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Abstract-In this paper, we present the implementation of
a multi-threaded software application for pre-crash
obstacle detection, using stereo vision, and the "V-
disparity" algorithm, that requires intensive computation.
This application runs on a generic, low cost, massively
parallel, multi-processor system-on-chip (MP-SoC). This
hardware architecture is suitable for automotive area with
respect to performance, cost, and flexibility constraints.
This hardware/software embedded application is able to
process 40 stereoscopic pairs per second with 256 lines of
512 pixels images and a disparity range of 256. Our
architecture is made of 8 clusters, 30 general-purpose 32-
bit processors and 750 Kbytes embedded memory.

I. INTRODUCTION

J n Europe, 900o of the road accidents are caused by
1 human error. 52% are due to a collision. For

example, before a collision 39% of drivers do not
brake at all. To cope with this fact, car manufacturers
are looking for systems to prevent and avoid accidents.
For instance, the Mercedes-Benz S-Class introduced in
2002 the PreSafe system, merging the passive and active
safety. This system activates the seatbelt tensioners and
automatically adjusts the windows and seats. This type
of system combines sensors, electronics hardware and
actuators. The sensor used is a radar sensor. Since 2002,
other systems have been developed as the Pre-Collision
System from Denso in 2003, also using a radar sensor.
The PCS identifies inevitable obstacles a fraction of

second prior to collision, tightens passenger seatbelts
and activates a pre-collision brake to reduce vehicle
speed. In 2003 Honda introduced the Collision
Mitigation Brake System, based on on-board cameras
and radar, which detects if inter-vehicular distance is
insufficient or collision is unavoidable; in these cases,
the system triggers audio and visual warnings, brakes
the vehicle and tightens the seatbelts if necessary.

In academic laboratories, different platforms have
been studied like the ARGO autonomous vehicle based
on GOLD (Generic Obstacle and Lane Detection)
developed at University of Parma (Italy) [1][2]. The
DARPA challenge exhibits the research work of several
US universities in obstacles detection, such as the
California Institute of Technology or Stanford
University which won this race. Traditionally, car
manufacturers/automotive OEMs used ASIC
(Application Specific Integrated Circuit). Today, ASICs
are replaced by complete systems on chip, integrating
both hardware and software components on a single chip
for a given embedded application. This approach
significantly reduces the fabrication cost, and improves
system performances. Thus, SoC will begin to
proliferate throughout automotive applications.

This paper presents a multi-processor SoC
architecture, implementing an obstacle detection
software application, in pre-crash situation. This generic
hardware architecture supports intensive computation
with several microprocessor cores running in parallel,
and is easily reprogrammable. The same hardware can
be used for other software applications if required.
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In this paper, we focus on the results obtained by
mapping a parallel, multi-threaded software application,
implementing a stereo vision method, based on the "V-
disparity" algorithm [11] on the architecture mentioned
above. It achieves a robust and reliable obstacles
detection, processing 40 stereoscopic pairs per second
with a 256 disparity range. Each image has a resolution
of 256 lines of 512 pixels.
The paper presents a review of the related work in

section 2. Section 3 details the "V-disparity" algorithm
which is used in our study. Section 4 introduces the
precise application requirements. Sections 5 & 6
describe respectively the hardware and software
architectures. Section 7 presents the hardware/software
co-design process used to map the multi-threaded
software application on the multi-processor architecture.
Finally, section 8 presents the experimental results
obtained by cycle-precise SystemC [23] simulation,
using the SoCLib [21] platform.

about 8 fps for lane detection. Jeong et al. presented a
VLSI architecture for a highly parallel stereo matching
algorithm [9]. The architecture is a systolic array with a
strong parallelism, a neighborhood connectivity and a
global clock. This architecture with 10 PEs requires 40
ms to compute a disparity map for 320 by 240 pixels
images. Recently, Techmer et al. from Infineon
proposed a vision platform for intelligent vehicles [10]
able to achieve contour extraction in 520 ,s on 320 by
240 pixels image. This complex platform mainly
contains a DSP, a programmable SIMD processing array
and memory banks. Of course, these SIMD
architectures, using dedicated PEs arrays are very
efficient, but they are not flexible.
For automotive applications, high speed, flexibility, and
low cost are required. As will be described in section 4,
our approach is based on MIMD (Multiple-Instructions,
Multiple-Data) parallelism, and the selected hardware
architecture is a single chip, shared-memory SMP
(Symmetric Multi-Processor).

II. RELATED WORK
III. THE PROPOSED APPROACH

Since several years, different methods have been
evaluated for obstacle detection in road context. Some
studies are based on exteroceptive sensors like, laser
lidar, laser radar, radar or vision sensors with different
approaches: monocular vision, stereo vision, trinocular
vision, wide field of view stereo. Last decade, many
systems are stereo vision-based due to its robustness and
accuracy with different types of obstacles. This paper
focuses on a stereo vision-based approach.
For the last decade, hardware stereo vision-based

systems have been developed. In 2004, Di Stefano et
al.[3] studied a PC-based real-time stereo vision system
and surveyed different hardware implementations.
A lot of systems are FPGA-based, due to the
reprogramming possibility of FPGAs. Tyzx proposed an
FPGA platform (on PCI board) [4] able to reach 200 fps
on 512 by 480 resolution images, with 52 disparity
range. This platform uses the Census transform. Han et
al.[5] have recently developed another FPGA-based
designed for robot navigation applications and
especially for household robots where a short distance to
the obstacle is very frequent. They reached 60 fps on
640 by 480 resolution images with a 128 disparity range.
These approaches show good results, but these FPGA-
based boards are very costly, and not suitable for
automotive applications requiring ultra-low costs.
Other proposals are based on dedicated ASICs
(Application Specific Integrated Circuit) [6] [7].
PAPRICA[8] is a parallel image processing architecture
employing a 16x16 square matrix of 1-bit PEs
(Processing Elements) operating in a SIMD (Single-
Instruction Multiple-Data) style, achieving processing of

The algorithm used in this study is based on SAD (Sum
of Absolute Differences) and "V-disparity" approach.
This algorithm works whatever the road surface is (due
to the estimation of the road longitudinal profile)
[1 1] [12]. The detection is generic, even in the event case
of partial occlusion, the system is robust with respect to
noise or bad conditions (weather, night)[12]. Thus, this
algorithm is suitable for obstacle detection in road
context (moreover it has been recently used by Broggi et
al. in [13], Matuszyk et al. in [14], Gandhi et al. in [15]).
The study we expose performs stereo vision-based

obstacle detection in pre-crash situation (the obstacle
distance is about 6 meters). The application includes 5
main components:

grabbing the right and left images,
computing a disparity map,
computing the "v-disparity" image,
extracting global surfaces through Hough
Transform,
estimating obstacles position and free road
surface.

The "V-disparity" method requires intensive
computations. An example is shown in Fig. 1. The first
step consists in grabbing a pair of stereoscopic images.
These two images of the same scene, with two different
angles of the scene (a), will allow to rebuild the 3D road
scene. From the stereoscopic pair, a sparse disparity map
is computed (b) and used to build the "V-disparity" map
(c). Thanks to the Hough transform, the longitudinal
profile of the road (d) is estimated allowing to extract
objects above the road surface as potential obstacles.

371



Intelligent Vehicles Symposium 2006, June 13-15, 2006, Tokyo, Japan

(f) Free space of the road
Fig. 1. Steps of the "V-disparity" algorithm

Then road obstacles are detected accurately, each one
corresponding to a distinct plan in the "V-disparity"
image (e). The final step extracts the free road space (f),
which is the part of the road without obstacle. This
method does not require any extraction of lane-markings
but exploits all the relevant information in the image
(texture of the road, shadows, road edges and so on).

This algorithm has been implemented by the LIVIC
laboratory as a sequential C program, using only integer
numbers. It has been evaluated on a Intel Pentium IV 1.4
GHz running under Windows 2000. Images are grabbed
using a Matrox Meteor II graphic board. Image size is
380 by 288 pixels and the disparity range is 150. With
this system, the computation time is about 40 ms for a
stereoscopic pair.

This computation time, on a single processor PC is
too large for a pre-crash detection, and is too costly to

introduce a PC in each car. Fortunately, this algorithm
can be parallelized, as a multi-threaded application,
using coarse-grain pipe-lining: several threads may work
in parallel on different lines of a given images pair.
Therefore, we decided to use a multi-processor system-
on-chip as the hardware target.
Our approach differs from previous approaches based

on mono-processor architectures, or SIMD architectures,
such as [3][9][10]. The proposed hardware architecture
is a clusterized SMP (Symmetric Multi-Processor)
where several general-purpose processors share the
same address space. Such generic architecture is well
suited for task parallelism exploitation, and is generic
enough to support other multi-threaded software
applications.
The inter-task communications, the shared resources

and the real-time constraints are managed by a POSIX
compliant real-time embedded operating system
developed at LIP6 [16] for such shared memory, MP-
SoC architectures.

IV. DETAILED APPLICATION REQUIREMENTS AND
PHYSICAL CONSTRAINTS

The images resolution is 256 lines of 512 pixels, 8-bit
grey level, which means 128 Kbytes per image. The
disparity range is 256. We have chosen a rather low
resolution because, in pre-crash situation, the obstacle is
so close that a higher resolution would not be useful.
The wide disparity range allows detecting obstacles
close to the vehicle. Images are grabbed by two
synchronized cameras connected to the MP-SoC by two
separated Firewire busses.

In pre-crash situation, timing constraints are strong:
the time spent by a vehicle to go forward 6 meters, with
a 36 meter/s velocity, is about 150 ms. This time is
allocated before a collision to detect the obstacle
presence and activate the safety systems (in and outdoor
airbags, seat belts, emergency / assistance call and so
on). However, safety systems activation requires 125
ms. Thus, the time allocated to the stereo vision
algorithm to detect an obstacle is 25 ms.
As the target fabrication process for the MP-SoC is a

90 nm CMOS technology, it is reasonable to assume an
internal clock speed of 300 MHz. So, the 25 ms duration
corresponds to 7 500 000 cycles, which is the maximal
number of cycles to process a stereoscopic pair. On the
other hand, the parallel multi-thread application requires
a rather large embedded memory (for both inter-thread
communication channels and image storage).With this
90nm CMOS process, we allocated a total budget of
about 1 Mbyte of embedded SRAM. Of course this
storage capacity will be physically distributed between
several memory banks in our multi-processor
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architecture. Finally, we are targeting a chip area no
larger than 60 mm2.

V. HARDWARE ARCHITECTURE

In this section, we describe the selected hardware
architecture, which is a clusterized multi-processor
system-on-chip. As described in Fig. 5, this generic
architecture contains a variable number of clusters,
respecting a 2D mesh topology.
A cluster is a synchronous sub-system containing a

variable number of 32-bit general-purpose
microprocessors (up to 4 processors per cluster). All
processors are MIPS R3000 RISC microprocessors
(including instruction and data caches). Each cluster
contains also two local memory banks (SRAM), and
several system peripherals (Timer, Locks engine,
Interrupt controller, etc.). Fig. 2 is an example of cluster.
Inside a cluster, a local "system bus" interconnects the
processors to the local memory and peripherals. The
communications between clusters are supported by the
DSPIN integrated micro-network [17]. Each cluster
accesses the network through a dedicated NIC (Network
Interface Controller). This packet-switched network on
chip, respects the VCI/OCP standard [18], providing the
system designer a "flat" address space for the whole
entire system: any processor in cluster i can directly
address any memory or peripheral in cluster j. This
network architecture is adapted to the GALS (Globally
Asynchronous Locally Synchronous) paradigm, as each
cluster can be clocked by a different system clock. In
our case all clock signals have the same frequency, but
different phases.

Fig. 2. Internal cluster architecture

This hardware architecture is very generic since it
involves only general-purpose microprocessors. For this
stereo vision application, we use 8 clusters, and each
cluster contains 4 processors (entire hardware
architecture is illustrated in Fig. 5). As described in the
next section, the number of processors has been defined
in order to fit the number of software threads. Two
clusters are specialized, as they contain the hardware

controllers to interface the two cameras, through the
Firewire bus. Those I/O controllers have of course a
DMA (Direct Memory Access) capability. The two
external cameras are synchronized by the MP-SoC,
thanks to an adjustable timer.

VI. SOFTWARE ARCHITECTURE

The initial software application was developed by the
LIVIC laboratory as a C program targeting a mono-
processor PC. The execution time on this mono-
processor architecture was about 40 ms on smaller
images (380 lines of 288 pixels) and a disparity range of
150. Our first task was to transform this sequential C
program into a multi-thread application, in order to be
efficiently executed on our multi-processor hardware
architecture.
The MUTEK operating system supports multi-tasking

(i.e. several threads running on the same processor, with
time-slicing), as this method reduces silicon area and
SoC cost. For performance reasons, we decided to have
only one thread per processor in order to avoid all the
context switching penalties.
The multi-threaded application uses the inter-tasks

communication infrastructure provided by the
DISYDENT [19] hardware/software codesign
environment. The entire software application is
described as a task graph, where all tasks are running in
parallel and communicate only through point to point
communication channels, using blocking "read" &
"write" primitives. Each communication channel is
implemented as a shared memory buffer, working as a
software FIFO (First-In First-Out), protected by a
specific lock for exclusive access. Following the Kahn
Process Networks semantic [20], the synchronization
between tasks is entirely done by the exchanged data, as
long as the real-time constraint is respected.
Both the channel communications and the

resynchronization (in case of violation of the real-time
constraint), are supported by the MUTEK real-time
operating system.
For the largest part of the disparity map computation,
the processing is done line per line. Therefore, we rely
on coarse grain pipe-line parallelism: each task performs
a part of the computation on a single line, and transfers
the resulting data to the next task in the pipe-line. Of
course, it has been necessary to equilibrate the
computing time between tasks in order to have a
balanced pipe-line. It must be noticed that the
longitudinal profile of the road is extracted through the
Hough transform, that requires the entire image and is
not the last task of the application. Fig. 3 illustrates the
tasks graph. It presents the tasks that belong to the
critical chain, and the trade-off between execution time
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and communication. This parallelization effort led us to
30 parallel tasks.

Fig. 3. Task graph of entire application, number of cycles per
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VII. ARCHITECTURE MODELLING AND APPLICATION
MAPPING

The hardware architecture has been modeled using the
library [21]. SoCLib is a modeling and simulation
platform for multi-processor system-on-chip, that can be
used with the DISYDENT framework. It contains a set
of parameterized, cycle-accurate, simulation models for
reusable hardware components (IP cores), written in
SystemC[23]. The SoCLib library includes
microprocessor cores, memory controllers, bus
controllers, and dedicated system peripherals. All the
hardware parameters values (such as cache sizes) must
be defined at design time. The SoCLib library allows the
system designer to build a multi-cluster, multi-processor

hardware architecture dedicated to a specific
application. All IP cores respect the "Virtual Component
Interface" standard [18], normalized by the VSIA
consortium.
For this stereo vision application, each cluster

contains 4 MIPS processors and 2 physical memory
banks of 64 Kbytes. For all processors the cache size has
been fixed to 4 Kbytes for both Data and Instruction
caches (128 lines of 32 bytes). For the targeted 90 nm
CMOS fabrication process, the cluster area is about 8
mm2.

Regarding the software side, the first step was to
validate the complete, multi-threaded software
application. This multi-threaded C program has been
compiled for a LINUX PC, and linked with the POSIX
library. As the inter-threads channel communication
primitives provided by the DISYDENT environment
have been developed on top of a POSIX compliant
operating system, it is possible to execute directly the
software application on the LINUX PC. In this fully
software approach, the two I/O controllers interfacing
the cameras are replaced by two specific software
threads directly reading the images on the LINUX PC
disk.

simulation

Fig. 4. Compilation/simulation chain

The next step was to map the multi-threaded software
application on the multi-processor SoC (of course, the
two threads emulating the two I/O controllers must be
removed, as those I/O controllers are now part of the
simulated architecture). In a clusterized architecture, the
placement of software tasks on the hardware processors,
as well as the placement of the software communication
buffers on the hardware memory banks is very
important: a local transaction (such as a read memory
access inside a cluster), uses only the local interconnect
and requires about 10 cycles. A global transaction (such
as a read memory access to a memory located in another
cluster) uses the local interconnect in the source cluster,
goes through the DSPIN micronetwork, reaches the local
interconnect in the destination cluster, and back... This
requires about 50 cycles.
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Fig. 5. 8 clusters and DSPIN interconnect architecture

Therefore, all threads are statically placed on the
processors, and the communication channels are
explicitly placed in the proper physical memory bank: as
long as possible, two communicating threads i and j are
placed on two processors in the same cluster, and the
communication channel between i and j is mapped on a
memory bank located in this cluster. The Mutek
operating system allows the system designer to
explicitly specify these placement constraints in the
main program. Threads and communication channels are
created during the initialization phase. The complete
multi-threaded software application has been compiled,
using the GCC cross-compiler for the MIPS R3000
processor. The complete application requires about 750
Kbytes of embedded memory, for both the data
(software FIFOs) and the code. The resulting binary
code is loaded into the embedded memory by the
simulator, and the hardware/software, cycle precise
simulation can proceed.

VIII. PERFORMANCES EVALUATION

As described in section 7, all hardware components
are modeled using the SystemC[23] language and are
fully compatible with the SystemC standard simulation
engine. But, in order to improve the simulation speed,
we used the SystemCass [22] simulation engine, that is
part of the DISYDENT environment. SystemCass uses
static scheduling, well suited to the SoCLib models, and
provides the system designer a simulation speedup of
one order of magnitude, versus the standard SystemC
simulation engine. For this 30 processors architecture,
the simulation speed was 4100 simulated cycles per
second, on a 3.2 GHz Pentium 4.

In the hardware/software co-design process, different
architectures have been evaluated for various number of
processors, and the performances are ranging between
12 million cycles, and 6 million cycles for processing a
stereoscopic pair of image. The detailed results for the
final architecture, composed of 30 processors, 2 I/O
controllers for images acquisition and 8 clusters, are
given below, for different types of images:

The initialization time is about 680 000 cycles.
This time includes real-time OS, communication
channels and threads initialization,
The processing time is 5 490 000 cycles for a
synthetic stereoscopic pair without obstacle.
The processing time is 6 460 000 cycles for a
synthetic stereoscopic pair with several obstacles.
The processing time is 7 860 000 cycles with city
situation and 7 020 000 cycles on highway.
The processing time is 6 490 000 cycles with
lighting condition as evening on a classic road.

The average processing time is about 6 800 000 cycles,
i.e. 22,6 ms per stereoscopic pair at a clock speed of 300
MHz, which is compatible with the 25ms deadline. In
case of violation of the 25 ms deadline for a given
stereoscopic pair, the corresponding computation is
cancelled, and the multi-threaded software application is
gracefully re-initialized for the next stereoscopic pair by
the operating system.

IX. CONCLUSION

We demonstrated in this paper that it is possible to
implement an obstacle detection application on a multi-
processor SoC architecture. The software application is
based on stereo vision, and the "V-disparity" algorithm.
The hardware architecture contains 8 clusters, 30
general-purpose 32-bit processors, and 750 Kbytes of
embedded memory. The stereo vision algorithm, has
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been parallelized using 30 threads, to exhibit a coarse-
grain task pipe-line. We used the DISYDENT
environment to model the multi-threaded software
application as a KPN (Kahn Process Network), and the
MUTEK real Time embedded operating system to map
this software application on the multi-processor
architecture. This architecture running at 300 MHz can
process a stereoscopic pair of images (256 x 512 pixels)
in less than 25 ms, supporting the soft real-time
constraint of 40 images/s processing. The resulting MP-
SoC has not been implemented on silicon, but the
detailed architecture modeling allows to estimate a
silicon area of about 60 mm2 in a 90 nm CMOS
fabrication process. Such massively parallel architecture
is very promising for automotive applications requiring
high computing power. The proposed, shared memory,
clusterized architecture is actually a generic SMP
(Symmetric Multi- Processor) architecture that can be
used for any parallel, multi-threaded application. The
two Firewire I/O controllers used to interface the
cameras are currently the only specific hardware
components. Those I/O controllers could be easily
implemented on embedded programmable hardware
(such as Embedded FPGA), in order to have a fully
generic architecture. The DISYDENT
hardware/software co-design environment was very
helpful in the process of design space exploration.
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