
A generic hardware/software communication mechanism for Multi-Processor
System on Chip, Targeting Telecommunication Applications

E. Faure, A. Greiner, D. Genius
Laboratoire LIP6/ASIM

Université Pierre et Marie Curie
E-mail: {etienne.faure, alain.greiner, daniela.genius}@lip6.fr

Abstract

This paper presents an hardware/software communica-
tion mechanism, well suited for telecommunication oriented
multi-processors system-on-chip (MP-SoC). It allows the
system designer to map a parallel, multi-threaded software
application, onto a generic multi-processors architecture.
This hardware architecture can contain a variable number
of programmable processors, and a variable number of ded-
icated hardware co-processors, sharing the same address
space.

The software application is written in C, in the form of
a set of parallel and communicating tasks. The software
tasks use a specific communication library, containing two
communication primitives, to access one or several shared
memory communication buffers implementing software FI-
FOs. For a given MWMR FIFO, any producer or consumer
can be implemented in hardware or software.

Validation and performance evaluation are done by ”cy-
cle accurate, bit accurate” SystemC simulation, using the
SoCLib [5] library of simulation models. The generic
MWMR communication channel supporting both hardware
or software producer or consumer, makes possible to decide
quite late whether a task should be implemented in software
or hardware.

1 Introduction

This paper presents a generic communication channel,
well suited for telecommunication applications running on
multi-processor system on chip (MP-SoC) architectures. In
this kind of applications, some tasks will be implemented as
software threads running on a programmable processor, and
some tasks will be implemented as hardware coprocessors.
Therefore the same communication buffer will be accessed
by both ”software” tasks and ”hardware” tasks.

In this paper, we make the hypothesis that the coarse
grain parallelism contained in the application has been ex-
plicitely described by the system designer as a set of com-
municating tasks running in parrallel. Inter-tasks communi-
cations can be done trough message passing like in STEPNP
[4], or can use the shared memory capabilies of the multi-
processor hardware architecture. The first implementation
of the Disydent [1]framework used point to point FIFOs,
respecting the KPN semantic (Kahn Process Networks)[2],
to implement those intertask communications. This KPN
formalism is well suited for video and multimedia appli-
cations, that can be modeled by a task graph where each
communication channel has only one producer and one con-
sumer, but is not convenient for telecommunications appli-
cations where several tasks will access the same communi-
cation buffer, in order to consume (or produce) packet de-
scriptors. Telecommunication applications are usually pro-
cessing packet streams, where the same processing has to
be done on each packet, but the actual computing depends
on the packet content. Throughput requirements are vari-
able: backbone equipments, such as routers, require high
througput and low processing per packet, while traffic anal-
ysis requires less troughput but more intensive computation
per packet. For [6], this variable processing time, depend-
ing on the packet type is the main characteristic of network
applications.

This paper focus on the new MWMR (Multi-Writer /
Multi-Reader) communication channel, that has been im-
plemented in the DISYDENT environment. MWMR com-
munication channels are software FIFOs that can be ac-
cessed by both software tasks and hardware coprocessors.
We describe the MWMMR communication protocol, the
software communication primitives used by the software
tasks, and the generic hardware MWMR controller used by
the hardware coprocessors.



2 Application specification

To extract the coarse grain parallelism from a sequential
application, there are two possible approaches. The first one
relies on the coarse-grained segmentation of the sequential
application. The algorithm is split into functional tasks that
execute sequentially. This one is called pipeline parallelism.
The other approach consists in duplicating the whole se-
quential application into many clones. All the tasks are do-
ing the same job on different data. This kind of parallelism
is known as task farm. This task farm model is convenient
for telecommunication applications processing successive
and independant packets in a Gigabit Ethernet stream. Task
farm and pipeline parallelism can be combined to yield any
hybrid of graph between these two forms such as figure 1.

Figure 1. example of hybrid parallelism be-
tween pipeline and task farm

All communication between tasks use point to point
channels, that can be implemented as software FIFOs, in
order to handle the asynchronous behaviour of the tasks.

On the figure 1, communication channels are represented
by arrows between tasks. The FIFOs implementing the
communication channels are implicit.

In many cases, illustrated for example by figure 1, the
data produced by a task is not destined to one particular
task, but rather to a class of tasks.

Assume that tasks T01, T02 and T03 on figure 1 are three
instances of the same computation, and that T11, T12 and
T13 are three instances of another computation. In this case,
the three first tasks can send their output to any of the three
others. In that situation, we can replace the nine separate
communication channels by one single, multi-acces com-
munication channel.

In this case, communication channels have to be explic-
itly represented in the graph describing the application, as
described in figure 2. There is one single FIFO, shared by
three producers and three consumers. Notice that commu-
nications with IN and OUT tasks may be factorized as well.

This new task and communication graph (TCG) is now
a bipartite graph that describes the intrinsic coarse grain
parallelism of the application, but nothing is said regard-
ing the implementation : As both programmable processors

Figure 2. new graph of the parallel applica-
tion, with explicit MWMR FIFOs.

and hardware coprocessors can read or write in a given soft-
ware FIFO, each task can be implemented as a software task
(running on a a programmable processor), or as a dedicated
hardware coprocessor.

3 The MWMR Communication channels

In this section, we describe the main assumptions re-
garding the hardware architecture, the MWMR protocol,
the software implementation of the communication buffer,
the communication API used by the software tasks, and the
generic MWMR controller used by the hardware coproces-
sors.

3.1 The target hardware architecture

The target hardware architecture is a multi-processors
system on chip. It contains a variable number of 32 bits
processors (such as MIPS R3000), a variable number of em-
bedded RAM banks, other components such as lock engine,
interrupt controler, and several I/O coprocessors. All these
components are communicating through a VCI/OCP com-
pliant micro-network [7]. There are two types of compo-
nents: initiators and targets. Initiators send request pack-
ets, which are routed to the appropriate target by the inter-
connect, and targets send response packets. All initiators
and targets share the same address space. In such hardware
platform, using a Network on chip (NoC) as interconnect,
it is not possible to use bus snooping to solve the problem
of cache/memory coherence. We use a software approach
to solve this coherence problem, in witch all shared data
must be identified by the system designer, and allocated in
uncachable segments. There are actually three types of seg-
ments, that are defined by the MSB bits of the address, cor-
responding to different cache behavior:

• Cached segments : the corresponding data will be read
using burst access (one cache line) and will be stored
in the cache.

• Uncached segments : the corresponding data will be
read as single word and will not be stored in the cache.



• Prefetch segments : the corresponding data will be
read using burst acces, but will not be stored in the
cache.

As explained in section 3.3, all communication buffers
will be mapped in prefetchable segments, in order to op-
timize the communication throughput. The corresponding
data being shared data cannot be cached. A read access to
a prefechable address triggers the read of a complete cache
line, that is stored in a dedicated prefetch buffer, but not in
the cache.

3.2 The MWMR protocol

We need a communication protocol, built on top of a
shared memory multi-processor architecture, and simple
enough to be implemented by both communication primi-
tives used by the software tasks, and hardware coprocessors.
All MWMR FIFOs are mapped in shared memory, and ac-
cess is protected by a single lock (one lock per FIFO). Each
FIFO may have several readers and writers, and ignores the
type of tasks it is connected to, as well as their number. As
illustrated by the following write request, the MWMR pro-
tocol requires five steps:

READ : get the lock protecting the MWMR FIFO.
READ : test the status of the MWMR FIFO
READ/WRITE : transfer a burst of data between a local

buffer and the MWMR buffer
WRITE : update the status of the MWMR FIFO.
WRITE : release the lock.

For performance reasons, a MWMR FIFO is imple-
mented as a table of 32 bits words. All tranfers to or from a
MWMR FIFO must be an integer number of 32 bits words.

3.3 The communication API

The ”fifomwmr” communication library provides two
functions to allow software tasks to access a MWMR FIFO
: mwmr read() and mwmr write(). Both functions
use three arguments: channel is a pointer to the MWMR
channel, buf is the local buffer address, and length is
the number 32 bits words to be transfered. These functions
are non-blocking. They will always return, even if the re-
quest is not satisfied. The functions return an integer that
indicates the number of words that have been read/written.
If the returned number is less than required, the software
task must decide what to do. It can try to read another
FIFO, implementing for example a round robin policy, or
any other priority policy. This may be useful to implement
some specific QoS (Quality of Service) requirements. It can
also loop until the read/write call is successful. In that case,
the communication primitives become blocking, and com-
pletely deterministic. It is therefore possible to emulate the

Figure 3. details of the hardware architecture.
The MWMR fifo located in RAM, implements
a comunication channel between a software
task running on CPU0, and an hardware task
executed by Coprocessor 1.

behavior and the semantic of a KPN (Kahn process network
[2]). This means that the KPN channels can be implemented
as a special case of the proposed MWMR communication
formalism : In order to implement the KPN semantic, the
task graph must have only one producer and one consumer
per channel, and all the accesses to the FIFOs must be en-
closed into a loop [3].

There is two implementations of this communication
API: The first one is build on top of the POSIX API, and
can run on any POSIX workstation. It is used for function-
nal validation of the software application.

The optimized implementation relies on the MP-SOC ar-
chitecture. It includes some parts written in MIPS R3000
assembly language, and uses the cache prefetch capability
described in section 3.1 : both the data buffer of a MWMR
fifo, and its control variables are located in a prefetchable
memory segment. The control variables (status and data
pointer) can be read in one single burst, stored in local,
cachable memory, to avoid subsequent read in uncached
memory segment. Status and pointer are updated at the end
of the MWMR transaction. Read bursts are also used by
the mwmr read() function to read the data in the shared
memory. The size of the burst is practically bounded by
three factors: the value of the length parameter, the
number of available registers in the processor, and the cache
line size. In the case of the R3000, we use 16 of the 32
available registers for this temporary storage. The commu-
nication primitives use another cache feature : When the
processor makes a sequence of write requests to successive
addresses, the posted write buffer contained in the cache
controler builds automatically a burst.

The benefits of this optimized software implementation
are analysed in section 4.



Figure 4. details of the MWMR controller ar-
chitecture.

3.4 The MWMR hardware controller

This component is a generic hardware controller that
has DMA (Direct memory Acces) capabilities. It imple-
ments the five steps MWMR communication protocol, and
can be used by any hardware coprocessor implementing a
task in the task/communication graph. The MWMR con-
troller is connected to the coprocessor through one (or sev-
eral) stream interface(s). On this stream interface, the co-
processor is simply writing or reading 32 bits words, with-
out handling addresses. Each stream interface implements
a basic flow control mechanism composed of two wires
(Read/Read-ok for a read port and write/write-ok for a write
port). On the other side, the MWMR controller is connected
to the VCI interconnect as a VCI initiator. It translates read
or write stream requests from the coprocessor into MWMR
accesses in the VCI address space. The MWMR controller
contains as many hardware FIFOS as the number of con-
trolled MWMR channels. The depth of those hardware FI-
FOs defines the size of the VCI bursts.

On the VCI interconnect side, there is also a VCI target
port that is used for the configuration of the MWMR con-
troller (and the coprocessor itself): the MWMR controller
provides up to four 32 bits configuration registers, and up
to four 32 bits wide status registers. These registers allow
software configuration and monitoring of the coprocessor
with no need of a dedicated VCI port on the coprocessor
interface.

Each MWMR channel needs a set of dedicated registers
in the MWMR controller. There is actually six configura-
tion registers per MWMR channel :

• MWMR STATE AD : address of the MWMR channel
state.

• MWMR BASE AD : base address of the MWMR
channel data buffer.

• MWMR OFFSET AD: address of the MWMR chan-
nel offset. This value is used to compute the address
of the next word to read/write and must be updated for
each successful transaction.

• MWMR LOCK AD : address of the lock protecting
the MWMR channel

• MWMR DEPTH : depth of the MWMR channel depth
(32 bits words)

• MWMR RUNNING : this boolean controls the
MWMR channel (disabled when 0).

These registers must be configured before hardware co-
processor can use the corresponding MWMR channel. This
is done by a function provided in the ”fifomwmr” library.

Arbitration between several coprocessor requests is
round-robin. If the first request, attempting to get the lock,
fails, the MWMR controller checks if there is another pend-
ing request from the coprocessor.

In order to avoid unecessary traffic on the micro-
network, the MWMR controller contains one configurable
hardware timer per MWMR channel. If a data access to a
given MWMR channel is unsuccessful (buffer empty for a
read acces, or buffer full for a write acces), the hardware
controller wait a given number of cycles before another try
on the same channel.

Figure 4 shows the details of the architecture for a co-
processor using three MWMR channels.

4 Experimental results

In this section, we analyze the performances of the
MWMR communication protocol for both the software and
hardware implementations. We try to measure the actual
throughput (average number of cycles to read or write one
32 bits word) as a function of the burst size.

The experiments have been done by cycle-accurate sim-
ulations on an hardware platform modelled in SystemC. All
hardware component are described by simulation models
from the SoCLib library [5]. The application software is
compiled using GCC, linked with the communication soft-
ware, and the binary code is loaded in the embedded mem-
ory.

The left part of figure 5 presents the performances of
the MWMR optimized software API, for the read and write
primitives. In this experiment, we had one single task
alternatively writing and reading bursts of data in a single
MWMR fifo. The size of the burst is the variable parameter
(integer number of 32 bits words). A spy was added in
the processor simulation model to track the time spent in



each function of the code. The results presented are the
average number of cycles spent in a given read or write
function call. The total time corresponds to a complete
burst. The reduced time is the total time divided by the
burst size. In those experiment, we used an interconnect
with a fixed latency of 12 cycles : a command packet
reaches its target 12 cycles after it was emitted by the ini-
tator. And 12 cycles are also needed for the response packet.

Software Hardware
burst read write read write
size Total

Time
Reduced
Time

Total
time

Reduced
Time

Total
Time

Reduced
Time

Total
Time

Reduced
Time

1 231 231 193 193 152 152 152 152
2 265 132 225 112 153 76 153 76
4 267 66 226 56 155 38 155 38
8 272 34 227 28 159 19 159 19
16 302 18 249 15 167 10 167 10
32 420 13 291 9 183 5.7 183 5.7
64 655 10 375 6 215 3.4 215 3.4

Figure 5. Performance of the mwmr access,
depending on the burst size, for both software
and hardware.

As we can see in figure 5, the length of the function call
grows when the burst size grows, but the reduced time de-
creases. This is related to the overhead induced by the ac-
cesses to the MWMR fifo control structures (lock, status...
). One can see that write request are faster than read re-
quests. This a cache effect : For a write access, the data
written in the MWMR fifo are usually in the cache. On
the opposite, for a read access, the data that are read in the
MWMR FIFO must be written in ln a local memory buffer.

For comparison, the unoptimized POSIX implementa-
tion (using the memcpy function rather than assembler
code) of the same functions are two to three times slower.
Comparison with the DPN channel used in the DISYDENT
environment [1] demonstrate that the the MWMR channels
are 2 (64 words burst) to 5 (8 words burst) times faster than
DPN channels, because the MWMR protocol is much sim-
pler than the DPN protocol.

The right part of the array 5 gives the results of the
same experiment when the software task is replaced by
an hardware coprocessor and ann hardware MWMR con-
troler. A small coprocessor model was designed, that does
the same parameterized write and read acces. We can ob-
serve the same general behaviour, without the cache ef-
fects : The total time grows linearly with the burst size :
Tread = Twrite = 151 + Burstsize, which gives an overhead
of about 150 cycles for a MWMR transaction.

These results demonstrate that the MWMR protocol will

be especially efficient in case of long bursts. But we should
stay aware that a longer burst means a longer access to the
fifo, and no other task can access the fifo during this time.
The system designer must fing the good tradeof for the burst
size, as it depends on the application.

5 Conclusion and perspectives

The generic Hardware/software MWMR communication
channel presented in this paper is well suited for telecom-
munication oriented applications, as it allows several tasks
to read or write data in the same memory buffer, in a shared
memory multi-processors architecture.

The MWMR communication model gives the system de-
signer an unified formalism to describe explicitly the coarse
grain parallelism of the application. The non-blocking read
and write communication primitives used in the software
tasks are directly supported by the embedded OS. There
is no need to rewrite the software tasks to run the embed-
ded software. Regarding the hardware accelerators, a dedi-
cated, VCI compliant, MWMR hardware controller allows
direct communication between any hardware coprocessor,
and one or several software fifos.

Execution of the software application described as a task
graph using the MWMR communication primitives can be
done on any host computer supporting the POSIX threads.
Il helps the system designer to debug the parallel applica-
tion. Of course this will not give any information regarding
the performances, and the actual performance analysis must
be done by cycle accurate simulation of the actual multi-
processor hardware architecture, which is possible, using
the SoCLib library.

Experimental results demonstrate that the MWMR pro-
tocol has a very small overhead, compared with other com-
munication APIs. By comparison with the KPN approach,
previously implemented in the DISYDENT environment,
the biggest limitation of this MWMR approach is the lost of
determinism, as the global behavior depends on the relative
speed of each parallel task in the application. We believe
this is is an intrinsic feature of most telecommunication ap-
plications. Morever, the MWMR model is very general, and
can be used to describe application respecting the KPN se-
mantic (as it is often the case in video processing), as a spe-
cial case.

References

[1] I. Augé, F. Pétrot, F. Donnet, and P. Gomez. Platform-based
design from parallel c specifications. CAD of Integrated Cir-
cuits and Systems, 24(12):1811–1826, Dec. 2005.

[2] G. Kahn. The semantics of a simple language for parallel pro-
gramming. In J. L. Rosenfeld, editor, Information Process-
ing ’74: Proceedings of the IFIP Congress, pages 471–475.
North-Holland, New York, NY, 1974.



[3] T. M. Parks. Bounded scheduling of process networks. PhD
thesis, University of California at Berkeley, Berkeley, CA,
USA, 1995.

[4] P. Paulin, C. Pilkington, and E. Bensoudane. Stepnp: A
system-level exploration platform for network processors.
IEEE Des. Test, 19(6):17–26, 2002.

[5] SOCLIB Consortium. Projet SOCLIB: Plate-forme de
modélisation et de simulation de systèmes integrés sur puce
(the SOCLIB project: An integrated system-on-chip mod-
elling and simulation platform). Technical report, CNRS,
2003. http://soclib.lip6.fr.

[6] L. Thiele, S. Chakraborty, M. Gries, and S. K&#252;nzli. A
framework for evaluating design tradeoffs in packet process-
ing architectures. In DAC ’02: Proceedings of the 39th confer-
ence on Design automation, pages 880–885, New York, NY,
USA, 2002. ACM Press.

[7] VSI Alliance. Virtual Component Interface Standard (OCB
2 2.0). Technical report, VSI Alliance, Aug. 2000.
URL=http://www.vsi.org/library/specs/ summary.htm#ocb.


