I mplementation of Scalable Embedded FPGA for SOC

Hayder MRABET?*, Zied MARRAKCHI*, Habib MEHREZ* and André TISSOT**

*LIP6-ASIM Laboratory
Université Paris 6, Pierre et Marie Curie.
4, Place Jussieu, 75252 Paris, France

**CEA-DAM IDF
Commissariat a I’Energie Atomique
email:{hayder.mrabet,zied.marrakchi,habib.mehrez} @lip6.fr, andre.tissot@cea.fr

Abstract —Integrating an embedded FPGA into
SoC allows postfabrication changes. Thanks to
their unlimited reconfigurability, eFPGAs are able
to implement specific functions, thus improves the
systems performance. In this paper we present an
SRAM-based eFPGA architecture. We explore the
hardware aspects of the eFPGA including internal
structure and external coupling with a VCI inter-
connect. We also focus on the design flow for the
implementation and the configuration.

1 Introduction

Since its introduction in the 1980’s, the reconfigurable logic
has gone through many phases. Earlier Field Programmable
Gate Arrays(FPGAs) provided a “sea” of Look-Up Ta-
bles(LUTs) and registers which are linked together using pro-
grammable interconnects. The programmable elements were
built from SRAM cells, the device can be quickly repro-
grammed to implement any desired functionality.

In the 90’s, FPGAs had high logic capacities enough to im-
plement entire signal processing functions. Since then, Re-
configurable Logic became a standard component in every
digital electronic system.

With the enormous movement since 1990’s toward System
On Chip (SoC), new methods to explore programmable logic
have been developped to suit this new environment. The
previous year saw the emergence of the System On Pro-
grammable Chip (SoPC). SoPCs mix SoC with a config-
urable fabric that designers can manipulate after chip fab-
rication. The FPGA companies introduced SoPCs chips as
combination of both soft and hard silicon cores embedded
into programmble architectures. At this time ALTERA got
outside the Excalibur SOPC in two versions ARM-based and
MIPS32-based. Xilinx produces a platform with an embed-
ded hard core PowerPC405 and ATMEL defined the RISC-
based SoPC AT94K FPSLIC.

Due to the limitations of FPGA technology, these prod-
ucts have the disadvantage of higher power consumption and

MipsR3000

Ram_16ko
CopTeﬂ Timer

|| __ I

Crossbar

Il _

T5
Conflg Tser2lvei

Figure 1: AOC (Asim On Chip) platform

lower performance compared to the standard cell ASIC. This
makes SoPCs mainly used for prototyping and applications
requiring low volume production. SoCs using ASIC imple-
mentation technology are more attractive for high volume
applications and offers higher performance and density and
lower power. But this SoCs needs supleness. Once it is fabri-
cated, it is impossible to introduce new functionalities or the
slightest design modification.

Recently we have seen the insertion of field programmble
cells into ASICs. FPGA vendor [1] and new IP devel-
opers [2, 3] are now offering “hard” embedded FPGA
cores (eFPGA) that can be incorporated into SoC design.
Include an eFPGA into a SoC gives the possibility to reuse a
portion of the chip for a variety of tasks and functionalities
like image analysis and signal processing. Thanks to his

flexibility the eFPGA can cover design error or specification
change after fabrication like communication standard.

A general platform that contain the necessary for any SoC
design was developed in the ASIM laboratory. It is called
AOC (Asim On Chip). It is based on a MIPS processor, and
along with it, a VCI bus, some internal memeory and some
external interface. We extand AOC by including a VCI target
eFPGA core. An overall view of the AOC SoC is provided
by figure 1.

In this paper we present a reconfigurable hardware designed
specifically to be integrated in a SoC. Thanks to its scalable
structure and its generic VCI interface, the eFPGA can be
adapted exactly to designers specifications. This eFPGA can
easily be integrated into a processor-based system in order to
offload some the most computationally intensive tasks.

This paper is organized as follows: the following section
describes the architecture of the eFPGA. Section 3 describes
the entire system design flow for the eFPGA. Section 4 con-
cludes this work.

2 Scalable eFPGA

To be effective, it is necessary to minimize any redesign of the
base platform elements or add-on cores to create new prod-
ucts. To achieve this, platforms must have been built on a
foundation of reusable Intellectual Property blocks designed
to a standard interface.

Satandard VCI(Virtual Component Interface) [5] is adopted
for designing and integrating our eFPGA as a virtual compo-
nent.

The eFPGA architecture is composed of a programmable
logic array, a VCI interface module and a loader for the con-
figuration.

2.1 Programmable Logic Array

Most applications to be implemented into the eFPGA are
divided to control and data sections, with control involving
mostly single-bit random logic, and the datapath comprising
larger wider operation. That is why we construct a simple
model with fine granularity that can roughly emulate a larger
granularity when desired.

The core of the eFPGA has island-style strucure (see figure
2). It is an array of Configurable Logic Blocks(CLBs) whose
functionality is determined through multiple programmable
bits. Each CLB contains two 4-input LUT (look Up Table),
each LUT is followed by a bypass flip-flop. Bidirectional
wires run vertically and horizontally within the array to con-
nect CLBs. All wires in the network are grouped into hori-
zontal and vertical routing channels which are inked together
through programmables switch boxes. For the simplicity of
the design we do not use long wires, all wires have a length
one (span one logic block).

Each CLB has two outputs that can drive all the adjacent
wires in the top and the right sides. It has also 6 inputs that
can read from any adjacent wire in the four sides.

The regularity of the island-style simplifies the automatic
structuring of the Programmable array Layout. In [4] we

Local Interconnect
Local Interconnect

Figure 2: Programmable Logic Array Architecture

Figure 3: 4x4 eFPGA prototype

decribed a technique to automate the array layout generation.
Using this technique we are capable to generate a large
spectrum of different array sizes to obtain the best design fit
on the SoC device. The parameters for the generator are the
number of CLB per Row and the number of CLB per column.
The final routed layout example of the programmable array
is given in figure 3. It is an array of size 4x4, with an
equivalent logic capacity of 384 gates. The layout measures
0.453mmx0.456mm in CMOS 0.134 and is routed using 4
layers of metal. Table 1 illustrates details of different arrays
generated automatically.

array size Logic number of Area
Capacity | transistor | in CMOS 0.13u

(gate) (mm?)
4x2 192 25588 0.109
2x6 288 37728 0.159
4x4 384 48288 0.216
4x8 768 93688 0.402
8x8 1536 181328 0.786

2.2 Generic e-FPGA Interface

The efficiency of data transfer during communication be-
tween the processor and the coprocessor is often the domi-
nant factor determining overall system performance.
Coprocessor that will be implemented on the Programmable
array will use defined standard FIFO interface. A multififo
module will include the VCI interface in the bus side. This
module is called the VCI target Multififo. It is composed es-
sentially of:

e Two sets of FIFOs for performing read-from-bus and
write-on-bus connected respectively to inputs and out-
puts pins of the array. Their number can be varied be-
tween 1 and 4 FIFOs in each direction.

One “Read FIFO” is also used to transfer the configura-
tion data to the loader and the programmable array.

e A configuration” register that can be programmed by
the main processor to set the eFPGA’s functional mode.

e A ”status” register which indicates the status of the
eFPGA.

An overview of the Multififo interface module with one read
and one write FIFOs is given in the figure 4. The data size is
considered as fixed to 32 bit, like the VCI cell size. Specific
pins are reserved on the periphery of the array for the fifo
control. Each read FIFO provides three ports for access by
the programmable coprocessor: DOUT, ROK, READ. Each
write Fifo provides three ports DIN, WOK, WRITE. The
FIFO protocol is mapped on the programmable array to in-
sure communication with the FIFOs. We note that a same
read FIFO can insure the data transfer to the coprosessor and
the configuration data transfer to the loader too.

VCI

|

Status ; Config

Read Fifo

‘Write Fifo

Soft reset
Strobe

— 1 %
rok r wok
! Ck
' 1 h TN]I (TN i
Hist ey rst inputs outputs
Loader @
Taa Programmable Array

Figure 4: The eFPGA interface

2.3 Configuration Loading

Because reconfiguration can take milliseconds or longer,
rapid and efficient configuration becomes a critical issue.
Frequently, programs that can be accelerated through a
mapping on reconfigurable hardware are to numerous to be
loaded simultaneously onto the available area. A number of

different configurations may be loaded onto the same area at
different times. In some cases only a part of the configuration
requires modifications when the rest should remain intact.

It is benificial to be able to swap easily different configura-
tions as they are needed during program execution.

In our eFPGA we use a seletive configuration using the RAM
technique. The random access allows a partially and a fast
dynamic reconfiguration.

Compared to other technique like the shift register configura-
tion, this one requires an important number of pins dedicated
to the configuration loading. For an embedded FPGA, the
number of pins is not critical (as long as we have not a
problem of packaging).

The configuration ressources are grouped as tiles of 16-bits
words that can be randomly accessed and can be programmed
on the fly. A small state machine named “The loader” is
responsible of programming the array. It is connected to the
programmable array and to the multififo interface module.
When the “configuration” register is set on the configuration
mode, the loader recieves (through the “Read-FIFO”) a
sequence of 32 bit-words that corresponds to a series of
consecutive 32-bit address and 32-bit data. The loader
decodes the address and loads the adequate data (In this
work the most signifigant 16 bits of each data word are
ignored).

3 Design Flow

3.1 Exploration Environment

The starting point is a standard C code writen to describe a
specific functionality. Simulations assert that the most exe-
cution time(90%) is generally consumed by about 10% of
a program’s code. The goal is to group those segments of
codes that increase timing consuming and implement them
on the reconfigurable hardware.

The programmer is responsible of extracting the critical seg-

specific applictaion
C code
|

l l

C code | | Critical segments |

| VHDL |
| Synt;lesis |
| Place8:R0ute |
I |

MIPS Compiler |

]
Bitstream Generation

!
eFPGA

Figure 5: Configuration Flow

MIPS—processor

ments and dividing a program between the main processor
and the reconfigurable hardware. Those segments are gen-

erally inner loops that have small static code but potentially
large instructions count. The VHDL resulting from the re-
finement of those segments is easily mapped on the eFPGA.
An automatic flow shown in figure 5 generates the config-

ailli ouftoul

Figure 6: Place&route using VPR

uration Bitstream corresponding to the hardware mapped on
the eFPGA.

A complete design flow for mapping the VHDL descriptions
on the eFPGA has been based mainly on open source pub-
licly available tools. The flow includes *boog’ [6] for logic
synthesis, SIS [8] for mapping, T-vpack+VPR [7]for place
and route. We developed a generic generator of bitstream.
Figure 6 shows an example of the mapping phase results on
4x4 eFPGA.

As a final result, we obtain the same original functionality but
partioned on :

e software C code to be executed by the processor.

e hardware mapped on the eFPGA.

3.2 RTL Level / Hardware design

SystemC Model : The full system of figure 1 has been mod-
elised on SystemC first. All the AOC components, except
the programmable array, are open models of SoCLib [9]. All
simulation models writen in SystemC and respect the VCI
communication protocol.

A variety of applications are simulated. Arithmetic and
logic benchmarcks are implemented on the eFPGA. The
binary Bitstream is stored in the system RAM (or an external
RAM/ROM). Then it is loaded into the eFPGA through the
system bus and the eFPGA interface. In this configuration
stage the main processor(MIPS) make the role of a DMA to
transfer configuration data.

System to layout: System Co-simulations of the same
benchmarks are made with the eFPGA on VHDL (the rest is
always on SystemC).

The eFPGA interface module and the loader are easily
exported on standard VHDL and are synthesized using the
target Sxlib [6] cells library.

The programmbale array netlist and layout (see Figure 3)
are constructed simply by replicating the main tiles (CLB +
Connection box + Switch box).

4 Conclusions

eFPGA coprocessor architecture greatly simplifies the pro-
cess of offloading computationally intensive functions from a
programmable processor(Mips) into hardware. Those appli-
cations can be greatly accelerated.

The reconfigurable structure, the interface module and the re-
configuration technique are all key points in the design of re-
configurable coprocessor. We define each module in order to
perform a small, fast and scalable eFPGA.

We use flexible modules that allows to generate a large spec-
trum of architectures with different sizes. The scalability of
the mesh architecture can be varied to obtain the best design
fit. The generic multififo interface can be easily adapted to
any size of the programmable array simply by modifing the
number and the size of the FIFOs. Finally, the Random Ac-
ces insured by the loader module can cover a broad memories
area and it does not need any modification.

This paper has described the implementation of an embed-
ded FPGA, and has illustrated the flow to design and explore
a programmable hardware core. This eFPGA has been inte-
grated into System-On-Chip platform that will be realized on
0.13 CMOS technology.

References
[1] Actel Corp, ”VariCore Embedded Programmable Gate

Array Core (EPGA) 0.18m Family”. Datasheet, Decem-
ber 2001.

[2] eASIC Corp, ”FlexASIC 0.13u Core”,
http://www.eASIC.com.

[3] M2000 Inc , "M2000 FLEXEOStm Configurable IP
Core”, http://www.m2000.fr.

[4] H.Mrabet, Z.Marrakchi, H.Mehrez, A.Tissot,” Automatic
Layout of Scalable Embedded Field Programmable Gate
Array”. International Conference on Electrical Electronic
and Computer Engineering (ICEEC’04), Cairo, Egypt,
September 2004, pp. 469-472

[5] Virtual Socket Interface Alliance, Virtual Compo-
nent Interface Standard Draft Specification, v.2.2.0,
http://www.vsia.com, August 1997.

[6] www-asim.lip6.fr/recherche/alliance, ALLIANCE

CAD.
[7] www.eecg.toronto.edu/ vaughn/vpr/vpr.html
[8] www-cad.eecs.berkeley.edu/Software/software.html

[9] http://soclib.lip6.fr

