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Abstract. This paper presents two high-throughput, low-latency converters that 
can be used to convert synchronous communication protocol to asynchronous 
one and vice versa. These two hardware components have been designed to be 
used in Multi-Processor System on Chip respecting the GALS (Globally 
Asynchronous Locally Synchronous) paradigm and communicating by a fully 
asynchronous Network on Chip (NoC). The proposed architecture is rather 
generic, and allows the system designer to make various trade-off between 
latency and robustness, depending on the selected synchronizer. These 
converters have been physically implemented with the portable ALLIANCE 
CMOS standard cell library and the architecture has been evaluated by SPICE 
simulation for a 90nm CMOS fabrication process. 

1   Introduction 

NoCs (Network on Chip) are a new design paradigm for scalable, high throughput 
communication infrastructure, in Multi-Processor System on Chip (MP-SoC) with 
billions of transistors. The idea of NoC is dividing a chip into several independent 
subsystems (or clusters) connected together by a global communication architecture 
which spreads on the entire chip.  

Because of physical issues in nanometer fabrication processes, it is not anymore 
possible to distribute a synchronous clock signal on the entire wide chip area. The 
Globally Asynchronous Locally Synchronous (GALS) addresses this difficulty. In 
this approach, each subsystem is a separated synchronous domain running with its 
own local clock signal. 

Table 1. Timing Dependency Methods 

Type Δ Frequency Δ  Phase 
Synchronous 0 0 

Pseudochronous 0 Constant 
Mesochronous 0 Undefined 
Plesiochronous ε ε 
Heterochronous Rational Undefined 

Multi-synchronous Undefined Undefined 
Asynchronous - - 
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Several solutions have been proposed to resolve the problems of clock boundaries 
between different clusters, and the risk of synchronization failures (metastability). The 
proposed solutions depend on the constraints that must be respected by the clock 
signals in different clusters: The mesochronous, plesiochronous, pseudochronous (or 
quasi synchronous) and heterochronous approaches correspond to various hypothesis 
regarding the phases and frequencies of clocks signals. Table 1 summarizes these 
conditions. 

The Globally Pseudochronous Locally Synchronous scheme (GPLS) is proposed in 
[1]. In [2], [3] and [4] the authors have proposed plesiochronous solutions which rely 
on exact or nearly exact frequency and phase matching of the clocks. Mesochronous 
solutions are described in [4], [5] and [6]: it is argued that maintaining the same 
frequency in several clock domains is not too difficult. The main problem is the skew 
between clock phases. In heterochronous solutions ([4], [7], [8] and [9]) all clock 
signals can have different frequencies, but with fixed and integer ratios. 

In MP-SoC design, a fundamental challenge is the capability of operating under 
totally independent timing assumptions for each subsystem. Such a multi-synchronous 
system contains several synchronous subsystems clocked with completely independent 
clocks. 
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Fig. 1. Multi-Synchronous System in 2D Mesh Topology 

In a two dimensional mesh respecting the multi-synchronous approach (Fig. 1a) we 
must solve the problem of communication between two neighbors clusters clocked 
with two fully asynchronous clocks. In [4], [5], [10] and [11] several authors have 
proposed different types of bi-synchronous FIFOs which can be used as a robust 
interface between neighbors. But this type of architecture implies one possibility of 
synchronization failure (metastability) at each clock boundary between neighbors. 

We illustrate in Fig. 1b an alternative solution: The global interconnect has a fully 
asynchronous architecture. As an example we can denote the MANGO architecture 
presented in [26] which was one of the first asynchronous NOC. This type of NoC 
respects the GALS approach by providing synchronous  asynchronous interfaces to 
each local subsystem. In this case, the synchronization failure can only happen in the 
two synchronous  asynchronous converters located in the destination and source 
clusters. Providing a robust solution for those hardware interfaces is the main purpose 
of this paper. The MANGO’s designers have proposed in [27] an OCP Compliant 
Network Adapter (NA) interfacing local systems to NOC. The synchronization in NA 
has a minimized overhead. 
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The design of various architectures that can be used to interface an asynchronous 
domain with a synchronous one, are presented in [10], [14], [15], [16] and [17]. We 
present in this paper two converters architectures which can be used to convert a Four 
Phase Bundled Data asynchronous protocol to a synchronous FIFO protocol and vice 
versa. Using FIFOs to interface mixed timing systems couple two fundamental issues 
which need to be considered in designing such interfaces: flow control (high level 
issue) and synchronization (low level issue). This coupling reduces the need of 
hardware synchronizer to the handshake signals that are used for the flow control.  

Some of the published solutions for interfacing asynchronous and synchronous 
domains are strongly dependent on synchronizer choice. In [15] and [16] the designs 
of various types of synchronizers using pausible clocking methods ([12]), are pro-
posed and in [17] the authors have suggested to generate a stoppable clock for local 
systems.  

In [14] a pipelined synchronizing FIFO is proposed. This FIFO requires that the 
producer produces data at a constant rate. The latency of this design is proportional to 
the number of FIFO stages and requires the use of a specific synchronizer. 

In [10] various FIFOs are used to interface four possible combinations of 
independent mixed timing environments. These four FIFOs have the same basic archi-
tecture. The small differences in FIFO designs are simple adaptation to the consumer 
and the producer interface type. There is at least two weak points in this proposal: the 
architecture is dependent on a specific synchronizer (the cascaded Flip-Flops), and the 
use of a more conservative synchronizer (with latency larger than one clock cycle), 
can decrease the throughput to a value less than one data transfer per cycle. Further-
more, the authors of [10] didn’t said anything about silicon area, but we believe that 
the architecture proposed in the present paper has a smaller foot-print. 

We discuss the synchronizer issue in section 2. We present the general architecture 
of the synchronous  asynchronous converters in section 3. The detailed schematic is 
described in section 4. The system architecture is briefly illustrated in section 5. The 
hardware implementation is presented in section 6. The main conclusions are 
summarized in the last section. 

2   Synchronizer: The Latency / Robustness Trade-Off 

Transferring data between different timing domains requires safe synchronization. The 
main goal of the synchronization is the prevention of metastability (synchronization 
failure). The metastability can happens, for example, when an asynchronous signal A, 
connected to the input of a Flip-Flop controlled by a clock signal CK, is sampled 
when it has an intermediate value between VDD and VSS. It means when A doesn’t 
respect Setup and Hold time to the sampling edge of CK; the Flip-Flop can enter a 
metastable state. As the duration of this metastable state is not predictable, the Flip-
Flop output will have itself an asynchronous behavior and metastability can propagate 
in the synchronous part of the circuit, resulting generally in loss of functionality.  

Some authors recommended stretching the clock signal (modifying the cycle time). 
In these methods, instead of synchronizing asynchronous inputs to the clock, the clock 
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is synchronized to the asynchronous inputs. The synchronizer must be able to detect 
that it will be in the metastable situation and it stretches the clock cycle of the local 
system until the probability of metastability is zero. For more than one asynchronous 
input, the clock must be stretched until all the synchronizers are sure that the 
metastable states don’t occur. Consequently, as it is said in [7] and [18], these 
solutions are not well suited for high speed designs with IP cores having large clock 
buffer delays. 

Some others suggested modifying the Flip-Flop design to avoid propagation of 
metastable state values ([19]). Although the output of such circuit has well defined 
values (VDD or VSS), and undesirable values are prevented to propagate, this does 
not solve the problem: the precise duration of the metastable state being not 
predictable. The transition of the Flip-Flop output signals is asynchronous compared 
with the clock signal of the next Flip-Flop... 

The metastability in multi-synchronous systems can not be totally suppressed, but 
as it is explained in [21], the synchronization failure probability (typically expressed 
in terms of Mean Time Between Failures or MTBF) can be bounded to an acceptable 
value by a carefully designed synchronizer ([22] and [23]). The simplest and safest 
solution is to use several cascaded Flip-Flops. According to [21], with two cascaded 
Flip-Flops with 200 MHz clock frequency and 20 MHz input data rate, for the 0.18 
μm technology MTBF can be estimated to about 10204 years. For three consecutive 
Flip-Flops in the same condition, MTBF will be 10420 years! 

Increasing synchronization delay is a penalty for obtaining extra safety: When 
synchronization latency is not an issue, the MTBF can be improved by using 
conservative synchronizers. We believe that the synchronizer choice must be a design 
decision depending on the application requirements. The general architecture of our 
converter will support trade-off between latency and robustness. 

3   General Architecture of the Converters 

The design of any synchronous  asynchronous protocol converter must satisfy two 
main requirements: minimizing the probability of metastability, and maximizing the 
throughput (data transfer rate). Fig. 2 illustrates how these two aims can be achieved.  

The Four-Phase, Bundled Data, asynchronous protocol, is a sequence of REQ+, 
ACK+, REQ- and ACK- events, where REQ and ACK are the asynchronous flow 
control signals. Data is valid when REQ is in the positive state. The high level of 
ACK indicates that the request of data communication is accepted.  

In the synchronous FIFO protocol, the producer and the consumer share the same 
clock signal, and the protocol uses two handshake signals: ROK (correspondingly 
WOK) and READ (correspondingly WRITE). The ROK signal (or not empty) is set 
by the producer at each cycle where there is a valid data to be transferred. The READ 
signal is set by the consumer at each cycle where the consumer wants to consume a 
data on the next clock edge. Both the ROK and READ signals are state signals that 
can be generated by Moore FSMs. 



 Two Efficient Synchronous  Asynchronous Converters Well-Suited NoC 195 

 

A
synchronous

S
Storage 
Stage0

S
Storage 
StageN-1

Synchronous

N > K

K Clock Cycles needed for Each Synchronizing 

AS_FIFO 

REQ
ACK
DATA

ROK

Read

Synchronous

Storage 
Stage0

Storage 
StageN-1

A
synchronous

N > K

S

S

DATA

WOK

Write 

DATA Read = 1

ROK

Write = 1

WOK

CK CK

SA_FIFO  

Fig. 2. Synchronizing FIFOs with Maximum Throughput 

We call AS_FIFO, the asynchronous to synchronous converter, and SA_FIFO, the 
synchronous to asynchronous converter. The task of protocol converting is the 
responsibility of the storage stages of the FIFOs. The signals that have a risk of 
metastability (and must use a synchronizer) are the handshake signals transmitted 
from the asynchronous side to the synchronous side.  

As it is said in previous section, the synchronizer design is a trade-off between 
robustness (i.e. low probability of metastability) and latency (measured as a number 
of cycles of the synchronous domain). If the synchronization cost is K clock cycles, 
the FIFO must have at least K+1 stages, if we want a throughput of one data transfer 
per cycle. In such pipelined design, the effect of synchronization latency is different 
in the two FIFO types. In the asynchronous to synchronous converter (AS_FIFO), it is 
visible only when the FIFO is empty. In the synchronous to asynchronous converter 
(SA_FIFO), it is visible when the FIFO is full. The latency between the arrival of data 
to an empty AS_FIFO and its availability on the output (typically named FIFO 
Latency) is about K clock cycles.  For a full SA_FIFO, the latency between the 
consumption of a data and the information of the availability of an empty stage on the 
other side is about K clock cycles. For a data burst these latencies are just the initial 
latencies. 

4   Detailed Architecture 

The Fig. 3a and 4a show the internal architecture of the SA_FIFO and AS_FIFO 
converters, with a depth of 2 storage stages. Clearly, these two architectures can be 
generalized to n-stage FIFOs.  

We present in Fig. 3b and Fig. 4b the FSM of the synchronous side controllers. 
These controllers are Mealy Finite State Machines. The state Wi means that the next 
WRITE event will be done to stage i. Similarly, the state Ri means that data will be 
read in stage i at the next READ event. Consequently, the WOK and ROK signals 
depend on both the FSM state and the asynchronous stage content (signals WOKi or 
ROKi). A synchronous Hazard free command is generated (WRITEi or READi) when 
there is a synchronous request (WRITE or READ signals) and the current 
asynchronous stage is ready to accept. ROKi means that stage i is not empty. WOKi 
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means that stage i is not full. The positive edge of Writei indicates to ith asynchronous 
stage of SA_FIFO that the synchronous data must be written. The positive edge of 
Readi informs the ith asynchronous stage of AS_FIFO that the stage must be freed. 
The positive edge of wasReadi means that the synchronous consumer has read data 
and the stage can change its value.  
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Fig. 3. Synchronous to Asynchronous Converter (SA_FIFO) 
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Fig. 4. Asynchronous to Synchronous Converter (AS_FIFO) 

The asynchronous side of the design includes an asynchronous controller and an 
asynchronous Multiplexer in SA_FIFO. It includes an asynchronous controller and an 
asynchronous Demultiplexer in AS_FIFO. The design of the asynchronous 
Multiplexer and Demultiplexer using four phase bundled data protocol ([13]) are 
respectively shown in Fig. 5a and Fig. 5b. These circuits need to do a handshake with 
their controller module controlling the Select signals (Si). This handshaking brings out 
with the sequence of Si+, Acki+, Si- and Acki- . After Acki- indicating the end of the 
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current four phase sequence, the controller can select another set to multiplexing or 
demultiplexing. 

The asynchronous controller used in AS_FIFO and SA_FIFO is named Domino 
Controller. It is an asynchronous One-Hot counter providing required handshake 
protocol to the asynchronous multiplexer and demultiplexer. As an instance, the block 
diagram of a 3-bit Domino Controller is illustrated in Fig. 5c. Each cell of i has 2 
outputs Si and Ai (i

th bit of the counter) and 4 inputs Acki-1, Acki, Acki+1 and Ai-1. The 
one bit is moved from cell to cell in a ring topology. At the initial state, A2 and S0 are 
1 and the other outputs are 0. The High value of S0 means that the first asynchronous 
event will be performed in stage0.  

The functionality of Domino Controller could be understood by looking the cell 
STG (Signal Transition Graph) demonstrated in Fig. 5d. The synthesized circuit of the 
STG is presented in Fig. 5e. Acki+ means Si+ has done and is seen. So, the one bit 
that is in the previous cell (i-1) can be transferred to current cell. The handshake 
protocol continues by Si- when the one transferring is ended. 
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Fig. 5. Asynchronous Side Components  

As we said before, the pipelined stages in AS_FIFO and SA_FIFO have two main 
functionalities: storing data and converting communication protocol. As it is 
demonstrated in Fig. 6a and Fig. 7a illustrating the schematics of the SA_FIFO and 
AS_FIFO stage circuits, data storage is done by the latches sampling on high value of 
WOKi and of L. The transition to 0 of WOKi means that this stage contains valid data 
and no more writing is permitted. So data sampling must be ended at this time. When 
the value of L on rising edge of wasReadi intending the content of the stage was read, 
is changed to 1 a new data can be written. 



198 A. Sheibanyrad and A. Greiner 

 

CC

--

(a)

--

CC
++

SS00

Writei

Reqi

Acki

WOKiA

LL
Asynchronous DataSynchronous Data

Writei

A -

WOKi -

Reqi +

Acki +

WOKi + x

Reqi -

Acki -

A +

(b) 
 

Fig. 6. Asynchronous Storage Stage of SA_FIFO 

The operation of the SA_FIFO and AS_FIFO storage stages are analyzed as two 
STG in Fig. 6b and Fig. 7b. The dotted lines are the asynchronous side transitions and 
the dashed lines are that of the synchronous side. According to the synchronous 
protocol base, the synchronous side transitions should be considered on the edges. 
Regarding to two STG, on rising edge of Writei, Readi and of wasReadi respectively, 
A, ROKi and C must go to the low position. In the synthesized circuits three D Flip-
Flops which have a constant value of 0 as input data, generate A, ROKi and C. These 
Flip-Flops will asynchronously be set when their S input (Set) signal is 1. 
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Fig. 7.  Asynchronous Storage Stage of AS_FIFO 

The synthesized circuit of the AS_FIFO stage shown in Fig. 7a has a time 
constraint: before rising edge of Readi where ROKi- must be done, the value of A 
should be returned to 0; because, while A (as a set signal of Flip-Flop) has high value, 
ROKi (as an output signal of the Flip-Flop) is hold at 1. The transition of ROKi+ 
causes Readi to rise. Regarding to the AS_FIFO architecture (Fig. 4) the time between 
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ROKi+ and rising edge of Readi (T2) is more than K clock cycles where K is the 
synchronizer latency. In the other side, A- happens after Acki+ occurring 
simultaneous with ROKi+, by propagation delay of two gates (T1). Evidently a two 
gate propagation delay is less than the latency of a robust synchronizer. The latency of 
a two cascaded Flip-Flops is one clock cycle. But really it is true that if a designer 
uses a miraculous synchronizer (!) which has very low latency, this time constraint 
express a bother of functionality for the design. 

5   System Architecture 

As mentioned in the previous sections, the goal of this paper is to define a new design 
to robustly interface an asynchronous network to the synchronous subsystems on a 
chip. In the architecture presented in Fig. 8, SA_FIFO and AS_FIFO are instantiated 
between Network Wrapper and Asynchronous NOC. The Network Wrapper translates 
the local interconnect protocol (such as VCI or OCP) to the network protocol. The 
Network Interface Controller (NIC) is composed of one AS_FIFO, one SA_FIFO and 
one Network Wrapper. In fact, NIC provide local interconnect protocol compliant 
packets at the synchronous side and the asynchronous network compatible packets at 
the asynchronous ports. Required by Multisynchronous GALS approach, each 
subsystem may have its synchronous clock domain dependent neither on the 
frequency nor on the phase. 
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Fig. 8. AS_FIFO and SA_FIFO used in a Network Interface Controller 

6   Implementation 

We developed a generic converter generator, using the Stratus hardware description 
language of the Coriolis platform ([25]). This generator creates both a netlist of 
standard cells and a physical layout. The two parameters are the number of storage 
stages (depth of FIFO) and the number of data bits. In this implementation the syn-
chronizer uses two cascaded Flip-Flops. As a standard cell library, we used the por-
table ALLIANCE CMOS standard cell library ([24]). The physical layout of the 32-bit 
converters with depth of 8, 3 and 2 stages are presented in Fig. 9. The silicon area of 
the 2-stage SA_FIFO is 12.15 × 216 μm2 for a 90 nm fabrication process. 
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Fig. 9. Physical Layouts of Converters 

From the physical layout, we extracted SPICE models of the converters, using 
ALLIANCE CAD Tools ([20]). The target fabrication process is the ST-Micro-
electronics 90 nm LVT transistors in typical conditions. Electrical simulation under 
Eldo proved that the aim of maximum throughput of one event (data transfer) per 
cycle is attained, and these low-area FIFOs have low initial latencies. Due to the 
asynchronous event entrance time, the AS_FIFO has various latencies with a 
difference of about one clock cycle. The simulation results are presented in Table 2. 
In this Table, T is the clock cycle time. 

Table 2. Simulation Results 

Converter Surface Min Latency Max Latency  Max Throughput  

2-Stage SA_FIFO 2624 μm2 177 pS 2.39 GEvents/S 
3-Stage SA_FIFO 3791 μm2 181 pS 2.36 GEvents/S 
8-Stage SA_FIFO 9623 μm2 192 pS 2.22 GEvents/S 
2-Stage AS_FIFO 2679 μm2 271 pS + T 271 pS + 2T 1.50 GEvents/S 
3-Stage AS_FIFO 3870 μm2 275 pS + T 275 pS + 2T 2.61 GEvents/S 
8-Stage AS_FIFO 9823 μm2 290 pS + T 290 pS + 2T 2.56 GEvents/S 

The throughput value is related to the asynchronous handshake protocol. The low 
throughput value of 2-stage AS_FIFO compared with 3-stage and 8-stage AS_FIFOs, 
is because of existence of another constraint if maximum throughput of one word per 
cycle is required: In 2-stage AS_FIFO, Acki+ and Reqi+1+ must be happened in the 
same clock cycle. For 8-stage and 3-stage AS_FIFO, the time between these two 
transitions, respectively can be seven and two clock cycles.  
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Due to the inability of 2-stage AS_FIFO to reach the maximum throughput 
(comparing 1.5 GEvents/Sec with 2.61 of 3-stage AS_FIFO), in order to sustain the 
throughput, one could opt for 3-stage AS_FIFO. Its area (3870 μm2) is not negligible, 
but it should not be forgotten that this component has another advantage: providing a 
storage place with a FIFO behavior. As we know, in order to obtain minimum 
overhead of data communication between two different timing domains, having a 
FIFO in the interface is not eliminable. So, we suppose that using an AS_FIFO or 
SA_FIFO with the storage stages of more than three may also be reasonable! 

7   Conclusion 

Two new converter architectures for interfacing asynchronous NoCs and synchronous 
subsystems in MP-SoCs have been presented. The designs can be used to convert 
asynchronous Four-Phase Bundled-Data protocol to synchronous FIFO protocol. The 
synchronizer used in the architectures can be arbitrarily chosen by the system 
designer, supporting various trade-off between latency and robustness. The 
Converters (FIFOs) can achieve the maximal throughput of one word per cycle, even 
if the selected synchronizer has a large latency. The designs have been physically 
implemented with the portable ALLIANCE CMOS standard cell library. The 
throughputs and latencies have been proved by SPICE simulation from the extracted 
layout. 
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