

J. Vounckx, N. Azemard, and P. Maurine (Eds.): PATMOS 2006, LNCS 4148, pp. 191 – 202, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Two Efficient Synchronous Asynchronous Converters
Well-Suited for Network on Chip in GALS Architectures

A. Sheibanyrad and A. Greiner

The University of Pierre and Marie Curie
4, Place Jussieu, 75252 CEDEX 05, Paris, France

abbas.sheibanyrad@lip6.fr, alain.greiner@lip6.fr

Abstract. This paper presents two high-throughput, low-latency converters that
can be used to convert synchronous communication protocol to asynchronous
one and vice versa. These two hardware components have been designed to be
used in Multi-Processor System on Chip respecting the GALS (Globally
Asynchronous Locally Synchronous) paradigm and communicating by a fully
asynchronous Network on Chip (NoC). The proposed architecture is rather
generic, and allows the system designer to make various trade-off between
latency and robustness, depending on the selected synchronizer. These
converters have been physically implemented with the portable ALLIANCE
CMOS standard cell library and the architecture has been evaluated by SPICE
simulation for a 90nm CMOS fabrication process.

1 Introduction

NoCs (Network on Chip) are a new design paradigm for scalable, high throughput
communication infrastructure, in Multi-Processor System on Chip (MP-SoC) with
billions of transistors. The idea of NoC is dividing a chip into several independent
subsystems (or clusters) connected together by a global communication architecture
which spreads on the entire chip.

Because of physical issues in nanometer fabrication processes, it is not anymore
possible to distribute a synchronous clock signal on the entire wide chip area. The
Globally Asynchronous Locally Synchronous (GALS) addresses this difficulty. In
this approach, each subsystem is a separated synchronous domain running with its
own local clock signal.

Table 1. Timing Dependency Methods

Type Δ Frequency Δ Phase
Synchronous 0 0

Pseudochronous 0 Constant
Mesochronous 0 Undefined
Plesiochronous ε ε
Heterochronous Rational Undefined

Multi-synchronous Undefined Undefined
Asynchronous - -

192 A. Sheibanyrad and A. Greiner

Several solutions have been proposed to resolve the problems of clock boundaries
between different clusters, and the risk of synchronization failures (metastability). The
proposed solutions depend on the constraints that must be respected by the clock
signals in different clusters: The mesochronous, plesiochronous, pseudochronous (or
quasi synchronous) and heterochronous approaches correspond to various hypothesis
regarding the phases and frequencies of clocks signals. Table 1 summarizes these
conditions.

The Globally Pseudochronous Locally Synchronous scheme (GPLS) is proposed in
[1]. In [2], [3] and [4] the authors have proposed plesiochronous solutions which rely
on exact or nearly exact frequency and phase matching of the clocks. Mesochronous
solutions are described in [4], [5] and [6]: it is argued that maintaining the same
frequency in several clock domains is not too difficult. The main problem is the skew
between clock phases. In heterochronous solutions ([4], [7], [8] and [9]) all clock
signals can have different frequencies, but with fixed and integer ratios.

In MP-SoC design, a fundamental challenge is the capability of operating under
totally independent timing assumptions for each subsystem. Such a multi-synchronous
system contains several synchronous subsystems clocked with completely independent
clocks.

CK0
CK1

CK4
CK5

CK3

CK6 CK7 CK8

CK2
(b) (a)

CK0
CK1

CK5
CK3

CK6 CK8

CK2

Asynchronous Network

CK4

CK7

Fig. 1. Multi-Synchronous System in 2D Mesh Topology

In a two dimensional mesh respecting the multi-synchronous approach (Fig. 1a) we
must solve the problem of communication between two neighbors clusters clocked
with two fully asynchronous clocks. In [4], [5], [10] and [11] several authors have
proposed different types of bi-synchronous FIFOs which can be used as a robust
interface between neighbors. But this type of architecture implies one possibility of
synchronization failure (metastability) at each clock boundary between neighbors.

We illustrate in Fig. 1b an alternative solution: The global interconnect has a fully
asynchronous architecture. As an example we can denote the MANGO architecture
presented in [26] which was one of the first asynchronous NOC. This type of NoC
respects the GALS approach by providing synchronous asynchronous interfaces to
each local subsystem. In this case, the synchronization failure can only happen in the
two synchronous asynchronous converters located in the destination and source
clusters. Providing a robust solution for those hardware interfaces is the main purpose
of this paper. The MANGO’s designers have proposed in [27] an OCP Compliant
Network Adapter (NA) interfacing local systems to NOC. The synchronization in NA
has a minimized overhead.

 Two Efficient Synchronous Asynchronous Converters Well-Suited NoC 193

The design of various architectures that can be used to interface an asynchronous
domain with a synchronous one, are presented in [10], [14], [15], [16] and [17]. We
present in this paper two converters architectures which can be used to convert a Four
Phase Bundled Data asynchronous protocol to a synchronous FIFO protocol and vice
versa. Using FIFOs to interface mixed timing systems couple two fundamental issues
which need to be considered in designing such interfaces: flow control (high level
issue) and synchronization (low level issue). This coupling reduces the need of
hardware synchronizer to the handshake signals that are used for the flow control.

Some of the published solutions for interfacing asynchronous and synchronous
domains are strongly dependent on synchronizer choice. In [15] and [16] the designs
of various types of synchronizers using pausible clocking methods ([12]), are pro-
posed and in [17] the authors have suggested to generate a stoppable clock for local
systems.

In [14] a pipelined synchronizing FIFO is proposed. This FIFO requires that the
producer produces data at a constant rate. The latency of this design is proportional to
the number of FIFO stages and requires the use of a specific synchronizer.

In [10] various FIFOs are used to interface four possible combinations of
independent mixed timing environments. These four FIFOs have the same basic archi-
tecture. The small differences in FIFO designs are simple adaptation to the consumer
and the producer interface type. There is at least two weak points in this proposal: the
architecture is dependent on a specific synchronizer (the cascaded Flip-Flops), and the
use of a more conservative synchronizer (with latency larger than one clock cycle),
can decrease the throughput to a value less than one data transfer per cycle. Further-
more, the authors of [10] didn’t said anything about silicon area, but we believe that
the architecture proposed in the present paper has a smaller foot-print.

We discuss the synchronizer issue in section 2. We present the general architecture
of the synchronous asynchronous converters in section 3. The detailed schematic is
described in section 4. The system architecture is briefly illustrated in section 5. The
hardware implementation is presented in section 6. The main conclusions are
summarized in the last section.

2 Synchronizer: The Latency / Robustness Trade-Off

Transferring data between different timing domains requires safe synchronization. The
main goal of the synchronization is the prevention of metastability (synchronization
failure). The metastability can happens, for example, when an asynchronous signal A,
connected to the input of a Flip-Flop controlled by a clock signal CK, is sampled
when it has an intermediate value between VDD and VSS. It means when A doesn’t
respect Setup and Hold time to the sampling edge of CK; the Flip-Flop can enter a
metastable state. As the duration of this metastable state is not predictable, the Flip-
Flop output will have itself an asynchronous behavior and metastability can propagate
in the synchronous part of the circuit, resulting generally in loss of functionality.

Some authors recommended stretching the clock signal (modifying the cycle time).
In these methods, instead of synchronizing asynchronous inputs to the clock, the clock

194 A. Sheibanyrad and A. Greiner

is synchronized to the asynchronous inputs. The synchronizer must be able to detect
that it will be in the metastable situation and it stretches the clock cycle of the local
system until the probability of metastability is zero. For more than one asynchronous
input, the clock must be stretched until all the synchronizers are sure that the
metastable states don’t occur. Consequently, as it is said in [7] and [18], these
solutions are not well suited for high speed designs with IP cores having large clock
buffer delays.

Some others suggested modifying the Flip-Flop design to avoid propagation of
metastable state values ([19]). Although the output of such circuit has well defined
values (VDD or VSS), and undesirable values are prevented to propagate, this does
not solve the problem: the precise duration of the metastable state being not
predictable. The transition of the Flip-Flop output signals is asynchronous compared
with the clock signal of the next Flip-Flop...

The metastability in multi-synchronous systems can not be totally suppressed, but
as it is explained in [21], the synchronization failure probability (typically expressed
in terms of Mean Time Between Failures or MTBF) can be bounded to an acceptable
value by a carefully designed synchronizer ([22] and [23]). The simplest and safest
solution is to use several cascaded Flip-Flops. According to [21], with two cascaded
Flip-Flops with 200 MHz clock frequency and 20 MHz input data rate, for the 0.18
μm technology MTBF can be estimated to about 10204 years. For three consecutive
Flip-Flops in the same condition, MTBF will be 10420 years!

Increasing synchronization delay is a penalty for obtaining extra safety: When
synchronization latency is not an issue, the MTBF can be improved by using
conservative synchronizers. We believe that the synchronizer choice must be a design
decision depending on the application requirements. The general architecture of our
converter will support trade-off between latency and robustness.

3 General Architecture of the Converters

The design of any synchronous asynchronous protocol converter must satisfy two
main requirements: minimizing the probability of metastability, and maximizing the
throughput (data transfer rate). Fig. 2 illustrates how these two aims can be achieved.

The Four-Phase, Bundled Data, asynchronous protocol, is a sequence of REQ+,
ACK+, REQ- and ACK- events, where REQ and ACK are the asynchronous flow
control signals. Data is valid when REQ is in the positive state. The high level of
ACK indicates that the request of data communication is accepted.

In the synchronous FIFO protocol, the producer and the consumer share the same
clock signal, and the protocol uses two handshake signals: ROK (correspondingly
WOK) and READ (correspondingly WRITE). The ROK signal (or not empty) is set
by the producer at each cycle where there is a valid data to be transferred. The READ
signal is set by the consumer at each cycle where the consumer wants to consume a
data on the next clock edge. Both the ROK and READ signals are state signals that
can be generated by Moore FSMs.

 Two Efficient Synchronous Asynchronous Converters Well-Suited NoC 195

A
synchronous

S
Storage
Stage0

S
Storage
StageN-1

Synchronous

N > K

K Clock Cycles needed for Each Synchronizing

AS_FIFO

REQ
ACK
DATA

ROK

Read

Synchronous

Storage
Stage0

Storage
StageN-1

A
synchronous

N > K

S

S

DATA

WOK

Write

DATA Read = 1

ROK

Write = 1

WOK

CK CK

SA_FIFO

Fig. 2. Synchronizing FIFOs with Maximum Throughput

We call AS_FIFO, the asynchronous to synchronous converter, and SA_FIFO, the
synchronous to asynchronous converter. The task of protocol converting is the
responsibility of the storage stages of the FIFOs. The signals that have a risk of
metastability (and must use a synchronizer) are the handshake signals transmitted
from the asynchronous side to the synchronous side.

As it is said in previous section, the synchronizer design is a trade-off between
robustness (i.e. low probability of metastability) and latency (measured as a number
of cycles of the synchronous domain). If the synchronization cost is K clock cycles,
the FIFO must have at least K+1 stages, if we want a throughput of one data transfer
per cycle. In such pipelined design, the effect of synchronization latency is different
in the two FIFO types. In the asynchronous to synchronous converter (AS_FIFO), it is
visible only when the FIFO is empty. In the synchronous to asynchronous converter
(SA_FIFO), it is visible when the FIFO is full. The latency between the arrival of data
to an empty AS_FIFO and its availability on the output (typically named FIFO
Latency) is about K clock cycles. For a full SA_FIFO, the latency between the
consumption of a data and the information of the availability of an empty stage on the
other side is about K clock cycles. For a data burst these latencies are just the initial
latencies.

4 Detailed Architecture

The Fig. 3a and 4a show the internal architecture of the SA_FIFO and AS_FIFO
converters, with a depth of 2 storage stages. Clearly, these two architectures can be
generalized to n-stage FIFOs.

We present in Fig. 3b and Fig. 4b the FSM of the synchronous side controllers.
These controllers are Mealy Finite State Machines. The state Wi means that the next
WRITE event will be done to stage i. Similarly, the state Ri means that data will be
read in stage i at the next READ event. Consequently, the WOK and ROK signals
depend on both the FSM state and the asynchronous stage content (signals WOKi or
ROKi). A synchronous Hazard free command is generated (WRITEi or READi) when
there is a synchronous request (WRITE or READ signals) and the current
asynchronous stage is ready to accept. ROKi means that stage i is not empty. WOKi

196 A. Sheibanyrad and A. Greiner

means that stage i is not full. The positive edge of Writei indicates to ith asynchronous
stage of SA_FIFO that the synchronous data must be written. The positive edge of
Readi informs the ith asynchronous stage of AS_FIFO that the stage must be freed.
The positive edge of wasReadi means that the synchronous consumer has read data
and the stage can change its value.

W0

Write . WOK0

Write . WOK1

 W1

Asynchronous Stage1

Asynchronous Stage0

Data
Data

Clock

Write
WOK Synchronous FSM

W
rite

0

W
rite

1

W
O

K
1

W
O

K
0

Req
Ack

Asynchronous
Domino

Controller

Synchronizer

Synchronizer

WOK = WOK0 . W0 + WOK1 . W1

Write0 = WOK0 . W0 . Write
Write1 = WOK1 . W1 . Write

(b) (a)

Fig. 3. Synchronous to Asynchronous Converter (SA_FIFO)

R0

Read . ROK0

Read . ROK1

 R1

ROK = ROK0 . R0 + ROK1 . R1

Read0 = ROK0 . R0 . Read
Read1 = ROK1 . R1 . Read

wasRead0 = R1

wasRead1 = R0

Asynchronous Stage1

Asynchronous Stage0

Data
Data

Clock

Read
ROK Synchronous FSM

R
ead

0

R
ead

1

R
O

K
1

R
O

K
0

Req
Ack

Asynchronous
Domino

Controller

Synchronizer

Synchronizer

(b) (a)

w
asR

ead
0

w
asR

ead
1

Fig. 4. Asynchronous to Synchronous Converter (AS_FIFO)

The asynchronous side of the design includes an asynchronous controller and an
asynchronous Multiplexer in SA_FIFO. It includes an asynchronous controller and an
asynchronous Demultiplexer in AS_FIFO. The design of the asynchronous
Multiplexer and Demultiplexer using four phase bundled data protocol ([13]) are
respectively shown in Fig. 5a and Fig. 5b. These circuits need to do a handshake with
their controller module controlling the Select signals (Si). This handshaking brings out
with the sequence of Si+, Acki+, Si- and Acki- . After Acki- indicating the end of the

 Two Efficient Synchronous Asynchronous Converters Well-Suited NoC 197

current four phase sequence, the controller can select another set to multiplexing or
demultiplexing.

The asynchronous controller used in AS_FIFO and SA_FIFO is named Domino
Controller. It is an asynchronous One-Hot counter providing required handshake
protocol to the asynchronous multiplexer and demultiplexer. As an instance, the block
diagram of a 3-bit Domino Controller is illustrated in Fig. 5c. Each cell of i has 2
outputs Si and Ai (i

th bit of the counter) and 4 inputs Acki-1, Acki, Acki+1 and Ai-1. The
one bit is moved from cell to cell in a ring topology. At the initial state, A2 and S0 are
1 and the other outputs are 0. The High value of S0 means that the first asynchronous
event will be performed in stage0.

The functionality of Domino Controller could be understood by looking the cell
STG (Signal Transition Graph) demonstrated in Fig. 5d. The synthesized circuit of the
STG is presented in Fig. 5e. Acki+ means Si+ has done and is seen. So, the one bit
that is in the previous cell (i-1) can be transferred to current cell. The handshake
protocol continues by Si- when the one transferring is ended.

Ai +

Acki +

Si -

Acki -

Ai-1 -

Si +

CC

CC

Si

Acki

Reqi

Datai Data

Req

Ack

(a)

(b) (c)

(d)

(e)

CC

Data

Ack

Req

Acki

Reqi

Datai

Si

SiCC

++

--
RR

SS

Ai
Acki

Ai-1

Acki-1

Acki+1

Ack1 Ack2Ack0
S1 S2S0

A1 A2A0

Fig. 5. Asynchronous Side Components

As we said before, the pipelined stages in AS_FIFO and SA_FIFO have two main
functionalities: storing data and converting communication protocol. As it is
demonstrated in Fig. 6a and Fig. 7a illustrating the schematics of the SA_FIFO and
AS_FIFO stage circuits, data storage is done by the latches sampling on high value of
WOKi and of L. The transition to 0 of WOKi means that this stage contains valid data
and no more writing is permitted. So data sampling must be ended at this time. When
the value of L on rising edge of wasReadi intending the content of the stage was read,
is changed to 1 a new data can be written.

198 A. Sheibanyrad and A. Greiner

CC

--

(a)

--

CC
++

SS00

Writei

Reqi

Acki

WOKiA

LL
Asynchronous DataSynchronous Data

Writei

A -

WOKi -

Reqi +

Acki +

WOKi + x

Reqi -

Acki -

A +

(b)

Fig. 6. Asynchronous Storage Stage of SA_FIFO

The operation of the SA_FIFO and AS_FIFO storage stages are analyzed as two
STG in Fig. 6b and Fig. 7b. The dotted lines are the asynchronous side transitions and
the dashed lines are that of the synchronous side. According to the synchronous
protocol base, the synchronous side transitions should be considered on the edges.
Regarding to two STG, on rising edge of Writei, Readi and of wasReadi respectively,
A, ROKi and C must go to the low position. In the synthesized circuits three D Flip-
Flops which have a constant value of 0 as input data, generate A, ROKi and C. These
Flip-Flops will asynchronously be set when their S input (Set) signal is 1.

CC

SS00

LL

Readi

Reqi

Acki

ROKi

A

Asynchronous Data Synchronous Data

B --
CC

++ --

CC
++

00SS

wasReadi

LC
--

CC
++ ROKi + x

A + x

B +

A - X

Readi ROKi - x

Reqi -

Acki -

ACKi + x

B - X

T1
T2

T2 > T1

Reqi +

wasReadi

C -
L +

C + x

L -

(a) (b)

Fig. 7. Asynchronous Storage Stage of AS_FIFO

The synthesized circuit of the AS_FIFO stage shown in Fig. 7a has a time
constraint: before rising edge of Readi where ROKi- must be done, the value of A
should be returned to 0; because, while A (as a set signal of Flip-Flop) has high value,
ROKi (as an output signal of the Flip-Flop) is hold at 1. The transition of ROKi+
causes Readi to rise. Regarding to the AS_FIFO architecture (Fig. 4) the time between

 Two Efficient Synchronous Asynchronous Converters Well-Suited NoC 199

ROKi+ and rising edge of Readi (T2) is more than K clock cycles where K is the
synchronizer latency. In the other side, A- happens after Acki+ occurring
simultaneous with ROKi+, by propagation delay of two gates (T1). Evidently a two
gate propagation delay is less than the latency of a robust synchronizer. The latency of
a two cascaded Flip-Flops is one clock cycle. But really it is true that if a designer
uses a miraculous synchronizer (!) which has very low latency, this time constraint
express a bother of functionality for the design.

5 System Architecture

As mentioned in the previous sections, the goal of this paper is to define a new design
to robustly interface an asynchronous network to the synchronous subsystems on a
chip. In the architecture presented in Fig. 8, SA_FIFO and AS_FIFO are instantiated
between Network Wrapper and Asynchronous NOC. The Network Wrapper translates
the local interconnect protocol (such as VCI or OCP) to the network protocol. The
Network Interface Controller (NIC) is composed of one AS_FIFO, one SA_FIFO and
one Network Wrapper. In fact, NIC provide local interconnect protocol compliant
packets at the synchronous side and the asynchronous network compatible packets at
the asynchronous ports. Required by Multisynchronous GALS approach, each
subsystem may have its synchronous clock domain dependent neither on the
frequency nor on the phase.

Asynchronous
NOC

N
etw

ork W
rapper

N
etw

ork W
rapperSA_FIFO AS_FIFO

Local Interconnect

Local Interconnect

SA_FIFO AS_FIFO IP0
IP1

IP2

IP0
IP1

IP2

CK´ CK´

Network Interface Controller

Fig. 8. AS_FIFO and SA_FIFO used in a Network Interface Controller

6 Implementation

We developed a generic converter generator, using the Stratus hardware description
language of the Coriolis platform ([25]). This generator creates both a netlist of
standard cells and a physical layout. The two parameters are the number of storage
stages (depth of FIFO) and the number of data bits. In this implementation the syn-
chronizer uses two cascaded Flip-Flops. As a standard cell library, we used the por-
table ALLIANCE CMOS standard cell library ([24]). The physical layout of the 32-bit
converters with depth of 8, 3 and 2 stages are presented in Fig. 9. The silicon area of
the 2-stage SA_FIFO is 12.15 × 216 μm2 for a 90 nm fabrication process.

200 A. Sheibanyrad and A. Greiner

2-Stage
SA_FIFO

3-Stage
SA_FIFO

8-Stage
SA_FIFO

2-Stage
AS_FIFO

3-Stage
AS_FIFO

8-Stage
AS_FIFO

Fig. 9. Physical Layouts of Converters

From the physical layout, we extracted SPICE models of the converters, using
ALLIANCE CAD Tools ([20]). The target fabrication process is the ST-Micro-
electronics 90 nm LVT transistors in typical conditions. Electrical simulation under
Eldo proved that the aim of maximum throughput of one event (data transfer) per
cycle is attained, and these low-area FIFOs have low initial latencies. Due to the
asynchronous event entrance time, the AS_FIFO has various latencies with a
difference of about one clock cycle. The simulation results are presented in Table 2.
In this Table, T is the clock cycle time.

Table 2. Simulation Results

Converter Surface Min Latency Max Latency Max Throughput

2-Stage SA_FIFO 2624 μm2 177 pS 2.39 GEvents/S
3-Stage SA_FIFO 3791 μm2 181 pS 2.36 GEvents/S
8-Stage SA_FIFO 9623 μm2 192 pS 2.22 GEvents/S
2-Stage AS_FIFO 2679 μm2 271 pS + T 271 pS + 2T 1.50 GEvents/S
3-Stage AS_FIFO 3870 μm2 275 pS + T 275 pS + 2T 2.61 GEvents/S
8-Stage AS_FIFO 9823 μm2 290 pS + T 290 pS + 2T 2.56 GEvents/S

The throughput value is related to the asynchronous handshake protocol. The low
throughput value of 2-stage AS_FIFO compared with 3-stage and 8-stage AS_FIFOs,
is because of existence of another constraint if maximum throughput of one word per
cycle is required: In 2-stage AS_FIFO, Acki+ and Reqi+1+ must be happened in the
same clock cycle. For 8-stage and 3-stage AS_FIFO, the time between these two
transitions, respectively can be seven and two clock cycles.

 Two Efficient Synchronous Asynchronous Converters Well-Suited NoC 201

Due to the inability of 2-stage AS_FIFO to reach the maximum throughput
(comparing 1.5 GEvents/Sec with 2.61 of 3-stage AS_FIFO), in order to sustain the
throughput, one could opt for 3-stage AS_FIFO. Its area (3870 μm2) is not negligible,
but it should not be forgotten that this component has another advantage: providing a
storage place with a FIFO behavior. As we know, in order to obtain minimum
overhead of data communication between two different timing domains, having a
FIFO in the interface is not eliminable. So, we suppose that using an AS_FIFO or
SA_FIFO with the storage stages of more than three may also be reasonable!

7 Conclusion

Two new converter architectures for interfacing asynchronous NoCs and synchronous
subsystems in MP-SoCs have been presented. The designs can be used to convert
asynchronous Four-Phase Bundled-Data protocol to synchronous FIFO protocol. The
synchronizer used in the architectures can be arbitrarily chosen by the system
designer, supporting various trade-off between latency and robustness. The
Converters (FIFOs) can achieve the maximal throughput of one word per cycle, even
if the selected synchronizer has a large latency. The designs have been physically
implemented with the portable ALLIANCE CMOS standard cell library. The
throughputs and latencies have been proved by SPICE simulation from the extracted
layout.

References

1. Nilsson E., Öberg J., “Reducing power and latency in 2-D mesh NoCs using globally
pseudochronous locally synchronous clocking,” 2nd IEEE/ACM/IFIP international
Conference on Hardware/Software Codesign and System Synthesis (Stockholm, Sweden,
September 08 - 10, 2004)

2. L.R. Dennison, W.J. Dally, D. Xanthopoulos, “Low-latency plesiochronous data
retiming,” arvlsi, p. 304, 16th Conference on Advanced Research in VLSI (ARVLSI'95),
1995

3. W.K. Stewart, S.A. Ward, “A Solution to a Special Case of the Synchronization Problem,”
IEEE Transactions on Computers, vol. 37, no. 1, pp. 123-125, Jan., 1988

4. Ajanta Chakraborty, Mark R. Greenstreet, “Efficient Self-Timed Interfaces for Crossing
Clock Domains,” async, p. 78, 9th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC'03), 2003

5. Yaron Semiat, Ran Ginosar, “Timing Measurements of Synchronization Circuits” async,
p. 68, 9th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC'03), 2003

6. Ran Ginosar, Rakefet Kol, “adaptive Synchronization,” iccd, p. 188, IEEE International
Conference on Computer Design (ICCD'98), 1998

7. Joycee Mekie, Supratik Chakraborty, D.K. Sharma, Girish Venkataramani, P. S.
Thiagarajan, “Interface Design for Rationally Clocked GALS Systems,” async, pp. 160-
171, 12th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC'06), 2006

202 A. Sheibanyrad and A. Greiner

8. U. Frank, R. Ginosar, “A Predictive Synchronizer for Periodic Clock Domains,” PATMOS
2004

9. L.F.G. Sarmenta, G.A. Pratt, S.A. Ward, “Rational clocking [digital systems design],”
iccd, p. 271, IEEE International Conference on Computer Design (ICCD'95), 1995

10. S. M. Nowick, T. Chelcea, “Robust Interfaces for Mixed-Timing Systems with Application
to Latency-Insensitive Protocols,” dac, pp. 21-26, 38th Conference on Design Automation
(DAC'01), 2001

11. J. Jex, C. Dike, K. Self, “Fully asynchronous interface with programmable metastability
settling time synchronizer,” US Patent 5 598 113, 1997

12. Kenneth Y. Yun, Ryan P. Donohue, “Pausible Clocking: A First Step Toward
Heterogeneous Systems,” iccd, p. 118, IEEE International Conference on Computer
Design (ICCD'96), 1996

13. Jens Sparsoe, Steve Furber, “Principles of Asynchronous Circuit Design – A Systems
Perspective,” Kluwer Academic Publishers, 2001

14. Jakov N. Seizovic., “Pipeline synchronization,” International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 87--96, November 1994

15. Simon Moore, George Taylor, Peter Robinson, Robert Mullins, “Point to Point GALS
Interconnect,” async, p.69, 8th International Symposium on Asynchronous Circuits and
Systems (ASYNC'02), 2002

16. David S. Bormann, Peter Y. K. Cheung, “Asynchronous Wrapper for Heterogeneous
Systems,” iccd, p. 307, IEEE International Conference on Computer Design (ICCD'97),
1997

17. A. E. Sjogren, C. J. Myers, “Interfacing Synchronous and Asynchronous Modules Within a
High-Speed Pipeline,” arvlsi, p.47, 17th Conference on Advanced Research in VLSI
(ARVLSI '97), 1997

18. Rostislav (Reuven) Dobkin, Ran Ginosar, Christos P. Sotiriou, “Data Synchronization
Issues in GALS SoCs,” async, pp. 170-180, 10th IEEE International Symposium on
Asynchronous Circuits and Systems (ASYNC'04), 2004

19. S. Ghahremani, “Metastable Protected Latch,” US Patent 6 072346, 2000
20. Greiner A., F. Pêcheux, ”ALLIANCE. A Complete Set of CAD Tools for Teaching VLSI

Design,” 3rd Eurochip Workshop on VLSI Design Training, pp. 230-37, Grenoble, France,
1992

21. Ran Ginosar, “Fourteen Ways to Fool Your Synchronizer,” async, p. 89, 9th IEEE
International Symposium on Asynchronous Circuits and Systems (ASYNC'03), 2003

22. C. Dike, e. Burton, “Miller and Noise Effects in A synchronizing flip-flop,” IEEE J. Solid-
state circuits, 34(6), pp. 849-855, 1999

23. D.J. Kinniment, A. Bystrov, A.V. Yakovlev, “Synchronization Circuit Performance,“
IEEE Journal of Solid-State Circuits, 37(2), p. 202-209, 2002

24. http://www-asim.lip6.fr/recherche/alliance/
25. http://www-asim.lip6.fr/recherche/coriolis/
26. Tobias Bjerregaard, Jens Sparsø, “A Router Architecture for Connection-Oriented Service

Guarantees in the MANGO Clockless Network-on-Chip,” Proceedings of the Design,
Automation and Test in Europe Conference, IEEE, March 2005

27. Tobias Bjerregaard, Shankar Mahadevan, Rasmus Olsen, Jens Sparsø, “An OCP
Compliant Network Adapter for GALS-based SoC Design Using the MANGO Network-on-
Chip,” Proceedings of the International Symposium on System-on-Chip, IEEE, November
2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

