cluster, another input
terminal of the net N1 would be inside the cluster. This
will not lead to any change concerning the input pins, the
gain is equal to 0. The driving pin of net N2 is the output
of the logic block B. There is an input pin of net N2 inside
the cluster C. If we insert the block B there will be no
need to use an input pin of the cluster to connect the net
N2 to other terminals of the net outside the cluster. By
adding block B to cluster C, an input pin of the cluster
gets free and can be used for another net connection. The
gain corresponding to this net is eqaul to 1. Net N3 has no
pins inside the cluster C. One pin of the cluster will be
used for N3. So the gain of moving logic block B to the
cluster due to N3 in terms of used input pins per cluster is
-1. The gain for each block inserting in cluster C can be
computed as follows:

∑
∈

=
)(

)),(,(),(
BNetsi

BCNetsigCBGain

g(I, Nets(C), B) is defined as the gain obtained in input
pins of cluster C.

5. EXPERIMENTAL RESULTS
We have implemented our clustering technique, on the top
of VPR [5], we have used a Pentium-4 machine 3 GHz.
We placed and routed 18 of the largest MCNC random
benchmark circuits [6] on clustered FPGAs. Cluster size 8
was used in our experiments.

5.1 Routability
Table 1 shows the routing tracks results for T-VPack [2],
RPack [3] and our clustering technique. For the same

number of clusters T-VPack and R-Pack use about 15%
more tracks than our clustering technique. Less number of
tracks means saving wiring area.

Table 1: Routing tracks

 T-Vpack R-Pack Ours
Circuit
s

Clusters Channel Channel Channel

alu4 192 26 34 26
apex2 240 34 35 29
Apex4 165 37 35 30
bigkey 214 17 15 11

des 200 17 18 15
diffeq 189 20 19 17
dsip 172 14 24 11

elliptic 454 37 32 30
ex1010 599 41 42 31
ex5p 139 37 36 31
frisc 446 39 34 33

misex3 178 29 32 29
pdc 582 52 56 51

s38417 802 29 25 18
s38584 806 32 26 20

seq 221 33 37 32
spla 469 42 48 39
tseng 133 21 21 13

average 344.48 30.49 31.16 25.8

5.2 Circuit speed and run time
Now we will check the effect of our clustering method on
circuit speed. We placed and routed the same benches on
clustered FPGAs using a timing-driven algorithm. Table 2
shows the critical path results for T-VPack [2] and our
clustering technique. We have almost the same speed
performance. Our clustering method can deal with the area
and speed problems in the same time.

Table 2: Critical path and run time

 T-Vpack Ours
Circuits C.Path

(ns)
Run time

(s)
C.Path

(ns)
Run time

(s)
alu4 59.8 47.3 55.3 50.2

apex2 76.0 100.2 69.1 90.3
Apex4 65.7 71.5 63.4 57
bigkey 43.6 58.2 29.6 38

des 46.5 68.3 54.9 62.4
diffeq 43.7 41.5 56.7 39.1
dsip 52.4 45.4 33.4 41.9

elliptic 81.29 260.5 99.7 265.3
ex1010 86.8 525 98.6 495.4
ex5p 110.6 65.2 108.3 56.7
frisc 53.9 280.3 60.0 290.8

i0 out
i1
i2
i3

i0 out
i1
i2
i3

i0 out
i1
i2
i3

i0 out
i1
i2
i3

 N2

Block B to insert

 Cluster receiver C

 N1

 N3

misex3 59.3 59.3 57.5 60.7
pdc 126.7 818.7 121.7 825.5

s38417 87.3 360 77.7 341.4
s38584 59.3 420.3 55.9 413.8

seq 63.5 79.5 62.7 88.2
spla 98.1 314 98.7 320.7
tseng 51.3 33.3 50.4 35

average 70.2 202.7 69.6 198.5

The time consumed in our partitioning method is
relatively important and this is due essentially to the
“uncoarsening” and the “constraints respecting” phases.
In table 4 we show the time consumed to run clustering,
placement and routing in both cases. We notice that by
spending more time in the clustering stage we reduce the
time that will be consumed in the placement and routing
phases.

5.3 Power consumption

Dynamic power consumption is a major concern in
FPGAs. FPGAs consume significantly more power than
their ASIC counterparts. For example, a Xilinx 4000
series device can consume as much as 100nW/MHz/gate
whereas its ASIC counterpart consumes only 20-
30nW/MHz/gate. Moreover, power consumption for
commercial FPGAs grows linearly with an increase in
frequency. For example, Xilinx [7] estimates that Virtex
device clocked at 250MHz and consisting of 13000 CLB
slices can consume more than 21W of power. So to
introduce the embedded FPGA on SOC, it is very
important to deal with such problem.

By reducing the overall routing area and wire-length, we
can directly impact power dissipation.

controlclockicerconnecttotal PPPPP +++= logint (1)

Since we do not increase the array size, and we assume no
clock gating, the last two components in (1) remain fairly
constant. Hence, any change in power dissipation is
mainly due to changes in erconnectPint and icPlog .

Therefore: icerconnecttotal PPP logint ∆+∆=∆ (2)

icPlog∆ is equal to 0 since we use the same number of

active LCs as the other tools. So totalP∆ is a function of
the total wire-length of the routed circuit, i.e.

segmentsinactivesegmentsactivetotal PPP −− ∆+∆≈∆

Table 3: Active power dissipation-0.18µ technology

Segment Power (mW/segment)

Active(loaded) 0.54mw

Inactive(unloaded) 0.0385mW

Table 1 shows the total power contribution by both a
loaded and unloaded wire-segment 18µ 1.8V technology
at 250 MHz [8]. This table clearly shows that active wire
segments contribute the majority of the total interconnect
power consumed. Our clustering technique is able to
reduce the average wire-length by around 15%. Assuming
that interconnect and logic resources consume
approximately 70% of the total dissipated power, and that
interconnects occupy around 80% of the total device area,
we can save approximately 8.5% of the total device power
by using our clustering technique.

6. CONCLUSION
In this paper we proposed a multilevel partitioning method
for cluster-based FPGAs. This method improves the
routability by decreasing the number of required tracks in
the FPGA routing and reduces the consumed power. This
method has also a good effect on optimising the critical
path. Those improvements were achieved thanks to the
multilevel partitioning and the choice of the objective
function. Those results in terms of area and power
reduction are important for FPGA embedding on SOC.

7. REFERENCES
[1] V.Betz, J.Rose and A.Marquartdt, “Architecture and

CAD for Deep-Submicron FPGAs”, Kluwer
Academic Bublishers, 1999.

[2] A.Marquart, V.Betz and J.Rose “Using Cluster-
Based Logic blocks and Timing-Driven Packing to
improve FPGA speed and density” ACM/SIGDA
International Symposium on Field Programmable
Gate Arrays, Montrey, CA, February 1999, pp.37-46.

[3] E.Bozogzadeh, S.Ogrenci-Memik, M.Sarrafzadeh,
“RPack: Routability-driven Packing for cluster-based
FPGAs”, Proceedings, Asia-South Pacific Design
Automation conference, January 2001.

[4] G.Karypis and V.Kumar, “Multilevel k-way
Hypergraph Partitioning”, DAC99, New Orleans
Louisiana.

[5] V.Betz, J.Rose “A New Packing, Placement and
Routing tool for FPGA research”, Proc Seventh
FPLA, pp.213-222, 1997.

[6] S.Yang, “Logic synthesis and optimization
benchmarks” user guide version 3.0. MCNC, Jan.
1991.

[7] http://www.xilinx.com
[8] A.Singh, M.Marek-Sadowska “Efficient circuit

clustering for area and power reduction in FPGAs”
FPGA 02, Montrey, California.

