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Abstract. The evolution of silicon technologies has fundamentally
changed the physical design EDA flow, which now has to go through a
progressive refinement process where interconnections evolve seamlessly
from logic to final detailed routing. Furthermore the level of integration
reached makes mandatory the use of hierarchical enabled design method-
ologies. In this paper, we present Zephyr: an Elmore Delay Static Timing
Analysis engine tightly integrated in the open academic Coriolis EDA
physical design platform on which tools act as algorithmic engines op-
erating on an integrated C++ database around which they consistently
interact and collaborate. Coriolis provides high level C++ and Python
APIs and a unified and consistent hierarchical VLSI data model through
all the design steps from logic down to final layout. We discuss here more
specifically the integration issues and concepts used to support timing
analysis through the progressive refinement of hierarchical designs.

1 Introduction

The evolution towards nanometer silicon technologies has deeply enforced the
role of interconnections in the VLSI design flow.

This has introduced fundamental changes in the physical design flow, which
now has to go through a progressive refinement process in which CAD tools
incrementally update an integrated central database representing the current
state of the design. Within this process, interconnections evolve seamlessly from
the logic view to the final detailed routing view through intermediate and more
or less precise global routing steps.

Therefore it is increasingly important to have at one’s disposal a flexible inter-
connect timing analysis tool, which is able to adapt its analysis to the changing
level of precision of the routing description. Moreover, computing wire delay with
an acceptable degree of precision requires to take into account the wiring topol-
ogy and the distribution of resistance and capacity. This leads to the conclusion
that the structure of interconnects is an information that must be continuously
accessible to the timing analysis tool.

An other major problem comes from the level of integration now reached,
which makes mandatory the use of hierarchical enabled design methodologies in
order to handle large hierarchical netlists mixing hard IP blocks (pre-designed
RAM, ROM, CPU Cores), soft IP blocks and glue control logic. Within the
physical design process, this structural hierarchy may be partly lost (completely
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lost in most place and route CAD tools which operate on the flattened netlist).
However the capability to handle the physical design hierarchy while maintaining
it correlated with the netlist hierarchical description makes the functional equiv-
alence checking (through LVS, simulation or formal proof) as well as the timing
and signal integrity analysis results, much easier to understand and manage by
the designer.

Zephyr the Static Timing Analysis engine that we describe is designed to deal
with these issues:

• It is a central component of an open academic EDA research platform (Cori-
olis) presented in Section 2.

• It relies on a trans-hierarchical occurrence model, a feature at the heart of
Coriolis: the Hurricane database, subject of section 3.

• It is associated with an interconnect analysis engine, discussed in section 4,
which estimates RC values on composite interconnects, along the refinement
process.

Section 5 surveys major components and characteristics of Zephyr, and section
6 ends with the conclusion.

2 The Coriolis Platform

In the past ten years, the CAD community has seen the emergence of several
industrial platforms. They have the common characteristic of managing a cen-
tralized design database working as a framework on which different tools can
share and refine continuously the design data. By merging the logical and phys-
ical aspects of the circuits, these databases avoid inconsistencies and losses of
informations due to the continuous changes in level of representation.

Cadence and Synopsys offer respectively OpenAccess and Milkyway. The main
difference between them lies in their diffusion policy. While Milkyway is partially
opened to Synopsys clients through the MAP-In program, Cadence is at the
origin of the OpenAccess Coalition, which provides OpenAccess as a open source
EDA database to registered users. Conversely, Magma’s platform is entirely built
around a proprietary central database whose details are not publicly available.

At the same time, a very active academic research community, mainly ad-
dressing specific algorithmic steps of the flow, shares tool implementations and
common benchmarks in an open-source approach, as exemplified by the GSRC
“bookshelf ” repository [1]. However, those tools communicate only through in-
terchange formats and the development of an integrated Physical Synthesis en-
vironment in academia was, up to now, considered as impossible [2].

Nevertheless, academic projects have recently emerged. On the one hand, the
OpenAccessGear [3]: an open source development environment for physical de-
sign built on top of the OpenAccess database [4], which includes a user interface,
a wrapper to the academic standard-cell placer CAPO, a set of benchmarks and
a static timing analyser: OA Gear Timer.

On the other hand, Coriolis [5]: an ongoing project of the LIP6 labora-
tory, which provides the academic community with an open source platform
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(downloads under the GPL license are available through the project homepage
at [6]). Coriolis is a back-end platform on which tools act as algorithmic engines
operating on an integrated C++ database (named Hurricane) around which they
consistently interact and collaborate. Coriolis provides a free CAD teaching and
research open environment (both on design flows and algorithms) by offering
both a set of core functionalities (such as a lef/def interface, a Python extension
language and a graphical user interface) and a progressively enhanced suite of
open-source CAD tools supporting academic VLSI design projects.

The global intent of the Coriolis project is to develop a fully integrated Phys-
ical Synthesis environment supporting progressive refinement design flows. Cur-
rently are available: a standard cell global and detailed placer, a global router
and a timing analysis module, subject of this paper.

3 The Hurricane Database

Hurricane is a lightweight C++ object oriented database and programming plat-
form which provides a unified and consistent modeling of hierarchical VLSI lay-
outs through all the design steps from logic description down to detailed layout.
It is outside the scope of this paper to detail Hurricane and interested read-
ers will find documentation along with Coriolis. Here, we will summarize some
concepts, with a higher focus on Hurricane hierarchy representation.

Hurricane provides a powerful object-oriented API for fast access, incremental
update and consistent management of all the design views which fully relieves
the application programmer from memory management issues.

It models in a unified view both the netlist and the routing (global or detailed)
through “hooking” mechanisms which allows the seamless forward or backward
transformation of a net-list into a global routing or a detailed layout (or a mix
of those states), ensuring built-in consistency. For instance, segments know the
contacts (or ports) on which they are anchored and the contacts (or ports) know
their incident segments. Deleting some detail routing elements automatically
links disconnected items by “rubber” fly lines, which reflects what needs to be
reconnected.

Hurricane data structure embeds high performance 2D region query methods
and provides a built-in high speed graphical display engine of the current state of
the design, very useful for designing and debugging layout synthesis algorithms.

It provides extensibility mechanisms, notably through properties and relations
which can be attached to any kind of database object (including to occurrences,
see below).

It offers a rich (and extensible) set of powerful and generic query objects
named Collections. Collections are not containers but “set descriptors” which
provide an associated Locator for tracing through the corresponding set of ele-
ments. They can hide a fairly complex algorithmic trace process, visiting huge
sets, but with very low memory foot print. Furthermore, Filter objects can be
applied to a Collection in order to visit only the subset matching a predicate.
Collections are very handy and flexible programming paradigms.
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Fig. 1. Hypernet structure of interconnects

All modern design databases use folded hierarchy, in that every instance of
a given cell points to the same master cell. This makes more manageable the
representation of complex designs and the memory consumption. It is also easier
to fix a problem in a cell and have it reflected everywhere instantly. However,
there is no place in a folded database to attach data that would be specific to
the context in which cells are instantiated.

To deal with this issue, Hurricane also represents hierarchical layout as a folded
memory data model, but provides a virtually unfolded view to the tools trac-
ing, annotating or displaying its content. For that purpose it manages the concept
of occurrences which can refer any logical or physical item anywhere within the
virtually unfolded design hierarchy. Occurrences are very light, volatile pointer
pairs <instantiation-path, item-in-the-model-cell>, where the instantiation-path
is also a compact shared object which implicitly knows the top cell, the instances
composing the path and the cell master model of the lowest instance (an Occur-
rence with a NULL path refers an item of the current cell).

Two occurrences objects are identical if they refer to the same object of the
unfolded hierarchy. If a property is attached to the first one, it becomes visi-
ble from the second one. Of course those properties are securely stored on an
automatically managed hidden object which exists only if at least one property
is attached to the occurrence it represents. Occurrences may be relative to the
top cell or to some sub-cell, this allows to attach partially context dependent
properties at the right level in the layout hierarchy.

Occurrencesprovide elegant ways to design algorithms for visiting, extracting
and annotating hierarchical designs without the need to partially unfold the hier-
archy with complex cache techniques. However this approach to annotate a vir-
tually unfolded design has a memory cost which is acceptable only when the ratio
of occurrences with attached properties (at each processing step) versus the total
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number of potential occurrences is low. This holds for most well designed layout
algorithms, and more the design is hierarchic more this approach is efficient.

Combining the previously defined concepts, complex queries like: “visit all
occurrences of segments on a given layer in a given area”, “find all parallel
adjacent segments on the same layer which may cross-talk with the segments of
a net”, or “visit all layout element occurrences electrically connected to a given
layout occurrence” are written in few lines of code. The graphic highlighting of
the visited occurrences is simply done by attaching them the “Select” property!

Thanks to the occurrence mechanism it is easy to deal with the trans-
hierarchical structure of interconnect during the process of Physical Synthe-
sis. Indeed, the folded design hierarchy breaks up each interconnection into a
tree of net occurrences, that we name an hypernet. The root of this tree is the
net occurrence at the highest hierarchical level, and it canonically represents the
hypernet interconnect. This is illustrated in the figure 1.

4 Lightning: The Hypernet Abstraction Module

Hypernet based collections provide the capability to visit the layout elements
of a virtually flattened interconnect, however this tracing process doesn’t follow
the tree topology of the interconnect, and is not appropriate to build a RC tree.

It is the purpose of the Lightning module to provide such a canonical method
to trace routing elements of an hypernet, and offer an abstraction layer upon the
real state of the design which can be either globally or detail routed, or a com-
bination of both. It takes detailed routing data when available, while for global
routing it merely follows Steiner tree topology and distances. This allows to
navigate homogeneously inside hierarchical designs where hypernets may over-
lap globally routed glue and prerouted blocks.

Lightning builds on-the-fly a temporary lightweight data structure represent-
ing the current routing state. This is done by reading each layout element oc-
currence of the hypernet and converting them into nodes and edges. Nodes are
factored by their coordinates and layer, they may be either bifurcation or termi-
nals points (primary I/O or I/O port occurrences of leaf cells). Edges represent
wires with a given layer and width, or layer changes through a via. Nodes and
segments of global routes have no layer and width specified. Once this data model
is built, the trace proceeds from the occurrence of a driver port that becomes
the root of the exploration tree.

The figure 2 illustrates this trace process on a composite interconnection.
During this depth first trace process, each edge, node, branch separation at

a bifurcation point or terminal which is reached triggers the call of a visitor’s
method: a callback which provides information about position, distance, width
and layer (and also the occurrence of terminal points). A “visitor” is a functional
object that allows the application program to specify its own operations for
each step within the trace process. Notice that for logical nets the routing graph
should be a tree, however if loops exist, their re-convergence points are reported
(in order to manage meshed nets like clocks).
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Fig. 2. Lightning trace process of a composite interconnection

5 Zephyr: The Static Timing Analyzer

Zephyr is a flexible static timing analysis engine central to the Coriolis platform
and constantly accessible by optimization engines. In the current version, Zephyr
is mainly intended to drive global placement and global routing engines. There-
fore, the level of precision of its three internal modules (RC tree evaluator, delay
calculator and static timing analyser) is adapted to this task. In the future, we
consider improving progressively and jointly all Zephyr modules, in order to be
able to run post Physical Synthesis precise timing analysis.
Zephyr inputs are:

• A hierarchical mixed size block and standard-cell design
• Technology timing characteristics of cell libraries in a subset of the Synopsys

“liberty” format (.lib), from which we extract fixed cell delays and cell output
resistances.

• User timing constraints can be provided by a subset of the .sdc standard
format.

We will now detail Zephyr modules.

5.1 The RC Evaluator Module

The RC Evaluator builds a RC Forest (RCF), which associates to each hypernet
a RC Tree object (RCT) whose root is attached to the hypernet driver port
occurrence and whose leaf nodes are attached to the receiver ports occurrences,
intermediate nodes being attached to divergence points of the hypernet Steiner
tree. For multi driver hypernets, RC Trees are created for each driver.
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Fig. 3. Construction of a RC Tree

The RC Tree is built by an exploration of the hypernet through Lightning,
with a “visitor” functional object which estimates the RC values according to
the level of accuracy of the routing and the technological parameters. Currently
it relies on simple estimates based on distance, width and layer, in the future it
might proceed to more complex geometric queries to identify interfering wires
in order to estimate capacitances more accurately, or even subcontract this task
to an external RC Parasitics Extractor.

5.2 The Elmore RC Delay Calculator

The RC Tree object is optimised for Elmore delay computation. Each node
contains the lumped capacitance of the node sub-tree as well as local resistance
of the incoming wire. The delay is computed simply by back-tracking from a
RCT leaf up to the root, applying either the Scaled Elmore Delay or the Fitted
Elmore Delay formula [7].

5.3 The Static Timing Analyser Core

The Zephyr Static Timing Analysis engine, like OA Gear Timer, models the tim-
ing of the circuit as a directed acyclic graph, the Generalized Causality Graph (or
GCG), which remains invariant (unless the logic is modified). In the GCG, two
nodes (up and down transitions) are attached to each primary inputs/outputs or
to I/O port occurrences of leaf cells, the edges representing the delays between
the nodes they connect. There are two kinds of edges: those for gate internal de-
lays (as provided by the pre-characterized cell-library - unless for registers) and
those representing interconnect delays (provided by the RCT delay calculator).

Therefore the GCG is anchored on the virtually flattened view of a hierarchical
design.

OA Gear Timer (according to [3]) relies on a simple wire delay model ei-
ther based on the half-perimeter bounding-box of interconnections or brought
through a callback function mechanism which only permits to define wire delays
and capacitive loads on whole nets. Instead, Zephyr relies on its generic RC Tree
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evaluator and delay calculator which allows to differentiate the loads and delays
of each driver-receiver pair of an hypernet.

5.4 Edge and Net Criticality Calculator

The issue of net weighting for timing-driven placement has been thoroughly
studied. Tim Kong [8] has proposed a very efficient and accurate algorithm for
computing an “all path going through” criticality for all edges of the GCG (from
which net weighting can be derived as the maximum criticality of its GCG edges),
that we have integrated into Zephyr.

5.5 The Critical Path Generator

The Timing Analysis engine is able to determine any (reasonable) amount of
most critical paths in the design.

Our algorithm works by progressively expanding shared partial longest paths.
They are kept ordered by decreasing slack of the most critical path going through
them. Path completion lasts until the requested number of critical paths is
reached. This algorithm is quite effective and requires at most n operations
by computed path, n being the edge count of the longest path in the GCG.

To display the critical path list, the tool provides a graphical user interface
composed of two windows: a critical paths list window displaying the critical
paths and a critical path window detailing the different components of a given
path, which can be highlighted on the layout (a screenshot showing Zephyr
timing analysis on a placed and globally routed block appears on figure 4).

5.6 Incremental Update

Both the RC Tree and GCG nodes are anchored into the the virtually flattened
design as Hurricane properties on the terminal occurrences, this allows to cross-
reference them as well as notify them when a layout change occurs.

On one hand, a GCG edge can access the terminal occurrences attached to its
two ending nodes, and then, to their associated RC Tree nodes for computing
its delay.

On the other hand, when a layout element occurrence is modified (by route
or place refinement), this is notified to the net occurrence and from then to the
hypernet terminal occurrences, which in turn will invalidate the corresponding
RC Tree and GCG edges. Those edges will then propagate invalidate flags in
their fan-in and fan-out cones. When the next timing analysis occurs, a delay
request on an invalidated GCG edge will transfer the request to its associated
RC Tree, which, if it has been invalidated will initiate its re-evaluation.

5.7 Validation and Experimentation

The Elmore RC Delay Calculator was validated by converting the nets of a circuit
into Spice models and comparing its results to Spice simulation. Comparisons
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Fig. 4. Zephyr screenshot: critical paths list and path detail windows and a highlighted
critical path

showed that Zephyr error margins do not exceed 10 percents, while for most
nets, the error is below 5 percents (using Fitted Elmore Delay should improve
those figures). Indeed the true source of errors is the way we approximate the
RC Trees, which will require calibration through benchmarking on representative
circuits in each technology used.

The critical paths, computed by the GCG, were checked against the ones given
by the industrial tool TAS from Avertec [9]. The longest paths list was roughly
the same in both tools, so we can rely on Zephyr to drive place and route flows.

Working with optimization engines, Zephyr has proven to be a non-critical
part in terms of memory consumption and run time. For instance, we measured
execution time of Zephyr on a fully placed 38k cells design. It was first globally
routed in 157 seconds, the timing analysis was achieved in 8 seconds and the
first 10k critical paths were computed in about one second. We are currently
evaluating the speed improvement when working in incremental mode.

6 Conclusion

Zephyr is fully integrated in the Coriolis platform and is being experimented in a
top-down progressive refinement flow for standard cell timing driven placement.
This flow proceeds by a succession of interleaved phases of quadri-partitioning,
global routing and static timing analysis which provides net criticality evaluation
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and feedback for the next refinement loop [5]. It is also used as a stand alone tool
with a netlist and layout capture language, providing coarse timing estimations,
early in the design process.

This demonstrates the capability of Zephyr to be seamlessly integrated in
various design flows. Zephyr is already accessible to the open source community,
under the GPL licence.
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