
Performances comparison between Multilevel hierarchical
and Mesh FPGA interconnects

Zied Marrakchi, Hayder Mrabet and Habib Mehrez
Dept ASIM-LIP6

Université Paris 6, Pierre et Marie Curie
4, Place Jussieu, 75252 Paris, France

{zied.marrakchi, hayder.mrabet, habib.mehrez}@lip6.fr

ABSTRACT
In this paper we evaluate a new multilevel hierarchical FPGA
(MFPGA). The specific architecture includes two unidirec-
tional programmable networks: A downward network based
on the Butterfly-Fat-Tree topology, and a special upward
network. New tools are developed to place and route sev-
eral benchmark circuits on this architecture. Comparison
with the traditional symmetric, manhattan mesh architec-
ture shows that MFPGA can implement circuits with smaller
area and better speed.

1. ARCHITECTURE OVERVIEW
A standard hierarchical FPGA is denoted k-HFPGA in

which a cluster has k subclusters. The structure can be rep-
resented by a tree. Figure 1 is an example of a 4-HFPGA
where a cluster contains 4 subclusters. A vertex in this tree
is used to represent a logic or a switch block. An edge be-
tween two vertices is used to represent a routing channel
which consists of a set of tracks. The logic blocks are at the
bottom of the tree while the switch boxes are those vertices
above the logic blocks. We propose a modified multilevel hi-
erarchical architecture denoted MFPGA which can be more
interesant in terms of area and performances. Our architec-
ture has the following particularities:

- The lowest level of the hierarchy contains the Logic
blocks and the IO pads. Each logic element contains
one 4 inputs Look-Up Table (4-LUT) followed by a
bypass Flip-Flop.

- The routing architecture contains only unidirectional
wires and the switch boxes are depopulated.

- In each level the ratio between parent tracks and child
tracks is equal to k (k is the number of slaves in the
cluster).

As we use unidirectional switches, we can distinguish two
connecting networks as shown in figure 1.

- A downward connecting network whose topology is
equivalent to the butterfly fat tree. In this tree the
edges come from the upper levels and reach the in-
puts of the logic blocks. The topology of this tree is
equivalent to the one used in SPIN network [1] [2].

- An upward connecting network whose edges come from
the leaves (outputs of logic blocks and input pads) to
the switch boxes of each level.

1.1 The downward connecting network
Let us consider the case of a 2 levels tree with an arity

equal to 4. In each level a cluster contains 4 slaves and
a switch box. To depopulate the switch box, we divide it
into 4 Mini Switch Boxes (MSB). In level 0 each MSB is in
charge of connecting the upper level tracks and one input
of each logic block as depicted in figure 2. Thus each MSB
has 4 outputs which are equal to the number of logic blocks
(slaves). The level 1 is constructed in the same manner, we
connect the switch box of each cluster of level 1 to 4 clusters
belonging to level 0. As each cluster in level 0 has 16 inputs,
we divide the switch boxes into 16 MSB and connect each
one to one input of a cluster slave. Figure 3 shows the
distribution of the interconnect in level 1. The previous
described butterfly fat tree has the following properties:

- From a track located in the top of a switch box we can

S

S S S S

Logic Blocks & IO pads

Figure 1: Connection networks

L L L L

MSB MSB MSB MSB

Inputs Inputs Inputs Inputs

MSB : Mini Switch BoxL : Logic Block

Figure 2: Top-down connecting tree in level 0

reach any slave but in only one pin.

- From a track of a switch box we have only one path to
reach a particular slave. Due to the regularity of the
architecture, this path is easily predicted.

- In each level the interconnect resources are balanced
between clusters.

1.2 The upward connecting network
We propose to connect the output signals to specific switch

boxes of upper levels. Thus for each logic block output (and
input pad), we define a list of feedbacks, each one enables
the output to reach a switch box in a particular level. The
way how we distribute the feedbacks on each level has an
important impact on the number of different paths to reach
a destination logic block from a source. As shown in figure
4, two feedbacks can connect a source to a destination using
two different paths.

2. PLACEMENT

2.1 Multilevel clustering
DeHon [4] showed that for hierarchical FPGAs, 100%

logic utilisation is not necessary benefical for overall device
area minimisation. His results indicate that a careful par-
titioning of designs and depopulation of logic clusters can
result in better FPGA resources utilisation. This remark
was confirmed by results obtained by Singh [3] in the case
of clustered mesh FPGA. In their work authors presented
the routability-driven bottom-up clustering technique. The
aim of their technique is to alleviate routing congestion by
absorbing as many nets into clusters as possible, and depop-
ulating clusters according to Rent’s rule in order to achieve

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

L L L L

MSB MSB MSB MSB

MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB MSB

MSB : Mini Switch BoxL : Logic Block

Figure 3: Top-down connecting tree in level 1

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

MSB MSB MSB MSB

a) b)

C
lu

st
er

 le
ve

l 2

C
lu

st
er

 le
ve

l 1

C
lu

st
er

 le
ve

l 0

C
lu

st
er

 le
ve

l 0
C

lu
st

er
 le

ve
l 1

C
lu

st
er

 le
ve

l 2

LBLB LB LBLBLB LB LB

Figure 4: The upward connecting network and different routing
paths

spatial uniformity in the clustered netlist. In our work we
have extended this technique to the multilevel hierachical
FPGA clustering.
The clustering algorithm begins by choosing a logic block
as a seed (the block with the highest separation) and as-
signing it to the first available slot in a cluster. We use
the same objective function proposed in [3]. First we iden-
tify low fan-out nets and then we absorb them into a cluster.
In order to garantee spatial uniformity of the clustered netlist,
we limit the number of available pins. Since in each level
the interconnect is balanced between clusters, an attempt
is made to spread the logic evenly across all clusters in the
level while limiting the number of pins available. Once clus-
tering has been done, the original netlist is reduced to a new
netlist with each node corresponding to a cluster. We pro-
pose to apply the same technique to construct super-clusters
of clusters (see figure 5). We notice that pins limit strategy
is inefficient when it is applied in high levels. This is due
essentially to the bottom-up and the greedy aspect of our
clustering technique. To deal with such problem, we propose
to create clusters in high levels without pins-limit enforcing.
As presented in figure 5, once the multilevel clustering is
achieved, we run a top-down refinement.

clustering
 &

FM refinement

clustering FM refinement

Level 0

Level 1

original cells netlist clustered netlist

constraints enforcing

Figure 5: Multilevel clustering & refinement

2.2 Multilevel refinement
After the clustering phase, we obtain k clusters in each

level. We can consider that the k clusters in a level present
an initial solution to a k-way partitioning problem. During
the refinement phase, cells will be moved between clusters
(parts) to optimise an objective function without violating
the constraints imposed by the cluster size. In a level, cells
are not allowed to move between all clusters, because this
can decrease the quality of the solution obtained in the up-
per level. Thus in every level, adjacent clusters (having the
same supercluster) will be isolated and form a subgraph. In
figure 5 those subgraphs are presented by the continued lines
and partition by the dashed ones. A cell is allowed only to
move across dashed lines. The objective function is local to
each subgraph and corresponds to the maximum number of
pins of all clusters (parts) belonging to the same subgraph
(Maximum Subdomain degree). An FM algorithm [5] will be
applied on a subgraph to optimise the local objective func-
tion. The complexity of our k-way refinement is reduced
since we do not apply it for all the graph but successively
for each subgraph (in each subgraph there are small values
of parts: Arity of the architecture).

2.3 Detailed placement
Now that we have obtained clusters with minimum num-

ber of pins and containing highly connected cells in each
level, we proceed to the detailed placement. As in the pro-
posed architecture we do not have full cross bar connection
boxes, we can not place cells randomly inside the clusters. In
fact the way cells are placed has an important impact on the
routability. If during the detailed placement special prop-
erties of the netlist and the interconnect can be exploited,
significant gains can be obtained in terms of routability and
congestion reduction. The effect of the detailed placement
on routability can be explained by the example shown in fig-
ure 6. In this example we have placed two logic blocks and

Y ZXW

A B C D

A B C D

Y ZXW

MSB MSB MSB MSB

C
lu

st
er

 le
ve

l 0

OutOut Out Out

LB 0 LB 1 LB 2 LB 3

In 0 In 1 In 2 In 3

Figure 6: Impact of detailed placement on routability

an Input Pad in the same cluster. The logic block in position
0 LB0 and the Input pad in position 0 In0 drive the logic
block placed in position 2 LB2. With the present placement
we can not route both signals using only the switch box in
level 0. In fact both signals reach the target block in the
same pin (dashed lines). This problem can be resolved by
simply changing the position of one of the driver blocks.
This problem can also occur between two logic blocks lo-
cated in two different clusters and trying to drive the same
logic block. Our detailed placement is applied seperately in
each level. In level l we notice that congestion is generated
by cells that drive the same destination cell. Thus we intro-
duce the notation of Cells Constraints Graph (CCG). Given
a clustered netlist and a placement problem, a CCG denoted
as Gn = (V, En) consists of a set of vertices and edges, can
be constructed from a netlist. In a CCG, a vertex is used
to represent a cell of the netlist and an edge is constructed
between two vertices which drive the same destination cell.
Those cells are called adjacent cells.
Thus the placement of vertices will introduce constraints on
the placement of the adjacent vertices. For each vertice we
reserve a list of allowed positions (slots) inside the cluster.
Initially each vertice has k possibilities (arity of the cluster).
Our algorithm is as the following:

Loop over not placed vertices

Eliminate occupied positions

Loop over placed adjacent vertices

Find positions to avoid

End

END

In our technique the order of placing vertices is very im-
portant and has a great impact on the efficienty of the
method. We give priority to vertices that have the following
properties:

- Vertices located far from their destinations. We know
that these vertices have less paths to reach their des-
tinations.

- Vertices with high number of adjacent vertices: more
constraints.

3. ROUTING
The routing problem can be stated as assigning signals to

routing resources in order to successfully route all signals.
This goal is difficult to achieve in our architecture because
of the lack of routing resources (depopulated switch boxes).
In fact the number of paths to reach a destination from a
source is significantly reduced and those paths depend on
the location of cells and the number of levels in the archi-
tecture. Thus signals will compete for the same resources
and the challenge is to find a way to allocate resources so
that all signals can be routed. Despite this disadvantage we
have a great advantage in our architecture since our unique
path connecting an MSB to a logic block is predictable.
To route our architecture we adopted a particular iterative
rip-up algorithm based on the congestion negotiation called
PathFinder [6]. PathFinder was applied to the mesh archi-
tectures and we have adapted it to our architecture. Since
we have a unique downward path to reach a destination from
an MSB, we have eliminated the breath-first search in the
detailed routing part.
Since the choice of the feedback imposes the path to use,
our negotiation must be done on the choice of the feedback
that leads to a path with less congestion. According to this
remark, we assign to each feedback an adjustable cost. The
global router dynamically adjusts the congestion penalty for
each feedback. During each iteration individual routing re-
sources may be used by more than one signal. The penalty
to use shared resources is gradually increased so that signals
will negotiate effectively for resources. The implemented al-
gorithm is described by the following:

While shared resources exist

/*global router*/

Loop over all signals i

Loop until all sinks tij are found

Rip up branch Bij

Find feedback fij with lowest cost

Bij <- fij

/*detailed router*/

Loop until new tij is found

Find next_wire

Add next_wire to Bij

End

End

End

/*backtrace*/

Loop over nodes in Bij

/*path from tij to si*/

Update cost of fij

END

END

Benchmark Mesh MFPGA

Name LUTs
√

N W IO Switches Area (λ2) Arch Occup- R% R% Switches Area (λ2)
ratio number x103 ation% +ref % number x103

cm42a 10 4 3 1 948 4344 4x4 63 100 100 512 2032
pcle 29 6 5 2 3700 15316 4x2x2x4 46 100 100 3584 11968

decod 32 6 4 1 2768 11822 4x4x4 50 95 100 3584 11648
cc 33 6 5 2 3700 15316 4x4x4 52 92 100 3584 11648

count 37 7 5 2 4950 20577 4x4x2x2 58 98 100 4096 12608
my adder 49 7 4 2 3960 16680 4x4x4 77 100 100 3584 11648

b9 61 8 5 4 7020 28656 4x4x4 96 90 98 3584 11648
i4 110 11 7 5 18298 71289 4x4x4x4 42 87 100 20480 46080

c2670 363 20 8 5 63968 249172 4x4x4x4x4 35 92 100 106496 299008
i9 471 22 8 2 72480 286356 4x4x4x4x4 46 85 100 106496 299008

alu4 584 25 8 1 91568 363547 4x4x4x4x4 57 95 100 106496 299008
tseng 1085 33 9 1 178758 709785 4x4x4x4x4x2 53 88 100 253952 679936

Table 1: Area Comparison between MFPGA and Mesh architectures

4. TIMING ANALYSIS
Timing analysis is used for two basic purposes:

• To detrmine the speed of circuits which have been com-
pletely placed and routed, and

• To estimate the slack of each source-sink connection
during routing (or other parts of the CAD flow) in
order to decide which connections must be made via
fast paths to avoid slowing down the circuit.

In our work we are interested to study the performances of
our proposed architecture MFPGA in term of speed. Thus
once an application was completely placed and routed we
estimte the minimum feasible clock period to run it. Ide-
ally, one would use a circuit simulator such as SPICE to
obtain highly accurate delay estimates, but the CPU time
required to run SPICE on the thousands of nets in a typi-
cal circuit is prohibitive. Instead since we have a predictive
upward and downward connecting networks, we propose to
divide a path into several sub-paths. Each sub-path con-
nects a source to a sink and consists on going from a source
up to a particular level and then down to the sink. In each
architecture the number of sub-paths depends on the num-
ber of levels. The first step consists on estimating delays on
each sub-path. Second we compute the delay of each path
composed of several sub-paths.

4.1 Sub-paths delays evaluation
As explained previously a sub-path consists on connecting

a source to a sink crossing several switch boxes of the inter-
connect. The number of different sub-paths existing in the
architecture is limited and depends on the number of levels.
So given an architecture with n levels, we can isolate the n
different sub-paths. In figure 7 we show the 3 isolated sub-
paths of an architecture containing 3 levels. We use circuit
simulator SPICE to obtain highly accurate delay estimation
in each sub-path. Each architecture is composed of combi-
national sub-paths that either start at a logic block (Com-
binational/Sequential) or an input pad pi and either end at
a logic block (Combinational/Sequential) or an output pad
po. To ensure proper circuit function we additionaly have to
take register setup-times tset and sequential propagation de-
lays dseq (Sometimes denoted as “Clock-to-Q” delays) into

account. The classification of sub-paths and the resulting
delays is given as the following:

1. Combinational logic block → Combinational logic block
d(p) = d(switches)
2. Combinational logic block → Output-pad
d(p) = d(switches) + d(po)
3. Input-pad → Combinational logic block
d(p) = d(pi) + d(switches)
4. Sequential logic block → Sequential logic block
d(p) = dseq + d(switches) + tset

5. Sequential logic block → Combinational logic block
d(p) = dseq + d(switches)
6. Sequential logic block → Output-pad
d(p) = dseq + d(switches) + d(po)
7. Input-pad → Sequential logic block
d(p) = d(pi) + d(switches) + tset

8. Combinational logic block → Sequential logic block
d(p) = d(switches) + tset

L
U

T

L
U

T

L
U

T

L
U

T

Sink of
Sub−path 0

Sink of
Sub−path 2

Sink of
Sub−path 1

Level 1Level 1

Level 2

Source

Level 0 Level 0 Level 0

MX6MX6 MX6 MX6

MSB

MX6MX6 MX6 MX6

MX6MX6 MX6 MX6

MX6MX6 MX6 MX6MX6MX6 MX6 MX6MX6MX6 MX6 MX6

MSB MSB MSB

MSB

MSB

LBLB LB LB

Figure 7: Sub-paths timing caracterisation

Delays on sub-paths depend on the length of wires con-
necting MSB and logic blocks. The length of those wires
is estimated by making the layout of MFPGA architectures
with different sizes (different number of levels).

4.2 Critical path extraction

MSB

LUT

RegMSB

MSB

MSB

Primary
inputs
(pads)

LUT

MSB

MSB

Primary

(pad)
output

MSB

MSB

In In

Out

Sub−path

Routing graph

Su
b−

pa
th

Sub−path

Su
b−

pa
th

Su
b−

pa
th

Reg InIn

Reg

Routed circuit
Out

InIn

Timing graph
Out

0.5 ns 0.5 ns

1 ns

2 ns4 ns
3 ns 3 ns

1 ns

0.5 ns 0.5 ns

Figure 8: Graph modeling of a simple circuit

Once circuit have been completely placed and routed we
obtain a direct graph called “routing graph”. This resulting
graph describes wires that will be used to connect logic block
pins as described in the netlist and using architecture rout-
ing resources. Each wire and each logic block pin becomes a
node in this “routing graph” and each passing switch (inside
the MSB) becomes a directed edge. Edges are also added
between the inputs of logic blocks and their outputs. Figure
8 shows a simple circuit implemented via 2-input LUTs and
registers, and the corresponding “routing graph”. On this
graph we can isolate easily different sub-paths. We use a
depth-first traversal of the graph. We replace each sub-path
by only one edge annotated with the sub-path delay.
Thus we obtain a new direct acyclic graph called “timing

graph”. In this graph nodes represent the input pins and
output pins of basic circuit elements, such as registers and
LUTs. Register input pins are not joined to register out-
put pins. Register outputs have no edges incident to them
, and register inputs have no edges leaving them (acyclic
graph). Similarly, primary inputs (input pads) have no inci-
dent edges, and primary outputs (out pads) have no exiting
edges. Each edge is annotated with the delay required to
pass through circuit element or routing (sub-path delay).
Figure 8 shows the obtained “timing graph” of the routed
circuit.
One can determine the minimum required clock period with
O(n) computation for a “timing graph” with n nodes via a
breadth-first traversal. The traversal begins at nodes with
no incident edges (primary inputs and register outputs) and
labels each with a signal arrival time, Tarrival, of 0. Each
node which has incident edges only from labelled nodes is
then labelled with its arrival time according to

Tarrival(i) = maxj∈fanin(i){Tarrival(j) + delay(j, i)}

where node i is the node being labelled, and delay(j, i) is
the delay value marked on the edge joining node j to node
i. This procedure continues until every node in the graph
has been labelled. The node with the largest arrival time,
which will be always a primary output or a register input,
then defines the maximum delay, Dmax, (= minimum clock
period) through the circuit. In figure 8, for example, the
arrival time at node Reg is 5.5 ns, and this is the largest
arrival time, and hence the maximum delay, in the circuit.

5. RESULTS

5.1 Tools validation
To validate and study the performances of our tools, we

placed and routed some of the MCNC benchmark circuits.
As shown in table 1 results are very promising since we were
able to route circuits that occupies until 77% of the logic
area. We have tested the effect of the refinement phase
which was run after the multilevel clustering. So we have
tried to rout resulting placed netlist in both cases:

• Multilevel clustering without FM refinement (column
10 of table 1).

• Multilevel clustering followed by FM refinement (col-
umn 11 of table 1).

We notice that in most cases the FM refinement alleviates
congestion and leads to better routability results. Never-
theless the router failed to route benchmarks with very high
occupation like b9. In this case the router routes a large
amount of the nets (until 98%). To improve the perfor-
mances of the router we propose to:

• Better use routing resources by modifying the distribu-
tion of the rising interconnect or increasing the number
of feedbacks in each level (An output can have more
than one feedback in a level).

• Improve the placement and especially the detailed one
(alleviate congestion).

5.2 Area efficiency
To have an idea of the area efficiency, we use the same

MCNC benchmark circuits to compare the switch and the
area requirements between our MFPGA architecture and
traditional Mesh topology.
The Mesh is similar to the vpr422 challenge arch architec-
ture [7] with uniform routing with single-length segments
and a subset switch box. Each logic block contains a sin-
gle 4-LUT. One input appears in each side, and the output
appers on the top and the right side. Both inputs and out-
puts are fully connected (Fc = 1), and IO pads are fully
connected too.
We use the channel minimising VPR 4.3 [7] router to route
circuit on the mesh architecture, and we vary the IO ratio
to achieve the opotimal array size.
VPR chooses the optimal size and the optimal channel width
needed to place and route each circuit. For the MFPGA we
choose a structure large enough to support the benchmark
circuit. MFPGA structure can be varied by changing the
number of levels or the arity of each level.
We compare areas of both architectures using successively
a simple cost model based on routing switches count and a
more refined model that estimates the effective circuit area.
The mesh area is the sum of its basic cells areas like SRAMs,
Tri-states and multiplexers. The same evaluation is made
for the MFPGA which is composed basicly of SRAMs and
Multiplexers. We use the same cells library for both archi-
tectures. Table 1 summarises the basic results for the Mesh
and for the MFPGA.
Given a benchmark with a fixed size, we implement it on a
specified MFPGA architecture, we take area results as sum-
marised in the right part of table 1. Column 9 shows the
occupation average of each circuit in the target MFPGA.
We notice that we have a low occupation average with the
majority of the benchmark circuits. This is due essentially
to the depopulation of the interconnect. As said previously
we under-utilise the logic resources in this type of structure.
In addition, the size of the smallest MFPGA is penalised by
the coarse granularity of the architecture. In spite of these
constraints, we achieve a gain in area compared to the mesh
architecture. We notice in table 1 that for a low occupation
average of the logic resources (LBs), the total MFPGA area
is smaller than its equivalent mesh (which has a better oc-
cupation ratio) since it requires less interconnect resources.

5.3 Speed performances
It is clear from the previous comparison that the new ar-

chitecture is more efficient in term of area and this can have
a good effect on circuit speed: smaller is the area, shorter
are the connecting wires. In addition thank’s to the hier-
archy aspect of our MFPGA architecture, logic blocks will
be partitioned between clusters to reduce external commu-
nication. This has an important impact on circuit speed
improvement since communication will be faster. We have
compared the speed of the MFPGA architecture to the Mesh
. We have implemented the same circuits and we have used
our timing analysing tool for the MFPGA (section 4) and
the one proposed in VPR for the mesh. Timing results are
presented in table 2 for both architectures. We notice that
MFPGA largely outperforms Mesh architecture in term of
speed. As explained previously this is due essentially to the
multilevel hierarchy aspect of the MFPGA. Modern Mesh
FPGAs (cluster based FPGA) have two levels of hierarchy

Circuit Mesh MFPGA
T(ns) T(ns)

cm42a 11.65 2.12
pcle 14.90 4.34

decod 13.50 3.56
cc 16.50 4.25

count 26.52 7.78
my adder 55.12 27.45

b9 20.47 6.98
i4 22.14 6.03

c2670 48.84 16.67
i9 44.28 13.90

Table 2: Speed Comparison (0.13µm CMOS, 1.2V)

and connecting segments with different length (> 1). This
kind of architecture has better speed performances than the
common ones (used here as reference). So in the next step
we will make comparision with this kind of architectures
specially with larger benchmark circuits.

6. CONCLUSION
The downward network is a predictable interconnect which

has a very interesting impact on accelarating the routing
phase. The routing key of the proposed architecture is the
upward network. Enhancing the routability needs to popu-
late the upward network to increase paths number between
sources and destinations. This can lead to area increasing,
but can be compensated by applying the Rent’s rule to re-
duce the cluster inputs/outputs
The preliminary results show that good balancing of the
LUT and the interconnect utilisation reduces area compared
with traditional Mesh architectures. Thank’s to the hierar-
chy aspect of the MFPGA we have a very good performances
in term of speed compared with the common Mesh architec-
ture.

7. REFERENCES
[1] A. G. A. Adrijean. Micro-network for soc:

Implementation of a 32-port spin network. Proc.

DATE’03, pages 1128–1129, march 2003.

[2] A. G. A. Adrijean. Spin: a scalable, packet switched,
on-chip micro-network. Proc. DATE’03, pages 70–73,
march 2003.

[3] M. M.-S. A. Singh. Efficient circuit clustering for area
and power reduction in fpgas. Proc. FPGA’02,
February 2002.

[4] A. DeHon. balancing interconnect and computation in
a reconfigurable array (or why you don’t really want
100% lut utilisation). Proc. FPGA’99, 1999.

[5] C. M. Fiduccia and R. M. Mattheyeses. A linear-time
heuristic for improving network partitions. Proc. DAC,
pages 175–181, 1982.

[6] C. E. L. McMurchie. Pathfinder: A negotiation-based
performance-driven router for fpgas. Proc.FPGA’95,
1995.

[7] J. R. V.Betz, A. Marquardt. Architecture and cad for
deep-submicron fpgas. Kluer Academic Publishers,
January 1999.

