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Abstract

This paper presents STESI, a software-based approach for
testing SoCs containing wrapped IP cores. In the proposed
approach, the test program is no more executed by the
traditional ATE but by the SoC itself. The novel feature of
the STESI approach is the use of a dedicated test coprocessor
embedded on the SoC to test the remaining components.
Using the ITC02 SoC benchmarks a comparison is done
between the STESI architecture and a classical bus-based
strategy.
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1 Introduction

With the advent of Systems on a Chip (SoCs), design
methodologies are mainly driven by the Time-To-Market, and
therefore are more and more based on the use of predesigned
Intellectual Property (IP) cores. Design reuse is mandatory in
these design methodologies, but test reuse is not easy to im-
plement [1]. In fact, the testing of complex SoCs poses many
challenges, like the need for an uniform test architecture for
cores with different functionalities provided by different IP
vendors.

To answer these challenges, several working groups have
been spawned [2], [3], to define new standards and to simplify
test integration. The IEEE 1500 (previously IEEE P1500)
working group defines the way a core must be shipped to be
tested when integrated in a SoC. The IEEE 1500 group spec-
ified a Wrapper [4] to be added around each IP core, and a
Core Test Language (CTL) which enables the descriptions of
the core test features. Note that the working group does not
intend to standardize the way the core is accessed for test pur-
pose. The SoC integrator is free to use the appropriate Test
Access Mechanism (TAM). Most of the TAMs published so
far [5] [6] [7][8] are based on the use of a dedicated test bus.
The performance of this kind of test architecture is closely
tied to ATE capabilities. As the gap between Automated Test

Equipment (ATE) capabilities and chip complexity is getting
larger, testing new SoCs requires expensive ATEs with high
frequency, great accuracy and large memory. To deal with
these limitations, a natural way consists in transferring some
of the ATE capabilities into the SoC.

In this paper we present the STESI approach, a new test
strategy applying this concept through the reuse of SoC ex-
isting resources. STESI stands for Software-based Test En-
vironment for SoCs containing wrapped IP cores. With this
approach, the SoC is now able to bring back test patterns from
an external memory, apply these test stimuli to the different
IP core I/Os, capture responses, and compare on-chip these
results with the expected values. The test program is exe-
cuted on-chip by the SoC. This test program includes test data
(stimuli and expected responses) and test instructions defining
what to do with the test data. Many benefits appear using this
methodology. First, the test of an SoC does not depend on
the ATE frequency, the test is applied at SoC speed. Second,
an ATE great accuracy is no more needed since the compar-
ison between captured test responses and expected ones are
performed on-chip. Third, this approach offers great flexibil-
ity in developing the test program, and moreover it induces
a minimum area overhead since SoC functional resources are
reused.

In the following, we first briefly describe the basics of
software-based SoC testing, and analyze the prior work. Next
section presents the STESI strategy: the targeted SoCs and
the test execution process. Then, some software features of
the proposed approach are underlined followed by a study of
the test co-processor internal architecture. Before concluding,
first results on ITC’02 SoC benchmarks [9] are discussed and
compared with a classical bus-based approach.

2 Prior work

The concept of reusing the embedded microprocessor for
SoC test purpose is not new. In [10] A. Krstic et al. give a
survey of the embedded software-based self testing paradigm.
According to [10], the use of the embedded microprocessor to
provide and analyze test data to/from IP cores relies on two
main assumptions.

First, the microprocessor has been previously tested. Many
approaches have been proposed to address this issue. Testing
the embedded programmable core can be done using hardware



based approaches, [11], [12] and/or software based ones [13],
[14].

Second, the system bus and global interconnects have been
also previously tested. Using the embedded microprocessor,
testing the system level interconnects can be addressed using
techniques as described in [15], [16], [17].

Relying on these assumptions, significant software based
SoC test architectures have previously been published.

In [18], the proposed methodology uses the embedded mi-
croprocessor to apply test patterns to the main IP cores and
analyze responses through the system bus. The test program
is run by the microprocessor and each IP has a wrapper as-
sociated that includes test control and buffers. This approach
requires the embedded cores to be full scan and an access to
their netlists. This is hardly the case when using proprietary
IPs.

In [19] the described RASBus architecture takes advan-
tage of the system bus and the embedded microprocessor. In
this architecture, the access to the core inputs/outputs is done
through a proprietary Test Access Interface.

In [20], a similar approach is presented. The main concept
is based on the use of the embedded microprocessor/memory
pair to test the other SoC components. Test data is down-
loaded from the external ATE, using DMA techniques, into
the system memory. The microprocessor uses these data to
test the main cores. To reach this objective, the microproces-
sor has to control the main components in order to provide test
access path to the targeted core. Test responses are transferred
to a MISR for evaluation.

The approaches described in [18] and in [20] are based on
the use of the embedded microprocessor. However their flexi-
bility is limited since the test engineer must have a full knowl-
edge of the IP cores internal architecture.

In [21], a processor for Embedded Test is presented. This
processor controls the at speed test of a complex system in-
cluding cores with different test strategies. However, this in-
teresting approach does not fully use the internal resources of
the SoC and is limited by the internal memory size that con-
tains the test program.

3 STESI methodology

In this section we first see some hardware requirements,
the SoC template targeted by STESI to perform on-chip the
application of test patterns to wrapped IP cores. Then, we will
see how the test is performed, for go/no-go testing and for
failure analysis.

3.1 STESI targeted SoCs

STESI methodology can be applied to test SoCs having the
following characteristics (see figure 1):

- The SoC must have an interconnect supporting initia-
tor/target scheme.

- The SoC is shipped with an external RAM controller
with a 32-bit interface. During functional SoC operation, the
external controller is used to plug extra-memory or periph-
eral. During SoC testing, the pins of this interface are con-

Figure 1. STESI Architecture overview

nected to an extra-memory containing as many test programs
as wrapped IP cores.

- IP cores to be tested are wrapped. STESI approach can
drive many wrapper types (IEEE 1500, boundary-scan and
even some bist controller engines). However, the following
of the paper focuses on the test of IEEE 1500 wrapped cores.
For each bloc (local or third-party), test informations and test
patterns are supposed available.

- The SoC is equipped with an embedded 32-bits micro-
processor used for general purpose (GPP).

Besides this SoC scheme, STESI introduces a single new
hardware component: a test coprocessor dedicated to SoC
testing called TCPU. It has two interfaces. On one side, it
is a memory-mapped peripheral for the interconnect and can
thus be addressed like any resource by the embedded micro-
processor. On the other side, it is a IEEE 1500 pattern delivery
TAM for wrapped cores. As an initiator the TCPU can directly
address the external RAM and thus, read test programs stored
in. As a target, the TCPU receives commands emitted by the
GPP. TCPU can interrupt the GPP setting up an IRQ.

3.2 Test execution

In STESI, the test is performed by the GPP/TCPU pair.
The TCPU is in charge to process test programs. Each tested
IP have his own test program, available in a format called
HTC, specific to the TCPU. Each HTC file is stored in the
external memory (see figure 1). A HTC test program is a se-
quence of test instructions fetched and executed by the TCPU.
Those test instructions consist on (among others) applying test
patterns, capturing test responses, and comparing with an ex-
pected value. TCPU enables concurrent testing of many cores
in order to minimize the test application time. During the test
process, for each tested IP core, the TCPU stores informations
such as the status (test pass, test fail, test in progress), program
counters, etc. These informations can be accessed at any time
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by the GPP. When a failing comparison is detected or when
the core test is done, an IRQ to the GPP is set up.

The GPP acts as a chief orchestra, controlling test programs
execution. It launches the test on the targeted IP by sending
to the TCPU a start request containing the corresponding IP
number. The TCPU can then start the test of this IP as de-
scribed above. During the test process, the GPP can at any
time send any request to the TCPU to consult test informa-
tions about an IP. The GPP can monitor test execution through
polling. To avoid overload on the system interconnect the GPP
can also wait for an IRQ to be emitted by the TCPU. When the
core test is over, the GPP collects informations about the test
and stores them out of the SoC (writing in a special address in
the external memory for example). STESI allows test for pro-
duction go/no-go testing as well as advanced failure diagnosis.
The difference between these two mode (go/no-go and diag-
nosis) is based on the volume of information stored out of the
SoC by the GPP. While a minimal information like OK/KO
for go/no-go testing is enough, more informations are needed
by the test engineer to target a fault. The GPP program, called
the ”Master Test Program”, can be stored in the embedded
system memory as well as in the external memory.

To summarize, in the STESI approach, the GPP has a cen-
tral role, since no ATE drives the test execution. It has a com-
plete control on the test execution and is the interface between
the test program execution and the SoC external test environ-
ment.

4 STESI Software Toolbox

This section depicts the STESI software test flow, from
standard CAD file generation (STIL [22], CTL [2] [4]) to ad-
vanced failure diagnosis. We linger on tools and file formats
created in the STESI project, enabling interactions with usual
CAD test tools like ATPG or fault simulator. The figure 2
shows this flow from test programs generation to failure anal-
ysis.

For production go/no-go testing, the only required inputs
of the flow are the STIL or CTL files of each core to be tested.
However, to enable the diagnosis process the netlist of the
faulty core must be provided.

4.1 STIL to HTC

Nowadays most of IP cores test informations and test pat-
terns are delivered in STIL or CTL formats. Therefore, it
is required to convert this format in a TCPU executable test
program called HTC. This conversion is automated by Gen-
STELA (for STEsi LAnguage Generator). The generated
HTC file includes a suite of 32 bits instructions. The exe-
cution is completely sequential, without any loop or jump. An
instruction is divided in 2 fields: 8 bits of opcode and 24 bits
of data. The opcode specifies what to do with the data. Ta-
ble 4.1 shows several instructions: the opcode, the kind of the
value in the data field and an explanation about the instruc-
tion. For each wrapper connected to the TCPU, a couple of 24
bits registers is associated. The figure 5 shows the connection

STIL

Net-list SPF

HTC
STEF

FDF

Go / No-Go

FOR DIAGNOSIS
 PURPOSE

GenSTELA
GenDIAG

ATPG Faults
Simulator

Test 
Manufacturing

COMPILER

C

EXE

Figure 2. STESI Soft Flow

between the wrapper and these two registers. The SHIFTI-
NOUT instruction uses these two registers. The first one is
used to shift in, in a serial way, a test pattern (SHIFTINOUT
instruction data field), while the second is used to shift out the
produced test response. The COMPARE instruction compare
the 24 bits contained in the data field with the 24 bits stored in
the second register.

Obviously, STESI is not limited on sending test vectors
whose size is less or equal to 24 bits. If a vector is longer
than 24 bits (that is generally the case) this vector is cut into
24 bits chunks. If the test vector size is not a multiple of 24,
the last chunk is completed with padding bits. Thus, apply-
ing one test vector requires a sequence of SHIFTINOUT in-
structions. The figure 3 shows the conversion of a part of a
STIL file to the corresponding (human readable) HTC pro-

OPCODE DATA comments
LOADWIR wir value load the Wrapper

Instruction Register
of the target core

UPDATE none sets up the Update signal
CAPTURE none sets up the Capture signal

SHIFTINOUT test vector this instruction is
designed to load 24 bits

of a test vector and
unload 24 bits of

produced response
COMPARE expected compare the expected

value value with the 24 bits
get back by a

shiftinout instruction

Table 1. Several HTC instructions
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gram. This example is based on the translation of the use of
the classical ”load unload” function which role is to load the
vector ”i0i1i2i3....i49” through the WSI port and to compare
the produced vector with ”o0o1o2o3....o49” unloaded through
the WSO port.

Figure 3. STIL to HTC format conversion

4.2 Master Test Program

The master test program executed by the GPP supervises
the execution of the HTC programs. This master test program
is written in assembler or high-level languages like C. It is
(cross-)compiled and the resulting binary is loaded into an in-
ternal or external memory. Easiness of writing in high-level
languages allows designing master test program as complex
as desired: smart test plan scheduling, restarting test program
on special part, etc. However, this test program should include
the following four steps:

1. Starting test process by sending to the TCPU the HTC
programs addresses. Selected IPs are tested concurrently.

2. Wait TCPU interruption(s).

3. Collect more or less informations according to selected
mode, i.e. Go/No-Go mode or Diagnosis mode.

4. Store informations out of the SoC through the external
RAM controller.

A simple Master Test Program can be designed as pre-
sented below:

/*
* MASTER TEST PROGRAM
* PHASE (1)
*
* launch test on different IPs,
* AD_PROG_HTCx : HTC program start address,
* stored in external memory
*/
launch_test(AD_TCPU, AD_PROG_HTC0);
launch_test(AD_TCPU, AD_PROG_HTC1);
launch_test(AD_TCPU, AD_PROG_HTC2);

* PHASE (2)
*
while(wait_TCPU_Int);

* PHASE (3)

*
* information collect
*/

IP_NUM = get_ip_stopped();
info1 = get_status(IP_NUM);
info2 = get_res(IP_NUM);
info3 = get_epc(IP_NUM);

* PHASE (4)
*
* send informations to outside
*/

*(AD_OUTSIDE + 1) = info1;
*(AD_OUTSIDE + 2) = info2;
*(AD_OUTSIDE + 3) = info3;

4.3 Diagnosing test failures

This section focuses on failure analysis, and so, concerns
only the core whose netlists are available. In traditional testing
when ATE drives test execution, when a device fails testing,
the ATE can store the failure informations into a file. Let us
call this file the failure data file (FDF). Thanks to three files
(the netlist, the test patterns, the failure data file) a fault sim-
ulator tool with diagnosis capability can determine the cause
of the failing patterns and generates a diagnosis report. As in
STESI no ATE drives the test execution, the generation of this
FDF is done using GenDIAG. The figure 2 shows the flow for
diagnosing manufacturing test failures. During test execution
the GPP stores out of the SoC the test failure informations in
a file, in a proprietary format (STEF). Using the HTC file of
the faulty IP core and the corresponding STEF file, GenDIAG
can generate the required failure data file (FDF).

Figure 4. TCPU Internal Architecture

5 TCPU internal architecture

This section focuses on the TCPU internal architecture in
more details (see figure 4). This test coprocessor includes two
major kinds of components namely a Prefetch-Buffer (PB)
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and a TPAU (standing for Test Protocol Associated Unit). The
number of TPAU is equal to the number of IPs to be tested.
Each TPAU is dedicated to one wrapped IP core. All the
TPAUs shares the Prefetch Buffer interface. The communi-
cation between PB and TPAUs is enabled by a FIFO protocol.
The role of the PB is to get the test programs from the external
RAM, and feed the right TPAU with the right instructions.

5.1 The TPAU

The TPAU is the unit that execute the HTC program and
convert it to a IEEE 1500 data stream. It has two interfaces:
on one side, two communication ports, one to get the test pro-
gram and one for configuration purpose. On the other side,
the TPAU is connected to the wrapper, through the IEEE 1500
Serial Interface Layer (SIL) (see figure 5). The TPAU is an
assembly of two main components:

Figure 5. TPAU Internal Architecture

• the Stream Manager: the unit that executes the HTC
code. This unit is connected to the wrapper. It convert
test program in IEEE 1500 test data stream.

• the Configuration Manager: when the GPP requests
some informations about the test of a wrapped core, it
sends a read request to the configuration manager of the
corresponding core. All the test informations are stored
in the configuration space.

5.2 The Prefetch Buffer

The role defined for the PB is to provide an interface be-
tween the system interconnect and the TPAUs. As described
previously two type of connections are required: one for the
test program, one for configuration purpose. Thus, two con-
nection ports are available:

• Initiator port: through this port the PB brings back the
test program from the SoC external RAM to feed the
right FIFO. The PB ”pre”-fetch chunks of test program in
order to minimize TPAU idle time. A round Robin algo-
rithm selects the FIFO to be fed (see figure 4). Through
this port, it acts as a DMA.

• Target port: this port is memory-mapped in the system,
and so, provides a GPP access to the desired TPAU (con-
figuration manager). Each TPAU has a specific address
in the memory mapped environment. The PB receives
all the requests, and dispatch these requests to the right
TPAU.

The PB is generic, depending on:

• The number of cores to be tested.

• FIFOs depth. This parameter is significant since it al-
lows making trade-offs between area overhead and test
application time.

• The system interconnect protocol.

6 Experimental results

First results have been obtained with a SystemC-based
simulation platform containing both hardware and software
components. Simulations made are bit-accurate and cycle-
accurate. The GPP model used is a MIPS R3000 one. The
connections between the TCPU and the wrapped IPs are es-
tablished thanks to dedicated test wires. The STESI approach
have been applied to IP cores wrapped with the IEEE 1500
Serial Interface Layer. Table 6 shows the test application
time, using the STESI architecture, applied to four SoC ITC02
benchmarks. The results are compared to those of a bus-based
TAM strategy: TR-Architect [23] with a 32 bits TAM. To per-
form the SoC test, the proposed approach requires from 3 to
6 times more test cycles than in a traditional bus-based strat-
egy. It is an expected result that the STESI methodology in-
duces far more test cycles than TR-Architect. This is mainly
due to the handshake protocol between the active components
through the system interconnect. However, as these results
are provided as number of cycles, one must take into account
the test application frequency. In the STESI method the fre-
quency is the functional SoC one, while in the TR-Architect
approach the frequency used is the tester’s one. Moreover
the first results obtained with the IEEE 1500 Parallel Inter-
face Layer shows that the STESI approach is twice consum-
ing than TR-Architect in term of cycles. Thus, the global test
time, in seconds, can then be in favor of the STESI approach.
As the test comparison is made on-chip, no yield loss is due
to the tester lack of accuracy, what can appear in a traditional
bus-based methodology.

Reusing the functional resources for test purpose minimize
the need of extra hardware dedicated for test. No dedicated
test pins are added, as the external RAM interface is reused.
This implies that in STESI, the TAM bandwidth is not scal-
able. However, this choice makes STESI ATE independent.

Traditional bus-based strategies impose to make one chip
test program, the tests of the main cores being merged in a sin-
gle complex program, hard to develop and not easy to modify.
STESI offers much more flexibility since each test program
execution of each core is independent from the other.
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SOC STESI TR-Architect STESI

TR−A

d695 211,874 44,307 4.78
p22810 2,333,326 458,068 5.09
p34392 6,902,196 1,010,821 6.08
p93791 6,379,717 1,791,638 3.56

Table 2. Test application time (cycles)

7 Conclusion

This paper presented STESI,a new software-based method-
ology designed for testing SoCs including wrapped IP cores.
Using the SoC internal resources, the test can be done thanks
to a dedicated test coprocessor. No dedicated scan pins are
needed. The test program is executed by the on chip micro-
processor at SoC speed. Compared to a traditional bus-based
strategy, this new approach allows the test process not to be
bound to the tester frequency or accuracy. This enables the
use of lower cost ATEs.

The proposed method offers also optimum flexibility for
the test program development since the test program can eas-
ily be adapted to fit the best test mode (production, diagno-
sis...). It can even be developed after the chip has been sent to
foundry and can easily be ported to a different SoC containing
a different microprocessor.
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