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Abstract— We present an extension of Duato’s necessary and
sufficient condition a routing function must satisfy in order to
be deadlock-free, to support environment constraints inducing
extra-dependencies between messages. We also present an original
algorithm to automatically check the deadlock-freeness of a
network with a given routing function. A prototype tool has
been developed and automatic deadlock checking of large scale
networks with various routing functions have been successfully
achieved.

I. INTRODUCTION

Networks on chip (NoC) are a critical part of System on
chip (SoC). Indeed, the growing size of SoC including many
components, requires the use of distributed network [1]. The
interconnect introduces latency in communication between
components. So wormhole routing is often used since it
significantly reduces the latency of the network and avoids
using large storage buffers in the routers. We can find in [2]
a review of wormhole routing techniques.

Deadlock is an important problem for a network on chip
design. In practice, network designers are used to duplicate
hardware to avoid resources sharing that may induce dead-
locks. The cost of this simple solution can be prohibitive but
alternative solutions (requiring less hardware) induce question-
ings about deadlocks, that have to be solved.

A lot of work has been done to determine if a network
is deadlock free: during the last decade, different approaches
have been investigated to analyze deadlocks. Those based on
dependency graphs analysis are the most commonly used.

Dally [3] gives the necessary and sufficient condition for a
deterministic routing algorithm to be deadlock-free. This con-
dition states that a deterministic routing function is deadlock-
free iff there is no cycle in its channel dependency graph. He
also shows how we can construct a deadlock free-routing func-
tion for an arbitrary network by introducing virtual channels.

Duato [4] provides a necessary and sufficient condition for
an adaptive routing network to be deadlock-free. The adaptive
function depends on the current node and on the destination.
This condition allows the existence of cyclic dependencies
between channels, represented in the channel dependency
graph, but a routing subfunction must exist and it must have no
cycle in its channel dependency graph (a routing subfunction
is a restriction of the routing function). This permits a design
with minimum restrictions and as few virtual channels per
physical channel as possible. This is an important point, since

virtual channels are expensive in hardware and increase node
delay [5].

Fraigniaud [6] proposed a general theory for the study of
routing in wormhole-routed networks. This theory applies to a
wide class of routing functions and includes most of the defini-
tions of routing functions: vertex-dependent, input-dependent,
source-dependent, history-dependent, path-dependent, multi-
dependent, library-dependent, compact routing.

Schwiebert and Jayasimha [7] introduce a new necessary
and sufficient condition for deadlock-free wormhole routing
considering adaptive functions depending on the current input
channel and on the destination. They introduce the chan-
nel waiting graph. In [8], Schwiebert and Jayasimha have
extended their theory to support a larger class of routing
functions.

All these theories assume that a message arriving at
its destination is eventually consumed. As example, in the
SPIN/VCI [9] network this condition is not satisfied: some
deadlocks may occur due to the dependencies between dif-
ferent kinds of messages. VCI protocol defines two types of
messages: request and responses. Each request message must
be acknowledged by a response message of (at least) the same
size. The destination node of a request message is also the
injection node of the response message. As internal buffer of
each node is bounded, the destination node may evacuate a
new cell of the request on its delivery channel only if it can
consume at the same time a cell of the response message on
its injection channel.

Thus, this introduces a dependency between delivery chan-
nel and injection channel that is not considered in the works
of [3], [4], [6], [7], [8]. In this paper we propose an adaptation
of Duato’s theory to take into account the dependencies
introduced by the environment of the network.

In the previous example, we distinguish two kinds of
message: request and response messages. We will say that
there are two types of message. As the progression of a
message of type request depends on the progression of a
message of type response, we will say that a message of type
response has a higher priority than a message of type request.
Then, to prove that such a network, transmitting these types
of messages, is deadlock free, we have to prove that messages
of type response can always be delivered, regardless which
messages of type request are in the network. Then, we have
to deal with messages of type request. If we can show that



messages of type request can also be delivered for any valid
configuration, we have shown that the network is deadlock-
free. That is, we introduce the notion of type of messages
to represent the dependencies due to the environment and
those dependencies induce an order on messages types. If
messages can be evacuated following the message type order,
the network is deadlock free.

All techniques for proving deadlock-freeness are based on
search and elimination of cycles in the extended dependency
graph and require exponential time in worst case [7], [10],
[4], [11], [12]. Here we will present a new approach to check
if a network is deadlock-free based on Strongly Connected
Component (SCC) analysis of the extended dependency graph.
We will also propose a methodology to suppress those strongly
connected components, preserving the connexity of the rout-
ing function. This technique avoids to check for connexity.
The condition to reduce a strongly connected component is
sufficient but not necessary. Hence our methodology is con-
servative but may not reduce strongly connected components
that do not effectively involve deadlocks. In practice, all the
deadlocks detected by our tool were real deadlocks.

The remainder of the paper is organized as follows. Sec-
tion II presents an extension of Duato’s necessary and suf-
ficient condition to represent the dependencies between in-
jection and delivery channels due to the environment. Then
it presents a sufficient condition to eliminate a cycle that is
not involved in a deadlock. Section III presents an original
algorithm based on this condition to determine automatically if
a network is deadlock-free. Section IV presents the application
of our tool on a set of real networks on chip with different
routing strategies to detect potential deadlock, and discusses
the results. Then we conclude and sketch future directions of
work.

II. THEORETICAL ASPECT

A. Global hypothesis

The interconnect is a collection of routers connected by
channels. Each router can send messages, transmit messages
from one of its input channel to one of its output channel
according to the routing function, or consume a message if
this latest has reached its destination. We make no distinction
between “packet” (in the VCI terminology) and “message”
(current terminology in deadlock-free network studies). In this
document, we use the term of “message”. The unbreakable
transfer unit is called flit.

The following hypothesis are mainly those used in [4]. Some
have been modified or added to take into account the type of
messages (hypothesis 1, 2, 6).

1) The messages set is split into disjoint sets of typed
messages ordered by decreasing priority. Let t and t′

two types of messages, if t < t′, we says that t has a
higher priority than t′.

2) When a message arrives at its destination, it can be
consumed under conditions. Only message of highest
priority type has to be consumed without any condition.

3) A node can generate a message of any length destined
for any other node on the network.

4) Wormhole routing is used. So when a channel accepts
a message, it must accept the remaining of the message
before it accepts any other message. A message can
occupy several channels at the same time.

5) A channel cannot contain flits belonging to different
messages at the same time. Thus, a blocked message
has always its head on the top of a channel.

6) The path followed by a message depends of its destina-
tion, its type and of the state of output channels of the
current node. At each node, an adaptive routing function
gives a set of output channels for a given message
depending of its type, its destination and the current
node. A selecting function selects a free output channel
within those given by the routing function. If all output
channels are busy, the message waits until an output
channel becomes free.

7) All messages arriving at a node are processed in parallel.
8) When several messages are waiting for a free output

channel, they are proceed in an order that prevents
starvation.

B. Definitions

This section defines precisely the network topology and
routing function. The definitions are mostly taken from [4]
and are here since we need them to present our work. Some
have been adapted, and others were added, to take into account
the message type.

Definition 1: An interconnect network I is a strongly con-
nected directed multigraph, I = G(N, C). The nodes of the
multigraph N represent the routers of the network. The edges
of the multigraph C represent the channels of the network.
The node source (resp. destination) of a channel c is named
s(c) (resp. d(c)).

Definition 2: F = {free, busy} is the set of valid states of
a channel.

Definition 3: T is the set of types of message that can transit
on the network. They are ordered such as:
∀ t1, t2 ∈ T, t1 < t2 if the progression of a message of t2

depends on the progression of a message of type t1. < is a
partial order.

In other words, a message of type t2 can progress only if a
message of type t1 can progress.

Definition 4: A message is represented as a pair in N × T
defining its destination and its type.

Definition 5: label(c) is a set of pairs in N × T , each
of whom represents a message that can be sent through the
channel c.

Definition 6: An adaptive routing function R : N × N ×
T → P(C), where P(C) is the power set of C, supplies a set
of channels to send a message of type t from the current node



nc to the destination node nd, R(nc, nd, t) = {c1, c2, . . . , cp}.
By definition, R(n, n, t) = ∅, ∀n ∈ N, ∀ t ∈ T .

Definition 7: A selection function S : P(C × F ) → C
selects a free output channel from those supplied by the routing
function. S takes into account the state of the channel supplied
by the routing function. The selection function should avoid
starvation. If all output channels are busy, the message waits
until an output channel becomes free.

Definition 8: A routing function R for an interconnection
network I is connected iff:

∀ t ∈ T, ∀x, y ∈ N, x 6= y, ∃ c1, c2, . . . , ck ∈ C

such as:






c1 ∈ R(x, y, t)
cm+1 ∈ R(d(cm), y, t), m = 1, . . . , k − 1
d(ck) = y

So, a function is connected if one can find a path P (x, y)
from x to y using channels provided by R, for any x and y
and any type t.

Definition 9: A routing subfunction R1 of a given routing
function R is a routing function which supplies a subset of
the channels supplied by R:

R1(x, y, t) ⊆ R(x, y, t), ∀x, y ∈ N, ∀ t ∈ T.

We define also the complementary function RR
1

RR
1 = R(x, y, t)\R1(x, y, t), ∀x, y ∈ N, ∀ t ∈ T

Definition 10: A configuration is a set of flits assigned to
each channel of the interconnect. The numbers of flits in
a channel ci is noted size(ci). A message is present on a
channel if a flit of this message is present on this channel.
The destination of a message mi is denoted dest(mi).

Definition 11: A valid configuration is a configuration that
can be reach from an empty network which is filled with
respect to the routing function.

Definition 12: A deadlock configuration is a nonempty con-
figuration where no message can progress.

Definition 13: A routing function R for an interconnect I
is deadlock-free iff there is no valid deadlock configuration
for this routing function.

Definition 14: For a given interconnect I , a set of mes-
sages’ types T, a given routing function R, a routing subfunc-
tion R1 of R and two channels ci, cj ∈ C:
• There is a direct dependency from ci to cj iff

∃x ∈ N, ∃ t ∈ T such as

ci ∈ R(s(ci), x, t) and cj ∈ R(d(ci), x, t)

There is a direct dependency from ci to cj iff there is a
message in ci that can be forwarded to cj . ci and cj are
supplied by R for that message.

• There is an indirect dependency from ci to cj iff

∃x ∈ N, ∃ t ∈ T, ∃c1, c2, . . . , ck ∈ C such as

ci ∈ R1(s(ci), x, t), cj ∈ R1(d(ck), x, t)

c1 ∈ RR
1 (d(ci), x, t) and cm ∈ RR

1 (d(cm−1), x, t),

m = 2, . . . , k

There is a indirect dependency from ci to cj iff there is a
message in ci that can be forwarded to cj via channels not
supplied by R1 for that message. ci and cj are supplied
by R1 for that message.

• There is a direct cross dependency from ci to cj iff

∃x, y ∈ N, ∃ t, t′ ∈ T such as






ci ∈ R1(s(ci), x, t),
cj ∈ RR

1 (s(ci), y, t′),
cj ∈ R1(d(ci), y, t′)

There is a direct cross dependency from ci to cj iff there
is a message in ci that can be forwarded to cj . ci is not
supplied by R1 for that message but cj is.

• There is an indirect cross dependency from ci to cj iff

∃x, y ∈ N, ∃ t, t′ ∈ T, ∃c1, c2, . . . , ck ∈ C such as






















ci ∈ R1(s(ci), x, t),
cj ∈ RR

1 (s(ci), y, t′),
cj ∈ R1(d(ck), y, t′),
c1 ∈ RR

1 (d(ci), y, t′),
cm ∈ RR

1 (d(cm−1), y, t′), m = 2, . . . , k

There is a indirect cross dependency from ci to cj iff
there is a message in ci that can be forwarded to cj via
channels not supplied by R1 for that message. ci is not
supplied by R1 for that message but cj is.

Definition 15: A Extended Dependency Graph (EDG) as-
sociated with a routing function R1 is a directed graph. Its
vertexes are the channels of the interconnect. Its edges are the
direct, indirect, direct cross and indirect cross dependencies
induced by R1 relatively to R between channels.

Theorem 1 (Duato’s theorem [4]): A coherent, connected
and adaptive routing function R for an interconnection net-
work I is deadlock-free iff there exists a routing subfunction
R1 that is connected and has no cycle in its extended channel
dependency graph.

Definition 16: Rt is a routing subfunction of R defined by:
∀x, y ∈ N, ∀ t, t′ ∈ T, t < t′

Rt(x, y) ⊆ R(x, y, t)

such that

∀c ∈ Rt(x, y), c ∈ R(x, y, t) and c /∈ R(x, y, t′)

That is, the channel supplied by Rt are only used by
messages of type t or by messages of higher priority type.



Theorem 2: Let R be a connected and adaptive routing
function and T an ordered set of message types. If ∀ t ∈ T, Rt

is connected and deadlock free, then R is deadlock free.
Rt supplies an escape path for each message of type t.

Let tI be the highest type of message. If we have RtI

deadlock free, then all messages of type tI can be evacuated
of the interconnect by using channel supplied by RtI

. Then
any message of type tI < tn and @ tk|tI < tk < tn,
can be evacuated using channels supplied by Rtn

. Channels
supplied by Rtn

may only contain messages of type tI or
messages of type tn. Since all messages of type tI can be
evacuated by channels supplied by RtI

, we can remove from
the interconnect all messages of type tI . Then, if Rtn

is
deadlock-free, all messages of type tn can be evacuated.

Proof:
a) Let t ∈ T | ∀ t′ ∈ T, t < t′. We assume that Rt

is connected and deadlock-free. Supposing there is a
deadlock configuration for R involving a message mt of
type t. There are two cases:

– the head of mt is on a channel supplied by Rt,
then Rt is not deadlock-free, which is breaking our
hypothesis.

– the head of mt is not on a channel supplied by Rt.
Let x be the node where the head of mt is and let
y be its destination. Since Rt is connected, ∃ c ∈
R(x, y, t) such as c ∈ Rt(x, y). Thus this message
can take a path supplied by Rt, Rt is deadlock-free,
so this message can progress in the interconnect.

So, R(x, y, t) ∀x, y ∈ N is deadlock-free. Now we need
to prove that R(x, y, t′) is deadlock-free for any t′.

b) Suppose R(x, y, t) deadlock-free for any t < t′, t′ ∈
R. We have to show that R(x, y, t′) is deadlock free.
We suppose there exists a deadlock configuration for R
involving a message mt′ of type t′. There are two cases:

– if mt′ is on a channel supplied by Rt′ , then mt′ is
blocked by a message of type t′ or by a message mt

of type t with t < t′. By hypothesis, R is deadlock-
free for all messages of type t, t < t′. Hence mt

is not blocked and can progress on the interconnect
and m′t will progress. If mt′ is blocked by a message
of type t′, then R′t is not deadlock-free which is in
opposition with the hypothesis on Rt′ .

– if pt′ is not on a channel supplied by Rt′ . Let x
be the node where the head of m′t is and let y be
its destination. In this case, ∃c ∈ R(x, y, t′) such
as c ∈ Rt′(x, y) since Rt′ is connected. But Rt′ is
deadlock-free, so this message is not blocked.

We have shown that no message can be involved in a
deadlock configuration, thus R is deadlock free.

C. Construction of the routing subfunction

Given a routing function R, an interconnect I and an
ordered set of messages types, to prove R to be deadlock-

free, we seek to find a routing subfunction for each Rt that
has no cycle in its EDG.

Our approach consists in finding all Strongly Connected
Component (SCC) of the extended channel dependency graph,
and to work on it instead of working on each cycles of the
EDG as suggested in [7]. Finding all SCC can be done in
polynomial time. Then we will try to suppress each SCC by
restricting the routing function. This reduction preserves the
connexity of the network so we do not have to check if the
function remains connected after removing a channel. If we
can remove all SCC, then we have found a routing subfunction
that is connected and has an acyclic channel dependency
graph. Thus the network is deadlock-free.

The condition below will ensure that a cycle will not lead
to a deadlock. It is a sufficient condition.

The idea is to find in a cycle, a channel c that can be emptied
regardless which messages are present in the cycle. To find
such a c, we look at each channel of the cycle. Let c0 be
a channel of the cycle and ck be the latest channel of the
cycle that can receive a message from c0. Then we look if
any messages that come from c0, in channels c0 to ck can
be forwarded to channels not belonging to the cycle. If we
can find such channels, these messages cannot be involved in
a deadlock and this cycle will not produce deadlock. So we
can construct a routing subfunction R1 of Rt such that any
messages transiting through c0 cannot be transmit to any ci

(i = 1, . . . , k). R1 will not have this cycle in it’s EDG.
Condition 1 (A sufficient condition to suppress cycles): If,

for a routing function R and an interconnect I , there is a
cycle such as:
∃ c0, . . . , ck ∈ cycle, such as

{

∃ (n, t) ∈
⋂m

j=0 label(cj) | cm ∈ R(d(cm−1), n, t),
⋂k

j=0 label(cj) = ∅ or ck = c0, for all m = 1, . . . , k − 1

and ∃Y0, . . . , Yk sets of channels not in cycle such as

{

∀ (n, t) ∈
⋂m

j=0 label(cj),

∃ ym ∈ Ym | ym ∈ R(d(cm), n, t), for all m = 0, . . . , k − 1

then this cycle will not lead to a deadlock configuration.
Sketch of the proof:
Let us consider a cycle C made of channels ci, i = 0, . . . , k

which satisfy condition 1. Let us suppose there is a deadlock
configuration for this cycle. Since there is a deadlock in C, c0

is not empty and contains a message m of type t. There are
two cases :
• c0 contains the head of m. Since C satisfies condition 1,

∃ y0 such as y0 ∈ R(d(c0), dest(m), t). That is, d(c) can
forward m to y0 and there is no deadlock.

• c0 does not contain the head of m, ∃ cj such as
cj contain the head of m, and ∃ yj such as yj ∈
R(d(cj), dest(m), t). That is, m can be forwarded to yj ,
and there is no deadlock.

Thus, there cannot be a deadlock in C.



We do not apply this condition to each cycle in the EDG.
Instead, we apply it to strongly connected components of the
EDG. Since a SCC is a collection of cycles sharing some
edges, the same reasoning apply. The yi channels of condition
1 must be out of the SCC.

Thus we can restrict R to obtain R1 by not allowing
messages that may be send through c0 to transit through
ci(i = 1, . . . , k). This reduction does not create new cy-
cle. New dependencies in the EDG of R1 will be either
indirect dependencies from channels ai ∈ SCC such as
c0 ∈ R(d(ai), dest(m), t) and channels bi not in SCC, or
(indirect) cross dependencies, between ci(i = 1, . . . , k) and
channels bi. As there is no path from bi to ai, nor from bi to
ci, since ai and ci do not belong to the same SCC than bi.
Then no cycle can be created.

In figure 1(a), we can see an interconnect with seven
nodes. Each channel is labeled with a name and the set of
pairs (destination, type) of the messages that can be sent
over this channel. The extended dependency graph of this
network is presented on figure 1(b). It contains a cycle made
by the channels c, c1, c2 and c3. But there is no deadlock
configurations for this network: considering the channel c, any
message in the channel c can be delivered
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n6

(n4, t)

(n5, t)

c
n1

c3
(n6, t)

(n4, t)
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(n5, t)

n5

n4

y3

n3

y4

(n6, t)

(n5, t)

(n6, t)
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(n5, t)

(n5, t)
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(n5, t)

y5

(a) The interconnect and a routing
function Rt

y3

y5

y4

c c1

c2c3

y0

y1

(b) The extended
dependency graph

Fig. 1. An example of cycle where a deadlock cannot occur

• If there is the head of a message (n4, t) in c, it will be
routed to y0 and reach its destination.

• If there is a message (n5, t) in c:
– if its head is in c. If c1 is busy, (n5, t) will be routed

through y0.
– If its head is in c1 and if c2 is busy, it will be routed

through y1.
– Finally, if its head is in c2, it will be routed through

y4

Thus, the channel c can always be emptied and no deadlock
can occur. Then we can restrict the routing function by

Path that a waiting message should folow

Waiting messages

n0

n6

n1

n2 n5

n4

n3

(n6, t)

(n5, t)

(n4, t)

Fig. 2. A deadlock configuration

forbidding the transit of messages (n5, t) from c to c1, and we
have a connected routing subfunction with an acyclic EDG.
Thus, this network is deadlock-free.

If we consider the same network without the channel y1,
we can easily find a deadlock configuration (see figure 2).
Such a cycle does not satisfy condition 1, hence it cannot
be suppressed. The SCC is not reducible, the network is not
guaranteed to be deadlock-free.

III. AUTOMATIC PROOF OF DEADLOCK FREE NETWORK

In this section, we describe a new algorithm based on
theorem 2 and condition 1 to prove automatically that a
network is deadlock-free.

The topology of the interconnect I , the Routing function
R and the ordered set of messages types are supplied. The
internal data structure represents the interconnection graph I
as a list of nodes and a list of channels. Each channel is related
to the set of messages that may be sent through it.

To check if the interconnect is deadlock-free, we proceed
has follows:
• split R in subfunctions Rt according to T
• for each t in T :

1) check for connexity of Rt

2) construct the EDG of Rt

3) find all SCC of Rt

4) break each SCC using condition 1
• if all SCC have been broken, the network is deadlock-

free. Else it may not be deadlock-free: print the irre-
ducible SCC.

To construct the extended dependency graph, we find all the
dependency of each arcs.

A. Construction of EDG(Rt)

for each type T:

for each arc a:

add a to the dependency graph

for each node n of the dependency graph:

for each outgoing arc a of n:

add each direct dependency of a to the EDG(Rt)



add each indirect dependency of a to the EDG(Rt)

B. Finding SCC in EDG(Rt)

We use the well known algorithm of Tarjan (ref) that returns
the set of SCC of EDG(Rt).

C. Break all SCC of EDG(Rt)

Now we will try to find a routing subfunction by reducing
the given routing function. To be able to reduce the routing
function, one has to check if each message along each cycle
can be evacuated through an escape path, assuming any
configuration of the current SCC.

for all strong component SCC

if it’s not reduced to one node

call:Suppress Cycle(SCC)

1) suppress cycle:
Suppress Cycle(C):

for all nodes v of the C

if call:Exists Escape Path (v, labels(v))

remove v from the C

2) escape path:
Exists Escape Path(v, l):

INPUTS: node v of the SCC C
set of labels l of v

let nlechap = {(d, t)|(d, t) ∈ l and ∀u /∈ C, d(v) 6= s(u)}
//lnechap is the subset of l whose message cannot be
//evacuated through an escape node leaving the current SCC
C.

l← l \ {(d, t)|d = v}
//remove labels of messages having reached their destination

if nlechap 6= ∅ a deadlock is possible -> return NO
else forall u ∈ C such that d(v) = s(u):

if call:Exists Escape Path(u,l ∩ labels(u)) = NO
return NO

return YES

D. Example

In this section, we present an example showing how the al-
gorithm works. For simplicity, this example contains only one
type of messages. If we had more message’s types, we would
apply the same methodology to each routing subfunction Rt

in the order of the priority of the types.
The interconnect is shown on the figure 3 where all edges

are labeled. This interconnect contains four nodes n0, n1, n2

and n3. Each node ni is connected to the node n(i+1) mod 4

by two unidirectional channels, named ai and bi. The routing
function is defined by:
• a message arrived at its destination is evacuated.
• any message can be send through a channel ai.
• on channel bi, a X-first routing is used.
The first step is to build the EDG. It is built using the

algorithm described in section III-A. Thus, for each channel
of the interconnect we find all its dependencies and add them
to the EDG. The EDG is shown on figure 4. This EDG contains
cycles. We extract all the SCC of this EDG using the algorithm
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(n0, t)

Fig. 3. The interconnect with all edges labeled with messages transiting
through channels

a0

b0

b3 a3 a1 b1

a2

b2

Fig. 4. The EDG of the network of the figure 3

of Tarjan presented in III-B. There is only one SCC containing
channels a0, a1, a2, a3, b0 and b2.

Now, to prove this network deadlock-free, we have to find
a connected routing subfunction with an acyclic EDG. To find
such a subfunction we try to remove some dependency in the
EDG. This is done as described in section III-C. Assuming
we start with the node a0: the labels of this node are (n1, t),
(n2, t) and (n3, t). Messages destined for the node n1 have
reached their destination. Messages destined for the node n2

can be send though channel b1 which is not in the SCC.
Finally, messages destined for the node n3 can not be sent
through a channel not in the SCC, the dependency between



a0 and a1 cannot be removed, hence a1 cannot be removed
from the SCC.

Now, we consider the node b0: the labels associated with
this node are (n1, t) and (n2, t). Messages of label (n1, t)
have reached their destination. Messages of label (n2, t) can
be send through the channel b1, which is not in the SCC.
Hence, we can restrict the routing function by not allowing
the node n1, to send messages (n2, t) through the channel a1.
Thus, there is no dependency between b0 and a1 anymore. b0

can be discarded from the SCC.
Now we consider the node a3. The labels of this node are

(n0, t), (n1, t) and (n2, t). Messages destined for the node n0

have reached their destination. Messages of labels (n1, t) and
(n2, t) can be sent through the channel b0, hence a3 can be
emptied by forwarding message to b0. Thus, we can restrict
the routing subfunction to not supply a0 as next channel to
messages (n1, t) and (n2, t) in the node n0. Thus, there is no
dependency between a3 and a0 anymore and a3 can also be
removed from the SCC. Thus the SCC is broken. Now we
have found a routing subfunction with an acyclic EDG, thus
this network is deadlock free.

IV. EXPERIMENTAL RESULT

We implemented an automatic method to check if a network
is deadlock-free, based on theorem 2 and condition 1 presented
in the previous section. The current section presents the
application of this tool to a set of network topologies combined
with different routing functions, some of them being deadlock-
free and others possibly leading to deadlocks.

Two scalable topologies are considered: a 2D mesh as in
DSPIN [13] and a fat-tree as in SPIN [14].

The 2D mesh is a n×n mesh with two unidirectional chan-
nels connecting two neighbor nodes. The following routing
functions are considered in case of a unique type of messages:

1) X-first (XY): a X-first routing is used. Messages are
first routed on the X axes, then on the Y axes. This is a
deterministic non-adaptive routing function that prevents
deadlocks.

2) Shortest Path (SP): messages follow one of the shortest
path on the grid. This is an adaptive routing function
that may lead to deadlocks.

In order to define a deadlock-free adaptive routing scheme
for the 2D mesh, we extend the set of channels of the mesh as
follows : a couple of channels connects two neighbors nodes
in each direction. For each couple of channels, one is selected
by shortest path strategy, and the other one is selected by the
X-first strategy. This routing scheme is called “Shortest path
with escape path (SPEP)”; It is adaptive and deadlock-free.

The Fat Tree topology presented here connects each nodes
to its four neighbor’s in the successive layers with one pair
of unidirectional channels; there are two types of messages:
request and response; messages of type response have the
highest priority. Two routing functions are considered :

1) No Separate Path (NSEP): all channels are shared by
request and response messages. The routing function is

adaptive when messages going upwards to the roots, and
non-adaptive for messages going downwards to the leafs.
It may lead to deadlocks.

2) Separate path (SEP): request and response messages
follow separate paths. Paths are split into disjoint sets,
one dedicated to request and one dedicated to response.
The routing function is adaptive when messages going
upwards to the roots, and non-adaptive for messages
going downwards to the leafs. It is deadlock-free.

All the experiments have been performed on a 3GHz
pentium4 workstation with 512Mo of RAM. They are summed
up in Table I.

Table I presents three information: the largest topology
processed by the tool (measured in number of nodes), the
computation time expressed in seconds and the result of the
analysis: the topology associated with the routing function is
deadlock-free (yes) or may not be deadlock-free (no).

First of all, the experiment demonstrates that it is possible
in practice to see at early stage of the design if a network
topology combined with a routing function is guarantied to
be deadlock-free or not. This information is of great help for
designers who can convince themselves that an architectural
choice is deadlock-free.

This analysis can be performed on complex networks and
with non-trivial routing functions: with a simple routing func-
tion, a network of 4900 nodes can be processed. For more
complex routing functions, network with 256 nodes can be
processed. Even with complex routing function the computa-
tion time remains small: only 20 seconds where necessary to
check a mesh with 256 nodes with routing function Shortest
Path with Escape Path (SPEP). In fact, computing time seems
not to be the limitation. Actually, limitation comes from
memory occupation

Tables II and III present the computation time of different
steps our algorithm when the number of nodes increases while
keeping the same routing scheme. Considered steps are:
• Labeling edges of I with respect to R
• Building the EDG for each Rt

• Breaking all SCC for each Rt

Times are given in seconds.
While breaking the SCC takes a lot of time for the mesh

with routing function SPEP, labeling the edges takes most of
the time for the fat tree NSEP. There are more channels for
the fat tree than for the mesh. In the other hand, checking
deadlock-freeness for the fat tree NSEP is trivial, since there
is no separate path for request and response, so Rresponse

contains no channel and is not connected. So we can not

TABLE I
NUMBER OF NODE AND TIME TO CHECK AN INTERCONNECT

Interconnect routing function # of nodes time deadlock-free

mesh
XY 4900 1624.80s yes
SP 3025 1342.52s no
SPEP 256 19.68s yes

fat tree NSEP 256 11.29s no
SEP 256 21.83s yes



TABLE II
DETAIL OF COMPUTATION TIME FOR A MESH WITH SPEP ROUTING

# of nodes Labeling edges Building EDG Breaking SCC Total
4 0.00 0.00 0.00 0.00
25 0.00 0.00 0.00 0.00
100 0.04 0.06 0.70 0.80
256 0.49 0.73 18.44 19.68

TABLE III
DETAIL OF COMPUTATION TIME FOR A FAT TREE WITH NSEP ROUTING

# of nodes Labeling edges Building EDG Breaking SCC Total
4 0.00 0.00 0.00 0.00
8 0.00 0.01 0.00 0.01
32 0.18 0.19 0.00 0.37
256 9.46 12.14 0.01 21.83

guaranty this network to be deadlock-free, and in fact it
contains deadlocks [9].

V. CONCLUSION

We have extended Duato’s theory to take into account
the environment of a network on chip by ordering different
types of messages. Then we proposed a new algorithm to
determine if an interconnect combined with a routing function
is deadlock-free using Duato’s theorem. This approach is based
on the analysis of “Strongly Connected Components” (SCC)
of the Extended Dependency Graph of the routing function
instead of classical “cycle” analysis. Then we proposed a
sufficient condition to make such a SCC reducible. Finally, we
presented some results obtained with our tool that shows the
effectivness of this approach: networks of hundreds of nodes
are analysed very quickly.

This tool can be incorporated in the design of NoC process
at early stages: it provides an easy way to verify that a
routing function for an interconnect is deadlock-free. Thus it
allows designers to define more sophisticated routing functions
which are better adapted to their needs (because they limit the
hardware introduced to avoid deadlocks). We hope this tool
will contribute to develop new adaptive strategies for NoC.

Although all deadlocks suspected by the tool corresponded
to real deadlocks, we are interested in finding a necessary
and sufficient condition to suppress SCC. Futher works will
also include the extension of this theory in order to support a
larger class of routing function, especially “store and forward”
routing functions.
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