
Evaluation of Hierarchical FPGA partitioning
methodologies based on architecture Rent Parameter

Zied Marrakchi, Hayder Mrabet and Habib Mehrez
Dept ASIM-LIP6

Université Paris 6, Pierre et Marie Curie
4, Place Jussieu, 75252 Paris, France

{zied.marrakchi, hayder.mrabet, habib.mehrez}@lip6.fr

ABSTRACT
The complexity of circuits to implement on FPGA has ne-
cessitated to explore hierarchical interconnect architectures.
A large body of work shows that a good partitioning hier-
archy, as measured by the associated Rent parameter, will
correspond to an area-efficient layout. We define the archi-
tecture Rent parameter of a netlist to be the lower bound
on the Rent parameter of any partitioning hierarchy of the
netlist. Experimental results show that a combination be-
tween a multilevel bottom-up clustering and a top-down re-
finement generates partitioning hierarchies whose Rent pa-
rameters are lower than those of other methods.

1. INTRODUCTION AND PREVIOUS WORK
Mesh is the most studied and most used industrial topol-

ogy. This style has been the subject of considerable pub-
lished work by Rose et al. [2]. The mesh structure consists
of an array of logic blocks with I pins in each side, which can
be linked together thanks to uniform horizontal and vertical
programmable routing channels [2].

There is little published research on Hierarchical FPGA
(HFPGA) architecture. In a HFPGA , logic blocks and rout-
ing resources are organized into levels. A leveli cluster has
Wi IO (Input/Output) wire tracks and contains a set of k

leveli−1 clusters connected with leveli switch box.
A common way to compare both architectures is the switch-
ing requirement using Rent’s Rule.

IO = cN
p

This empirical relationship links the number of IO with the
N gates of a design. In our case of HFPGA, N corresponds
to the number of logic blocks linked together. c is a constant
factor that corresponds to the IO size of the logic block, and
p defines the growth rate.
In his work, DeHon [4] has showed that the k-HFPGA has
more efficient switching that grows as O(1) if p < 0.5.
Once p > 0.5 the mesh architecture becomes more inter-
esting. Mesh switching and wiring area grows as O(Np−0.5)
while the k-HFPGA switching resources diverge and grows
as O(N2p−1).
Thus the Rent parameter is an accurate indicator of the
wiring and switching requirements for a given partitioning
hierarchy. In particular given a choice between two parti-
tioning tools, the one with lower Rent parameter will require
less switching and wirelength and correspond to a denser fi-
nal layout. Thus, one aspect of our present work compares

nout l
ninl

ninl − 1

nout l − 1

ninl − 1

nout l − 1

Figure 1: hierarchical interconnect

various partitioning methods with the goal to identify the
partitioning strategy leading to the optimal hierarchy. This
affords a new methodology for comparing the utility of mul-
tilevel partitioning techniques.

2. PROPOSED ARCHITECTURE
To make size estimate of the architecture more concrete,

let us consider a specific structure build according to Rent’s
rule. We build a fully hierarchical interconnect with inter-
level signaling bandwidth growing according to Rent’s Rule.
To simplify analysis, we consider only unidirectional signal
wires.
The gates are recursively partitioned into k equally sized

sets at each level of the hierarchy. The principal intercon-
nect occurs at each node of convergence in the hierarchy (see
figure 1). At a level l in the hierarchy, each node has a fan-in
from below of k ∗ noutl−1

signals and a fan-in from above of
ninl

. Similarly, it has a fan-out of n∗ninl−1
towrd the leaves

and noutl
towards the root. At each level l, we have nLUTl

LUTs, ninl
external inputs and noutl

external outputs. We
have n+1 distinct output directions from each node of con-
vergence in the interconnect: n for the n leaves, plus one for
the root. Allowing full connectivity within each tree node,
each of the n leaves picks its nin inputs from the (n−1)∗nout

outputs from its siblings and from the nin inputs from the
parent node. The nout outputs of this node are selected from
the n ∗ nout outputs from all n subtrees converging at this
point. Figure 2 shows this basic arrangement for n = 2.
As shown in the previous section, the Rent parameter is an
accurate indicator of the wiring and switching requirements
for a given partitioning hierarchy. Thus, we introduce the
notion of an architecture Rent parameter. The architecture

n
l − 1out

nin l − 1
nin l − 1

nin l
n

lout

XBAR XBAR
Down

Up XBAR

Down n
l − 1out

Figure 2: switching node in 2-arity Hierarchical In-

terconnect

Rent parameter is the minimum possible Rent parameter
of the architecture allowing all routability achievement of a
given netlist. So to determine the Rent parameter of a cir-
cuit we run the multilevel partitioning method, then in each
level we determine the maximum number of inputs and out-
puts in all clusters of the same level. Finally We calculate
the Rent parameter for each level according to the hierachi-
cal combining: NLUTl

= kl and wl = C((k)l)p

C is the number of LUT inputs/outputs and wl is the num-
ber of clusterl inputs/outputs.

3. PARTITIONING METHODOLOGIES

3.1 Top-down partitioning
Top-down approaches partition a given netlist into smaller

subclusters. This technique is based on the global connectiv-
ity informations and leads to a good partitioning solution.
Otherwise it is a long time consumer specially with large
netlist graphs. To deal with this problem, the conceptors of
hMetis [6] propose to run the partition on a coarsened graph.
Thus in a first step the hypergraph is coarsened successively
and it is partitioned into k-parts. Then this k-way partition
is successively refined as it is successively projected back
into the original hypergraph. This tool was used in [8] to
construct clusters in the case of the clustered mesh FPGA.
In this work we have extended the application of this tool
to construct a multilevel hierarchy. Our method is a top
down one, so first we construct clusters of the top level and
after that each cluster is partitioned into subclusters. This
is done until the bottom of the hierarchy was reached. The
objectif function in hMetis k-way partitioning consists on
minimising the cut in the partition (min-cut).

3.2 Bottom-up partitioning
The size of the smallest multilevel hierarchical FPGA is

penalised by the coarse granularity of the architecture. This
means that in most cases the number of logic blocks slots
in the architecture is greater than the number of instances
in the netlist to implement. This can have a good effect on
congestion alleviating. In fact, DeHon [3] showed that for
hierarchical FPGAs, 100% logic utilisation is not necessary
benefical for overall device area minimisation. His results
indicate that a careful partitioning of designs and depopula-
tion of logic clusters can result in better HFPGA resources
utilisation. In the following we present two different tech-
niques to distribute instances over clusters. In both cases we
use the same objectif function proposed in [1] to compute
the attraction of each block to a cluster.

3.2.1 BLEs-limit strategy

Tessier [7] showed that depopulation of clusters can result
in reduced channels width in the case of mesh architecture.
The algorithm presented depopulates each cluster equally
so there is a uniform distribution of empty BLEs across the
chip. In this approach, an attempt is made to spread the
logic evenly across all clusters in the device while limiting
the number of inputs that logically drive each cluster to
be less than the number of pins physically available. In this
clustering algorithm, the number of LUTs to be held in each
cluster (Nhigh, Nlow) is first determined. These numbers
reflect the overall LUT utilisation of the device and differ
by only one LUT. Following this step the number of device
clusters that hold each quantity of LUTs (Chigh and Clow,
respectively) is determined. Clustering is then performed
for two types of clusters.

3.2.2 Pins-limit strategy
Singh [1] presented a clustering algorithm (iRAC) which is

very effective at reducing channel width in the case of mesh
architecture. iRAC also limits the number of inputs to each
CLB by using the Rent parameter, resulting in solutions
that have some depopulation. The aim of this technique is
to alleviate routing congestion by absorbing as many nets
into clusters as possible, and depopulating clusters accord-
ing to Rent’s rule in order to achieve spatial uniformity in
the clustered netlist.
We notice that pins constraints enforcing is inefficient when
it is applied in high levels. This is due essentially to the
bottom-up and the greedy aspect to construct clusters of
the technique. To deal with such problem, we propose to
create clusters in high levels without pins constraints enforc-
ing. As presented in figure 3, once the multilevel clustering
is achieved, we run a multilevel top-down refinement.

clustering
 &

FM refinement

clustering FM refinement

Level 0

Level 1

original cells netlist clustered netlist

constraints enforcing

Figure 3: Multilevel clustering & refinement

3.3 Multilevel refinement
After the clustering phase (with both strategies), we ob-

tain k clusters in each level. We can consider that the k
clusters in a level present an initial solution to a k-way par-
titioning problem. During the refinement phase, cells will
be moved between clusters (parts) to optimise an objective
function without violating the constraints imposed by the
cluster size. In a level, cells are not allowed to move be-
tween all clusters, because this can decrease the quality of
the solution obtained in the higher level. To prevent such
bad effect, cells can only move between neighboring clusters.
We call neighboring clusters, all clusters in a level belonging
to the same supercluster. Thus in every level, neighboring

clusters will be isolated and form a subgraph. In figure 3
those subgraphs are presented by the continued lines and
partition by the dashed ones. A cell is allowed only to move
across dashed lines. The objective function is local to each
subgraph and corresponds to the maximum number of pins
of all clusters (parts) belonging to the same subgraph. An
FM algorithm [5] will be applied on a subgraph to optimise
the local objective function. The complexity of our k-way
refinement is reduced since we apply it for successively for
each subgraph (in each subgraph there are small number of
parts: Arity of the architecture).

4. EXPERIMENTAL RESULTS

4.1 Partitioning methodologies comparison
Within the preceding approaches, the main classes of par-

titioning are the top-down and bottom-up. The following
algorithms were used in our experiments:

- TD: Top-Down partitioning based on hMetis (mincut).

- BU-B : Bottom-Up clustering with BLE-limit.

- BU-P : Bottom-Up clustering with Pins-limit.

- BU-B-R: A BU-B followed by the refinement phase.

- BU-P-R: A BU-P followed by the refinement phase.

The experiments were performed as follows. Each parti-
tioning algorithm was used to construct a partitioning hiear-
achy for the circuit via recursive partitioning of the circuit
and its subpartitions. We have used some of the MCNC
benchmark circuits with different logic sizes. At each parti-
tioning step, we noted the number of external pins for each
subpartition as explained in section 2. In order to correlate
the experimental data to Rent’s rule, we re-express the rela-
tionship wl = C((k)l)p as logwl = logC + p.log(k)l (l is the
corresponding level). As shown in table 1, for each level we
have an associated Rent parameter.
For the bottom-up clustering approaches we notice that the
pins-limit strategy BU-P is more efficient than the BLEs-
limit strategy BU-B. This seems evident since the aim of
this strategy is to reduce the number of external pins of
each constructed cluster.
We notice that the TD method is efficient to reduce the
Rent in high levels. This approach has the disadvantage
that the objectif function is not suitable to the reduction of
the Rent’s parameter. In fact the Min-cut, tries to reduce
communication between all clusters with no regard to the
signaling bandwidth of a particular cluster. The BU-P ap-
proach is more efficient to reduce the Rent’s parameter in
low levels. Otherwise with this technique, we obtain a bad
solution when we construct the highest levels. This is due
to the inefficiency of pins-limit in this stage. As shown in
table 1 the solution can be improved if we run a top-down
refinement phase. With the BU-P-R we obtained a good
Rent parameter in all levels (lowest and highest ones).

4.2 Architectures comparison
As shown in table 1 the average architecture Rent’s pa-

rameter is greater than 0.5. As demonstrated in section
1, this favorises the mesh architecture in term of wires and
switch reduction. To confirm this with experimental results,
we have claculated the number of needed switches in each

resulting architecture.
The mesh architecture is composed of clusters and has an
uniform routing network with single-length segments and
a subset switch box. Each cluster contains 8 4-LUT. The
number of inputs in each cluster is 18 and the number of
outputs is 8. Both inputs and outputs are fully connected.
The IO pads are fully connected too. We use t-vpack to
construct clusters and the channel minimising VPR 4.3 to
place and route the obtained netlists. We vary the IOratio

to achieve the optimal array size. VPR chooses the optimal
size as well as the optimal channel width to place and route
each benchmark.
From table 2, we notice that the average number of needed
switches in the hierarchical HFPGA is about 3 times greater
than in the mesh architecture. This is due essentially to
coarse granularity of the architecture and the full populated
crossbar.

5. CONCLUSION
We have introduced the notion of an architecture Rent

prameter defined as the lowest Rent parameter achievable by
any partitioning method. Our results indicate that a combi-
nation between a multilevel bottom-up clustering and a top-
down refinement generates partitioning hierarchies whose
Rent parameters are lower than those of other methods. The
aim of the work was to find the best partitioning method
to obtain the smallest HFPGA area. Despite our effort
we found that with a fully-populated crossbar, hierarchi-
cal FPGA can not be denser than mesh FPGAs. Thus to
make HFPGA more competitive, we must use depopulated
routing interconnect. The question is how to depopulate the
hierachical interconnect and keep a good routability. This
is the aim of our future work.

6. REFERENCES
[1] M. M.-S. A. Singh. Efficient circuit clustering for area

and power reduction in fpgas. Proc. FPGA’02,
February 2002.

[2] V. Betz, A. Marquardt, and J. Rose. Architecture and
cad for deep-submicron fpgas. Kluer Academic

Publishers, January 1999.

[3] A. DeHon. balancing interconnect and computation in
a reconfigurable array (or why you don’t really want
100% lut utilisation). Proc. FPGA’99, 1999.

[4] A. DeHon. Unifing mesh and tree-based programmable
interconnect. IEEE Transactions on VLSI Systems,
IEEE Transactions on VLSI Systems(12):10, October
2004.

[5] C. M. Fiduccia and R. M. Mattheyeses. A linear-time
heuristic for improving network partitions. Proc. DAC,
pages 175–181, 1982.

[6] G.Karypis and V.Kumar. Multilevel k-way hypergraph
partitioning. Design automation conference, 1999.

[7] R.Tessier and H.Giza. Balancing logic utilisation and
area efficiency in fpgas. Int’l workshop on field

programmable logic and applications, 2000.

[8] H. Z.Marrakchi and H.Mehrez. Hierachical fpga
clustering to improve routability. Conference on Ph.D

Research in MicroElectronics and Electronics, PRIME,
2005.

Benchmark TD BU-P BU-B BU-P-R BU-B-R

Name LUTs Arch level Rent T(s) Rent T(s) Rent T(s) Rent T(s) Rent T(s)

C1908 224 8x8x8 0 0.73 0.6 0.690 0.4 0.773 0.3 0.690 1.2 0.773 1.2
1 0.616 0.563 0.597 0.511 0.585

Avr 0.675 0.626 0.685 0.600 0.679
ttt2 241 8x8x8 0 0.615 1.4 0.528 0.3 0.641 0.2 0.528 1.3 0.641 1.3

1 0.517 0.405 0.474 0.396 0.430
Avr 0.566 0.466 0.558 0.462 0.536

C3540 509 8x8x8 0 0.845 4 0.773 1.76 0.773 1 0.773 2.5 0.773 1.8
1 0.717 0.700 0.700 0.681 0.694

Avr 0.781 0.737 0.737 0.727 0.734
seq 1750 8x8x8x8 0 0.828 21.3 0.773 20 0.845 12 0.773 27 0.845 20.3

1 0.686 0.727 0.743 0.651 0.666
2 0.605 0.667 0.651 0.626 0.650

Avr 0.707 0.722 0.746 0.683 0.720
apex2 1878 8x8x8x8 0 0.877 23 0.712 20 0.877 15 0.712 37 0.877 26

1 0.722 0.773 0.770 0.722 0.753
2 0.602 0.674 0.684 0.626 0.630

Avr 0.734 0.720 0.777 0.687 0.754
s298 1931 8x8x8x8 0 0.828 20 0.733 19 0.828 13 0.733 50 0.645 31

1 0.517 0.627 0.631 0.597 0.828
2 0.341 0.588 0.579 0.480 0.597

Avr 0.562 0.650 0.679 0.603 0.509
frisc 3556 8x8x8x8 0 0.877 56.5 0.733 54 0.810 38 0.733 75 0.810 48

1 0.669 0.732 0.725 0.681 0.624
2 0.605 0.674 0.690 0.626 0.626

Avr 0.717 0.713 0.742 0.680 0.687
elliptic 3604 8x8x8x8 0 0.828 56 0.712 52 0.828 35 0.712 80 0.828 45

1 0.624 0.702 0.741 0.641 0.641
2 0.626 0.625 0.669 0.626 0.633

Avr 0.692 0.680 0.746 0.660 0.701
spla 3690 8x8x8x8 0 0.861 61.4 0.733 59 0.845 40 0.733 84 0.773 65

1 0.745 0.790 0.783 0.747 0.764
2 0.629 0.667 0.709 0.627 0.667

Avr 0.745 0.730 0.779 0.702 0.735
average 1931 0.687 27.13 0.672 23 0.717 17.1 0.645 39.7 0.688 26.6

Table 1: Rent parameter results

Benchmark Mesh HFPGA

Name LUTs CLBs W IO Switches Arch Occup- Switches
ratio x103 ation% x103

C1908 224 28 18 3 27.9 8x8x8 43.7 64.7
ttt2 241 31 10 2 15.4 8x8x8 47 43.3

C3540 509 65 21 2 68.4 8x8x8 99.4 317.2
seq 1750 242 41 2 410 8x8x8x8 42 1627.9

apex2 1878 263 40 1 445.4 8x8x8x8 45.9 1854.4
s298 1931 305 30 1 374.4 8x8x8x8 47 699.2
frisc 3556 737 54 2 1633.5 8x8x8x8 86 3643.8

elliptic 3604 527 46 3 950.7 8x8x8x8 87.9 3343.7
spla 3690 750 56 2 1956 8x8x8x8 90 4269.8

average 1931 327.55 35 2 653.5 65.43 1762.6

Table 2: Switches comparison between mesh FPGA architecture and HFPGA

