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Abstract— The incremental design process we propose aim at
helping the hardware designer during the design of a component.
A complex component is built by addition of new behaviours to
a simpler previously verified component. These new behaviours
model the reactions to new events that were ignored in the
simplest component. We investigate the way CTL properties
that are verified on a simple model are preserved or may
be transformed to be verified into the complex model, in the
particular context of pipeline structures. This paper defines the
increments modeling treatment delay or treatment abortion and
their composition; then it derives a set of transformations of CTL
formulae corresponding to these increments; finally it shows how
these increments are composed to model the control of a protocol
converter and how CTL properties are built.

I. INTRODUCTION

This paper proposes a method to specify and design pro-
tocol converters. Oftentimes, hardware device verification is
performed by simulation, which takes a lot of time and
covers a very small amount of all possible behaviours. The
specification of components by means of CTL formulae and
verification by model-checking ( [6]) emerged as an alternative
verification method. Although this latest is not adequate to
verify very complex systems, it has been successfully used for
medium-sized systems. More precisely, model-checking tech-
niques are well-suited for protocols verification. For instance,
successful experiments are described in [16] and [4] where
the specification is expressed in a temporal logic (CTL or
LTL). Oftentimes, protocol converter devices integrate pipeline
functionality. This is because these converters are used to
connect a component with communication devices like bus
or network on chip which are pipelined. The difficulty is to
design and check the flow control of various components with
various pipeline flows. Our aim is to propose a method to help
designers to build efficiently a pipeline flow and to provide a
set of CTL properties that represents its specification. More-
over, our method guaranties, by construction, the correctness
of the flow control.

In [5], we defined an incremental design process that is
very close to the way hardware designers proceed: after
having sketched the rough structure of the data part, and its
synchronization in the simplest case, one takes into account
new events (that were supposed not to occur in the previous
steps of the design), and defines the new behaviours they
induce. The new behaviours may not override previously

existing ones, and there is no deletion of behaviours. In the
same paper, we also stated a first set of transformations of
CTL properties, corresponding to the preservation of all the
behaviours previously existing in the simple model into the
augmented model.
In the present paper, we define a particular class of increments
related to pipeline flow. Then we state new transformations and
preservations of CTL properties in this particular context. The
combination of increments models hardware devices whose
treatments are pipelined. We present property transformation
related to the interface of the pipeline but also property
transformation related to the inner part of the pipeline and
expressing isochronous treatments in different pipeline stages
in a unified way.

The results are relevant in the protocol verification context,
but they also apply to the microprocessor pipeline. However,
verification of temporal logic properties is not the classical
approach to insure the correctness of a pipelined complex
processor. Various techniques have been proposed for the
verification of pipeline microprocessor design (see [1], [7],
[10], [11], [15], [17]). The main approach compares a specifi-
cation representing the sequential machine defined by the in-
struction set architecture (ISA) to an implementation pipeline
of the architecture. The proof states that the implementation
conforms to the set of behaviours represented by the non-
pipelined specification. One of the difficulties is to define
observation points where the comparison is meaningful. The
proof is performed with a proof assistant (PVS, ACL2, HOL,
PVS . . .) that requires an important manual effort. Alur and
Henzinger build their proof with a refinement checker included
in MOCHA [2] but the designer has to provide a accurate
abstraction and different witness modules. The main drawback
of these methods is the strong human interaction required to
build the proof.
In this paper we do not focus on a microprocessor pipeline be-
cause pipelining a microarchitecture is not the major difficulty
of microprocessor design anymore. Nowadays, the difficulty
comes from other mechanisms like reordering buffer, precise
exception handling, or thread switching context in SMT.

However, pipelining an architecture was not an easy task:
researchers have proposed methods to help building such a
processor pipeline. For instance, Huggins and Van Campen-
hout [12] simplify the design of a processor pipeline based



on the decomposition in a series of steps. At each step the
equivalence between models are manually stated. Kroening
[14] has extended this idea to propose an automatic synthesis
of the pipeline of a processor. Our work revisits the automatic
design of pipelines in the context of protocol conversion, and
provides results in terms of temporal logic specifications, that
was not covered in the context of microprocessor pipelines.

The paper is organized as follows : section II recalls some
definitions related to the incremental design process; section
III describes the model of the pipeline we deal with; in section
IV, the increments modeling the pipeline flow breakage are
presented, and the structural properties between the initial
model and the incremented ones are proven; consequences on
CTL properties are defined in section V. Section VI shows
how the defined increments can be composed to build the
pipeline flow of a protocol converter between a VCI compliant
component (Virtual Component Interface [8]) and a PI bus (
[13]), and how some CTL formulae evolve along the design
process.

II. PRELIMINARIES - INCREMENTAL DESIGN PROCESS

The incremental design process starts from an initial step
where the rough structure of the data-path and the control part
is defined. Then the designer proceeds to the implementation
of the simplest cases up to the most complex ones. This is
accomplished by adding new functionalities, thus building
a more and more complex device. The new functionalities
cannot override nor delete previous behaviours.

In this section we define an increment as a set of extensions
applied on a model represented by a Moore machine, in order
to build a more complex one.

Definition 1: Each signal is defined by a variable name, s
and an associated finite definition domain Dom(s).

Definition 2: Let E be a set of signals. A configuration c(E)
is the conjunction of the association : for each signal in E,
one associates one value of its definition domain. The set of
all configurations c(E) is named C(E).

Definition 3: A Moore machine M = 〈S, S0, I, O, T, L〉 is
such that

S: Finite set of states.
S0: Finite set of initial states.
I : Finite set of input signals with their definition domain.
O: Finite set of output signals with their definition domain.
T : Finite set of transitions ⊆ S × C(I) × S, ∀s ∈ S, ∀c ∈

C(I), ∃!s′ ∈ S s.t. (s, c, s′) ∈ T (∃! means ”there exists
exactly one”).

L: Vector of generation functions = {l0, . . . , l|O|−1} each
function defining the value of exactly one output signal
in each state; for each output signal oj 0 ≤ j < |O| we
have lj : S → Dom(oj),

The increment represents the reaction of the system to a
new event e. The new event is represented by a new set of
signals added on the input interface of the system; The event
may be active or not. The occurrence of the new event implies
new behaviours and a new set of output signal.

Definition 4: An event e = 〈I+, CACT (I+), CQT (I+)〉 is
such that

I+ = The set of new input signals and their definition domain,
I ∩ I+ = ∅.

CACT (I+): The set of configurations representing the occur-
rence of the new event. If one such configuration occurred
the event would be said to be active.

CQT (I+): The set of configurations representing the absence
of the new event. If one such configuration occurred the
event would be said to be quiet.

We have CACT (I+) ∪ CQT (I+) = C(I+) and CACT (I+) ∩
CQT (I+) = ∅.

Definition 5: An increment is a 4-tuple where INC =
〈e, Σ+, T+, O+〉

e : the event defined above.
Σ+ : the set of new reachable states. Σ+ ∩ S = ∅
T+ ⊆ (S × C(I ∪ I+) × S) ∪ (S × C(I ∪ I+) × Σ+) ∪

(Σ+ × C(I ∪ I+) × Σ+) ∪ (Σ+ × C(I ∪ I+) × S) :
The set of new transitions composed with the transitions
present in M and the new ones introduced by the active
configurations.

• each transition (s1, c, s2) in T will have its input
configuration extended with a sub-configuration of the
new input signals belonging to CQT (I+) : there exists
(s1, c

′, s2) s.t. c′ ∈ C(I)×CQT (I+) and the projection
of c′ on I equals c. In the following we will write
c′ = c ∧ c qt, c qt ∈ CQT (I+).

• each transition (s1, c, s2) in T+∩(S×C(I∪I+)×Σ+∪
S × C(I ∪ I+) × S) will have its input configuration
extended with a sub-configuration of the new input sig-
nals belonging to CACT (I+) : there exists (s1, c

′, s2)
s.t. c′ ∈ C(I) × CACT (I+). In the following we will
write c′ = c ∧ c act, c act ∈ CACT (I+).

O+ : the set of new output signals and their definition
domain, with :

• CACT (O+): The set of configurations representing the
activation of the output.

• CQT (O+): The set of configurations representing the
non-activation of the output.

The output functions associated to O+ returns a config-
uration in CQT (O+) for all states that were in S.

Remark 1: We have ¬c act ∈ CQT and ¬c qt ∈ CACT .

III. PIPELINE REPRESENTATION - BASIC CASE

A pipeline is composed by a number n of stages, each stage
i is separated with stages i− 1 and i + 1 by a register barrier.
In a stage i , the input register barrier Ri, driven by xi is read
and the treatment is executed; then the resulting information is
recorded into the next register barrier Ri+1, driven by xi+1.
We represent the pipeline flow control like a complete and
deterministic Moore machine Mo = 〈So, S0o

, Io, Oo, To, Lo〉.
Each state represents a configuration of the pipeline stages
where the computation is valid (and then written in the barrier
register at the beginning of the next stage) or not. Transitions
represent how the pipeline fills. Figure 1 represents a typical



pipeline flow. The control part contains a Moore Machine that
produces the multiplexer command (xi) driving the barrier
register (Ri) at the input of each stage. Two sets of registers
compose the barrier : one containing command (Ci) and the
other data (Rdatai

) needed for the treatment into a stage.
The event handler generates events stalling or breaking the
pipeline flow from internal or external signals. Data treatment
at each stage is represented by compi and transitions by ti. At
each step the register of a stage may take a new data coming
from the previous state, re-write its content or take an empty
operation. An empty operation does not require any resource
and do not disturb the state of the system.

Rdatai

Ci+1

Rdatai+1
Rdatai+2

Ci+2

Ri

Ci∅ ∅

compi

∅

compi+1

xi xi+1 xi+2

Control part

Event handler

stage i-1

ti+1

External event

Internal event

Ri+1
stage i

ti

stage i+1 Ri+2

Fig. 1. Pipeline flow design

The basic case we describe now is the optimal pipeline flow.
The environment behaves ideally (no cache miss, no delaying
actions).

We define the set of vectors V k
l = xl, xl+1, ..., xk−1 such

that ∀j, xj ∈{0,1,R}. This represents a contiguous subset of
the pipeline stages ranking from stage l to stage k.

The states of a pipeline of n stages are in V n
0 . We have

(x0 . . . xn−1) such that ∀j, xj ∈{0,1,R}. The meaning of these
symbols is:

• xj = 0 insertion of an empty operation in Rj .
• xj = 1 insertion of the result of the computation of stage

j − 1 in Rj .
• xj = R re-writing of the Rj ’s content in Rj .
Remark 2: In the basic case we consider that no event

stalling a stage or freezing the pipeline may occur. In this case,
the pipeline flow is regular and by consequence all states are
labeled with an unique succession of consecutive 1.

Definition 6: Progress function.
The function progressk,l: {0, 1}×V l

k → V l
k is the right shift of

any element in V l
k of 1 slot with either 0 or 1 injected in xk.

When there is no ambiguity the indexes k and l of progress
will be removed.

Let t be in To, t is the conjunction of elementary transitions
ti, each occurring at a given stage i of the pipeline, and
potentially driving register Ri. t ∈ To if and only if:
Let be s = (xj)j∈[0;n−1], s′ = (x′

j)j∈[0;n−1] and s′′ =
(x′′

j )j∈[0;n−1] then we have the following rules :
(R1) If x0 = 0 and if s is not the initial state then ∃t ∈ To and

∃c ∈ C(Io) such that t = (s, c, s′) and s′ = progress(0, s)

(R2) If x0 = 1 or s is the initial state then ∃t ∈ To and
∃c ∈ C(Io) such that t = (s, c, s′) and s′ = progress(0, s)
and ∃t′ ∈ To ∃c′ ∈ C(Io) such that t′ = (s, c′, s′′) and
s′′ = progress(1, s).

IV. INCREMENTS APPLIED TO A PIPELINE FLOW

The possible increments for a pipeline flow can be of two
types. The first type is an event, named stall, that introduces
deceleration in the pipeline flow. This is the case when the
pipeline waits for a condition like a cache miss or a ready
acknowledgment. The second type, named kill, concerns
the pipeline flow breaks or reset.

A. Single Stall

An event can stall a stage and all the stages upstream,
the stages downstream progress and the stalled stages re-
start as soon as the stalling condition is not active anymore.
The stalling condition is modeled by an event stallk =
〈stallk, stallk act, stallk qt〉.
When stallk occurs then the (k + 1)th stage executes an
empty operation; in all stages l > k, the flow progresses; in
stages l ≤ k, the flow does not progress : each register Rl re-
writes the value it previously stored. When stallk becomes
inactive then the normal progression takes place (as defined
by Rule R2).
These new behaviours are modeled in a new Moore Machine
Ms obtained by applying the incremental design process to
Mo. Below we define the increment transforming Mo to Ms.
We firstly introduce functions representing the prefix or suffix
of a state.

Definition 7: Prefix and Suffix functions.
The function pref : IN×S → V k

0 associates to each state s and
stage number k ∈ IN, the prefix of the state ranking from 0 to
k.
The function suff : IN × S → V n

k+1 associates to each state s
and stage number k ∈ IN, the suffix of the state ranking from
k + 1 to n − 1.

Definition 8: Transition rules associated to stallk in Ms:
Let s be a state in So.

(R3) For all states s′ in So,s.t. ∃t = (s, c, s′) ∈ To, then ∃t′ ∈
Td s.t. t′ = (s, c ∧ stallk qt, s′)

(R4) ∃s′′ 6∈ So, s.t. ∃t = (s, stallk act, s′′) and

(a) ∀x′′
j ∈ pref(k, s′′): x′′

j =

{

R if xj = 1
0 if xj = 0

(b) suff(k, s′′) = progress(0, suff(k, s))

Let be s ∈ Ss \ So.
(R5) ∃s′ s.t. (s, stallk qt, s′) and s′ is obtained by Rule R2.
(R6) ∃s′′ s.t. (s, stallk act, s′′) and

(a) pref(k, s′′) = pref(k, s),
(b) suff(k, s′′) = progress(0, suff(k, s))

We state properties for the suffix and prefix functions.
Notation : x → x′ means ∃c ∈ C(I) and (x, c, x′) ∈ T .
σ = y . . . y′ is the path from y to y′ such that y → y0, y0 →
y1, . . ., yk → y′.



Property 1: Suffix progression.
Let be a stall occurring at stage l or lower, inducing the

machine Ms from Mo. Let Rl an binary relation in So × Ss

such that: x Rl y iff suff(l, x) = suff(l, y). ∀x′ ∈ So s.t.
x → x′, ∃y′ ∈ Ss s.t. y → y′ and x′Rl+1y

′.
Proof: By construction of Ms

Unfortunately, Rl+1 is not included into Rl, thus it is not
a strong bisimulation [3]. Hence this property is local to the
stall and expresses the progression of the suffix downstream,
whenever the flow is broken upstream or not.

Property 2: Prefix weak bisimulation.
Let be a stall occurring at stage l or higher, inducing the

machine Ms from Mo. Let Rl be a binary relation in So ×Ss

such that: xRl y iff pref(l, x) = pref(l, y). Rl is a weak
bisimulation [3].

Proof: We have: ∀x′ ∈ So s.t. x → x′, ∃y′ ∈ Ss s.t.
σ = y . . . y′ and x′Rl+1y

′. As pref(l +1, x) = pref(l +1, y)
⇒ pref(l, x) = pref(l, y), Rl+1 is included into Rl.
∀y′ ∈ Ss s.t. y → y′ s.t : x → x′ and x′ = y′ (when y is not
stalled and reads stalll qt), or (when y reads stalll act) x Rl

y′ and y′ . . . y′′ and x′ Rl+1 y′′. Rl+1 is included into Rl.
Property 3: Stuttering progression.

In Mo: We have σ = s0s1...sn such that in sn: V n+k
l =

progressn(V k
0 ).

In Ms: Let stallk be a stalling action occurring at stage k.
Then ∃σ′ = s∗0s1...sn such that sn: V n+k

l = progressn(V k
0 ).

Proof: This is a direct consequence of rule R5 (assuming
that the stalling action always terminates).

B. Composition of Stall Increments

In section IV-A we described the behaviours of the stepped
up machine when taking into account the delays induced by
a unique stall. However, it is possible to have events inducing
stalls occurring at different stages. We define new transitions
rules to model the dealing with multiple stalls. The transition
rules are quite similar to the single stall increment we have
seen before. But now, the order in which increments are added
is important. The increment that affects the highest stages
has a greater impact on the pipeline flow, than the increment
concerning lower stages.

Definition 9: Set of Stalls.
Let be F = {k | k ∈ [0, n− 1]} the set of stages where a stall
currently occurs.

Let M ′
s be the machine obtained by applying on the machine

Ms that contains already some stalls (defined in Fs), a new
stall at stage k s.t k > max(Fs). Fs is augmented with k: F ′

s

= Fs ∪ {k}. M ′
s is composed of states in S ′

s ⊃ Ss

Definition 10: Transitions rules associated to M ′
s.

Transitions in T ′
s ⊃ Ts are defined s.t.:

• Let s be a state in Ss ∩ S′
s. Its previously existing

transitions are modified according to rule R3 with value
stallk qt.

• M ′
s has got one new transition respecting rule R4 with

value stallk act.
• Let be s ∈ S′

s \ Ss,

1) either s is the source state of the transition obtained
by rule R6.

2) or (R5’) ∃s′ ∈ S′
s s.t. (s, c ∧ stallk qt, s′) with c

equal the conjunction of all stalll qt ∀l ∈ F \ {k}
and s′ is obtained by Rule R2 (either a 0 or a 1 is
injected at stage 0).

3) or (R7) ∀l ∈ F \ {k}, ∃s′′ ∈ S′
s s.t. (s, c ∧

stallk qt, s′′) with
c =

∧

∀j∈[k;l[ stallj qt ∧ stalll act and with s′′:
a) pref(l, s′′) = pref(l, s)
b) suff(l, s′′) = progress(0, suff(l, s)).

Remark 3: When we introduce a new increment stallk

occurring at a stage k < max(Fs) the active configuration
is now ∀l ∈ Fs and l > k, stalll qt ∧ stallk act. This is
because if a higher stall stalll is active, no matter stallk

is also active, stalll freezes pref(l, s), that encompasses
pref(k, s).

Property 4: Let be a machine M ′
s obtained by multiple

stall increments from Mo, having a set of stalls F ′
s. Let be

l ≤ min(F ′
s). Let Rl be the relation in So × Ss: x Rl y iff

pref(l, x) = pref(l, y).
1) Rl is a weak bisimulation.
2) ∀ j > l, Rj is not a weak bisimulation.

Proof: (sketch) The proof of the first statement proceeds
as for the single stall increment case (property 2).
The idea of the proof of the second statement is the following:
In case of a single increment at stage l, the stages ranking from
0 to l − 1 have the same progression: either they are fixed
(while stalll act), or they progress at the same speed (when
stalll is not active anymore). This is captured by the weak
bisimulation of the prefix Rl and the stuttering progression
property.
If l > min(Fs), then there exists a stall , say k < l splitting the
interval [0; l[ of stages into [0; k], where the behaviour is frozen
until stallk is removed, while the stages ranking from k to
l − 1 may progress. Hence the similarity of behaviours of
stages in [0, l] are not captured in Rl anymore but in Rk (that
is included in Rl), and the stuttering progression property.

C. Kill Increment

A kill action destroys the treatment performed at a given
stage, but the pipeline flow is not disrupted. The kill action
is the basic operation performed in case of retract, reset,
exception or interrupt. We will show in section VI how kills
are used to manage these events.

In our representation, a kill action consists in replacing the
”1” corresponding to the progression of the treatment by an
empty operation ”0”.

Definition 11: Let Ms be a machine, a kill event occurring
at stage k induces the following machine Mk: Sk ⊃ Ss and
Tk is defined such that:

1) ∀t ∈ Tk, t = (s, c, s′), t is changed into (s, c′, s′) with
c′ = c∧ killk qt.

2) ∀s ∈ Ss ∩ Sk, ∃s′ ∈ Sk and (s,killk act,s′) ∈ Tk

and s’ is defined s. t. :
x′

0 = 0 or 1, xk = 0 and ∀i 6= k, x′
i = xi−1.



V. CONSEQUENCES ON CTL FORMULAE

This section gives results on CTL property preservation
or transformation between a reference machine and the one
obtained by a composition of stall increments or a kill. In
a first part, we consider properties with atomic propositions
inside the pipeline. In a second part, we focus on proper-
ties concerning the macroscopic treatment performed by the
pipeline.

A. Properties related to the inner parts of the pipeline

Let Ms be a machine obtained by composition of stall
increments applied to Mo, and Fs be the set of associated
stalls. Let M ′

s be the machine obtained by composition of
stall increments applied to Ms and F ′

s(⊃ Fs) be the set of
associated stalls. We name φk (resp. φl) an atomic proposition
(or there negation) related to a stage k (resp. l) in Ms.

From [5], the general transformations capturing the preser-
vation of the behaviours of Ms in M ′

s due to any increment
hold.

From the previous paragraphs, the following properties hold:
Property 5: Let f and g be any formula built from the

following rules:
• p = φk | φk ∨ φl | TRUE | FALSE

• fp = A p Ufp | A fp Up | E p Ufp | E fp Up | AGp |
EGp | AGfp | EGfp

• f = A fp Uf | A f Ufp | E fp Uf | E f Ufp |
A f Ug | E f Ug | AGf | EGf | f ∨ g | f ∧ g

Let Ms,s |= f , we have M ′
s,s |= f .

Proof: (Sketch)
This is due to the weak prefix bisimulation and the stuttering
progression: let φk (resp. φl) be a formula with atomic propo-
sitions related to stage k (resp. l), for any CTL\X operator
OP, the formula of the form OP(φk)(resp. OPφl) are preserved.
Their disjunction is then preserved, and positive formulas built
on their disjunction are also preserved. This is not true for the
conjunction of atomic proposition concerning different stages
(second item of property 4).

Property 6: Let f and g be any formula built from the rules:
• p = φk | φk ∧ φl | TRUE | FALSE

• f = Ap Uf | Af Up | Af Ug | Ep Uf | Ef Up |
Ef Ug | f ∨ g | f ∧ g

We have the following properties for k < l and a CTL\X
operator OP:

1) if 6 ∃ i ∈ F ′
s s.t. i ≥ l, then Ms,s |= f⇒ M ′

s,s |= f .
2) if ∃ i ∈ F ′

s s.t. i < l], and if ϕ = OP (φk ∧ φl) then
Ms,s |= ϕ ⇒ M ′

s,s |= ϕ′ and ϕ′ = OP (AF (φl) ∧ φk)
Proof: Direct consequence of properties 3and 4.

B. Properties related to the outer parts of the pipeline

The environment of the pipeline is viewed as a set of actions
composed of commands producing results.

In case of a VCI-PI protocol converter ( [5]), it is composed
of the set of VCI commands and of VCI responses. In case
of a processor, the pipeline environment is composed of
instructions on the software visible registers plus the program
counter, instruction and exception registers, and the memory.

The environment is abstracted by a set E =
{(Cmdk , Resk )}, where couples (Cmdk ,Resk ) denotes
the kth command and its induced result. The causality
between commands and results, and the interleaving of
several actions are modeled by a set of CTL\X properties.

A command Cmdk entering the pipeline may be expressed
as: φ0,k = (x0 = 1∧Ci = Cmdk). Ci denotes the contents of
a register in stage i. The end of the computation induced by
Cmdk is expressed by: φn−1,k = (xn−1 = 1∧Cn−1 = Cmdk)

Example 1: A causality relation between Cmdk and
Resk , expressed on the environment as Cmdk ⇒ AF Resk is
transposed as: φ0 ⇒ AF (φn−1 ∧ AFResk).

Property 7: All positive CTL\X formulas with atomic
propositions in E, that are true in Mo, are also verified in
any machine obtained by composition of stall increments.

Proof: This is a direct consequence of property 5 that
preserves positive CTL\X formulae when atomic propositions
concern disjunction of stages (here concerned stages are 0 and
n − 1).

In case of a kill increment in a stage i, the command
does not produce a result. In case of occurrence of a similar
command not concerned with the kill event, a result similar
to the one destroyed by the kill will be produced.

A causality property expressed as Φk = φ0,k ⇒
AF (φn−1,k ∧ AF Resk) can be transformed in the following
form :

Φ′
k =¬killi ∧ φ0,k ⇒

A(¬killiU(Resk ∨ (1)

(killi
∧

l∈[0;n−1]

(¬φl,k) ⇒ AF ¬Resk) ∨ (2)

(killi
∨

l∈[0;n−1]

(φl,k) ⇒ AF Resk)) (3)

Line (1) expresses that there is some path where killi is
never true due to the incremental design rules. Line (2) says
that if a kill event occurred and no stage contains the command
then the associated result is not produced. Line (3) corresponds
to the occurrence of a similar command that produces a similar
result.

VI. INCREMENTAL DESIGN OF THE VCI-PI WRAPPER

In [5] we show how CTL property could be automatically
transformed from a simple component in order to derive a
part of the specification of a more complex one. Now, we
want to take advantage of the increment particularity induced
by the pipeline structure of the wrapper VCI-PI. In this part,
we briefly recall the wrapper structure and then show how
the formulae are transformed or preserved from properties of
section V.

The conversion between PI-bus and VCI protocols is real-
ized by a component named a VCI-PI wrapper. A wrapper
is a core wrapping device implementing a given interface. In
our context, the IP-core is supposed to be VCI compliant [8]
and the considered wrapper is an adapter between the VCI
interface and the PI-bus protocol [13]; hence we are able to
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connect various IP-cores through a PI-bus. PI protocol distin-
guishes the component initiating a bus transfer, named master,
and the component responding to a transfer, named slave. An
IP-core may have both master and slave functionalities. Figure
2 illustrates the major signals handled by interfaces of a VCI-
PI master wrapper.

A VCI transfer is shown in Figure 3. The VCI initiator sends
a request to the VCI-PI-master-wrapper (1), that asks for the
bus to the bus arbiter (2), and when the VCI-PI-master-wrapper
owns the bus (3), it transfers each VCI request cell through
the PI-bus to the VCI-PI-slave-wrapper (4,5). The VCI-PI-
slave-wrapper translates the PI-cell into a VCI-cell to be given
to the VCI target (6). The VCI-target transmits the VCI-
response to the VCI-PI-slave-wrapper (7), which responds to
the VCI-PI-master-wrapper through the PI bus (8,9). This latter
translates the PI-response into a VCI-response and sends it
to the VCI initiator (10). In some cases, the VCI-PI-slave-
wrapper may implement a look-ahead mechanism in order to
send the responses to the VCI-PI-master-wrapper in one cycle.

Using the incremental design process approach, we devel-
oped a set of nine master VCI-PI wrappers, from a very simple
one supposing that the VCI initiator and the PI target will
always acknowledge in one cycle, up to the most complex
one supporting delays, retract and reset events sent by the
VCI initiator or the PI target. The hierarchy of the nine master
wrappers is shown in Figure 4.

The behavior of the simplest wrapper (model A) is a 3-
stages pipeline, performing at the same time:

• accepting a VCI request k to be sent to PI from its VCI
interface,

• sending the PI request corresponding to the k − 1th VCI
request on its PI interface,

• accepting the PI response to the k − 2th VCI request on
its PI interface.

Further models (B to C”) deal with external events dis-

turbing the pipeline flow: either the kth VCI request can not
be given to the wrapper, or the k − 1th response is delayed
by the PI targets, or it says that a major problem occurred
and the transaction has to be restarted later, or the k − 2th

response can not be returned to the VCI initiator; all these
cases stall or break the pipeline flow. For instance, we build
a model B from the model A that take into account delay
impose by the target. The new behaviour added corresponds
to a stall action. We obtained the model B by applying
definition 8. The new event corresponding to this extension
is e = 〈(incb, {0, 1}), {0}, {1}〉 where CQT = {0} when
pi rsp = RDY and CACT = {1} when pi rsp = WAIT .
Model B’ is obtained by applying two increments from model
A in respect to definition 10 with the increment e defined
above and the increment e′ = 〈(incb′ , {0, 1}), {0}, {1}〉. The
event e′ represents the delay imposed by the master. The
set of quiet configurations of e′ is CQT (incb′) = {0}. This
configuration occurs when (cmd val = 1) ∧ (rsp ack = 1).
The set of active configurations is CACT (incb′) = {1}, that
occurs when (cmd val = 0) ∨ (rsp ack = 0).

We implemented a platform as described in Figure 3 in
synchronous Verilog. We checked about 80 CTL formulae for
the master wrapper B, the slave wrapper B and the complete
system (when the VCI initiator and target may generate delay
events) with VIS verification tool [9] . Here are examples of
CTL (untransformed) properties checked on the B platform.
Formula 1 checks the interface between the VCI initiator and
the wrapper: if 3 read cells are sent then the wrapper returns
the response of the first cells and the acknowledgment of the
third cells in the same cycle. Formula 2 checks the behavior
of the complete system: the number of acknowledgment cells
received by the VCI initiator is equal to the number of request
cells it previously sent. Here, the initiator sends 2 requests.

# formula 1: #
AG( (cmd = READ_3_WORDS) ->

AF( cmd_ack = 1 * rsp_val =1);
# formula 2: #
AG( (cmd = READ_2_WORDS) ->
A ( (A (

(A((cmd = READ_2_WORDS * cmd_eop = 0 *
cmd_val = 1)

U (cmd_ack = 1)))
U ( A( (cmd_eop = 1 * cmd_val= 1)

U (cmd_ack = 1)))))
U (cmd_val = 0) ));

We fit the platform in order to plug a wrapper B’ obtained
as described above. We reinforce our results by re-checking
the set of all formulae written for the wrapper B. Of course,
we transformed the formulae following the properties stated in
section V. In practice, it is not useful to re-check formulae, we
can obtain the new set of formulae by applying the increment
rules and the properties transformation or preservation.

Formula 1 contains a conjunction where atomics proposi-
tions concern stages 1 and 3. From B to B’ the increment may
stall the stages 1 and 3, we apply Property 6. Formula 2 is
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a global property related to the outer part of the pipeline, by
Property 7 it is preserved. The increment from B (resp. B’)
to C (resp C’) corresponds to a new behaviour that breaks the
pipeline flow. It’s a Kill increment that kills stages 1 and 2.
The Reset increment is also a kill increment but it kills all
requests that were in the pipeline. In this case the formulae
have to be transformed with the property stated in [5]. New
formulae can be automatically added to insure the preservation
of non-reseted models into reseted one. These formulae state
that after a reset occurrence, the converter returns into idle
state and the pipeline is empty.

VII. CONCLUSION

On the one hand, we have formalized an incremental method
that is very close to those used by the designers. Our approach
decomposes the complexity of building a pipeline flow from
scratch by adding the different increments one by one. The
designer has got a framework to focus on one difficulty at a
time. Moreover this technique is not regressive, all behaviours
of the component are preserved when a new increment is
added.

On the other hand we have shown that this method automati-
cally derives the specification of a component from the specifi-
cation of a simpler component. This specification is integrable
into a general symbolic model checking process. By exploiting
the behavioural characteristics that distinguish pipelines from
other circuits we have particularized the pipeline increments
and state new CTL formulae transformations. These trans-
formations capture the behaviour that already existed and
characterize the added behaviours.

The approach we propose can be viewed of two different
ways. Either the component is built applying the increments,
it is guaranteed to respect the new specification, and it can be
plugged as it is in a more complex system, its specification
being used for compositional verification (assume-guarantee).
Or the design is manually augmented (step by step) and the
new specification is the one that the system has to comply
with.

This approach abstracts the control flow of a pipeline
submitted to stall and kill actions. It will be interesting to use
this abstraction instead of a real model in the development

of complex synchronized pipeline flows such as superscalar
architecture or complex protocol converter where several
pipelines have to cooperate.
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