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Abstract

Software-based test of SoCs consists in testing IP cores
using embedded processor cores. Previously proposed so-
lutions are usually ad-hoc. Therefore, this paper presents
STESOC, a software-based Test Access Mechanism for
SoCs containing standard-wrapped IP cores. Under the
control of the embedded microprocessor, a dedicated test-
coprocessor tests the remaining components. Using the
ITC02 SoC benchmarks a comparison is done between the
STESOC architecture and a classical bus-based strategy.
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1 Introduction

With the advent of Systems on a Chip (SoCs), design
methodologies are mainly driven by the Time-To-Market,
and therefore are more and more based on the use of pre-
designed Intellectual Property (IP) cores. IP cores such
as microprocessors, memories, DSP, peripherals, or dedi-
cated blocks are bind together to make complex SoCs. This
deep integration has consequences for the test process. Poor
test accessibility for external testers increase test application
time, and huge memory is required in order to store test data
volume. Moreover at-speed testing is becoming a very chal-
lenging task since the gap between the tester’s frequencies
and SoC frequencies is getting larger.

A solution to alleviate the role of the Automated Test
Equipment (ATE) can be found in hardware Built-In Self-
Test (BIST) techniques. Internal hardware test generators
and test response analyzers are used to generate and apply
test patterns at the speed of the circuit. Unfortunately, each
BISTed module inserted in the system may result in per-
formance degradation in terms of total area, operating fre-
quency and power consumption.

With the SoC paradigm, alternative solutions like
Software-Based Test methodology is emerging. Software-
Based Test (SBT) consists in the execution of a program
by an embedded microprocessor to test embedded cores.
Usually, the test program is initially downloaded into the
internal memory thanks to a low-cost external equipment.
First, the embedded microprocessor tests itself by execut-
ing a self-test program, then, it can be used as a pattern
generator and response analyzer to test the others cores of
the system.

As for the test of microprocessors, system interconnects
and memories have been well studied and convenient SBT
solutions are provide. However, there is a lack of proposed
solutions to test other kind of cores. Those remaining cores
are application specific, consequently, proposed software-
based test strategies are often ad-hoc.

To answer the needs for a uniform test architecture for
cores provided by different IP vendors, several working
groups have been spawned [1], [2]. They define new stan-
dards in order to simplify test integration. The IEEE 1500
working group defines the way a core must be shipped to
be tested when integrated in a SoC. This group specified a
Wrapper [3] to be added around each IP core, and a Core
Test Language (CTL) which enables the descriptions of the
core test features. Note that the working group does not
intend to standardize the way the core is accessed for test
purpose. The SoC integrator is free to use the appropriate
Test Access Mechanism (TAM).

In this paper we investigate the use of a Software-based
TAM relying on the IEEE 1500 standard. This TAM is em-
bodied as a dedicated co-processor drive by the embedded
processor. On one side, it can be addressed by the embed-
ded microprocessor, and, on the other side it is a IEEE 1500
pattern delivery TAM for wrapped cores.

In the following, we first briefly describe the basics of
software-based SoC testing, and analyze the prior work.
Next section presents the STESOC strategy: the targeted
SoCs and the test execution process. Then, a study of the
test co-processor internal architecture is presented followed
by some software features of the proposed approach. First



results on ITC’02 SoC benchmarks [4] are discussed and
compared with a classical bus-based approach. Before con-
cluding, some future works enhancing this approach will be
presented.

2 Software-Based Test

The concept of reusing the embedded microprocessor for
SoC test purpose is not new. In [5] A. Krstic et al. give a
survey of the embedded software-based testing paradigm.
Software-based test assumes the SoC have at least one em-
bedded processor. This is generally the case since, nowa-
days, almost all SoC contains an embedded processor core
surrounded by memories and others cores. In Software-
based Test, the general purpose processor (GPP) has a cen-
tral role in the test process since it acts as a chief orchestra.
Therefore, no specific test controller is required. First, the
embedded microprocessor tests itself by executing a self-
test program, then, it is used to test the system interconnect,
embedded memories and others remaining cores of the sys-
tem.

Integrated IP cores can be divided into two sets. The first
set is the general purpose cores (GP cores) such as micro-
processor, memories or interconnect. There are almost al-
ways embedded in the SoC. The other set contains IP cores
that are application specific (ASIC cores), such as JPEG de-
coder, Media Access Controller (Ethernet), USB controller
core etc. Their use strongly depends on the need of the tar-
geted application. Thus, four different kinds of software-
based tests can be outlined: (i) self-test of processor core,
(ii) test of the system interconnect, (iii) test of embedded
memories and (iv) test of remaining cores (ASIC cores).

Processor Test. Different methodologies have been pro-
posed for the development of the self-test program of pro-
cessor core. Two different strategies can be distinguished.
In one hand, the self-test program is generated automati-
cally like in [6] and [7]. In [6] the self-test program is auto-
matically generated off-chip whereas in [7] the authors pro-
pose an on-chip generation of the self-test program. In the
other hand, in [8] the authors achieve higher fault coverage,
but the self-test program is designed by the test engineer.
The self-test program is a set of small specific self-test rou-
tines, based on compact loops of instructions, developed for
each processor component.

Interconnect Test. Using the embedded microprocessor,
testing the system level interconnects can be addressed us-
ing techniques as described in [9], [10]. In [10] the authors
propose a Functionally Maximal Aggressor (FMA) test in
order to test cross-talk effects that can occur in the bus. The

test patterns are generated under system constraints (address
system mapping) in order to avoid over-testing that lead to
yield loss. The processor execute the test program, i.e. write
on the bus to a destination core, the destination core capture
the response, and the processor read this response and de-
termine if the bus is faulty or not.

Memory Test. Most of memories embedded in a SoC are
word-oriented memory (WOM). WOM tests have been pre-
sented in [11]. Those tests are very straightforward to be
implemented using the processor. In [12], Tehranipour et
al. propose a program written in assembly language imple-
menting the 9N test algorithm. Besides, Rajsuman propose
in [13] the use of March algorithm.

ASIC core Test. Microprocessors, interconnects, memo-
ries etc. have well-known structures. So, efficient software-
based tests are provided. However, finding a uniform strat-
egy to test all the remaining specific cores, while a high fault
coverage is achieved is a hard task. Papachristou tackled
the problem in [14]. He proposed a method implementing
a Bypass approach. The key idea of the Bypass approach
is to use existing circuitry between cores to vehicle test pat-
terns to the target one. Ad-hoc circuitry is added for each
core to enable the Bypass mode, and a sophisticated strategy
is elaborated to create core input paths for pattern applica-
tion and output paths for response capturing. Moreover, a
synchronization of test packets must be done for cores con-
nected to different input/output paths. In [15] the author as-
sumes that, due to IP protection, only instruction set, limited
architectural and test informations of the core are available.
Thus, Tehranipour proposed a systematic approach to gen-
erate test programs. The embedded microprocessor is used
to generate pseudo-random patterns. Because of the random
nature of patterns, low fault coverage is achieved (86.1% for
SPI core and 81.3% for HPI core). Furthermore, since the
interconnect is used to vehicle the test patterns, a connec-
tion between the tested IP core and the system interconnect
is required. In order to improve the fault coverage, in [16]
Huang combines weighted random test patterns and a small
set of deterministic test patterns. Moreover, each core is
surrounded by a special test wrapper that supports pattern
delivery. It contains buffers to store scan data and test sup-
port logic to control scan shifting. This technique implies a
connection of each tested IP with the system bus. Moreover,
the structural netlist of the core is supposed available, this
is hardly the case when using proprietary IPs.

To recap, proposed techniques to test those cores are gen-
erally ad-hoc. These techniques require extra specific cir-
cuitry, knowledge of the IP cores internal architecture, con-
nection to system bus and often, the use of pseudo-random
patterns lead to low fault coverage.
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3 STESOC methodology

The IEEE 1500 working group defines a wrapper [3] to
be added around each IP core, and a Core Test Language
(CTL) which enables the descriptions of the core test fea-
tures. Use of such standard guarantees interoperability be-
tween core provider and core user, and might be popular
especially for hard cores. Supporting such standards can
alleviate the drawbacks of solutions describes before. No
ad-hoc extra circuitry around each core need to be added
since the test interface is standardized. If a dedicated TAM
is provided, the core do not necessary require a connection
to the system bus. And, since the test patterns are provided
with the IP core, high fault coverage can be assumed.

In this section we first see some hardware requirements,
the SoC template targeted by STESOC to perform on-chip
the application of test patterns to wrapped IP cores. Then,
we will see how the test is performed.

3.1 STESOC targeted SoCs

STESOC methodology can be applied to test SoCs hav-
ing the following characteristics (see figure 1):

Figure 1. STESOC Architecture overview

• The SoC is equipped with an embedded microproces-
sor used for general purpose (GPP).

• The SoC must have an interconnect supporting initia-
tor/target scheme.

• The SoC is shipped with an external-RAM controller
with a 32-bit interface. During functional SoC op-
eration, the external controller is used to plug extra-
memory or peripheral. During SoC testing, the pins of
this interface are connected to an extra-memory con-
taining as many test programs as wrapped IP cores.

• IP cores to be tested are wrapped. STESOC approach
can drive many wrapper types (IEEE 1500, boundary-
scan and even some BIST controller engines). How-
ever, the following of the paper focuses on test of IEEE
1500 wrapped cores. For each bloc (local or third-
party), test informations and test patterns are supposed
available.

Besides this SoC scheme, STESOC introduces a single
new hardware component: a test coprocessor entirely dedi-
cated to SoC testing called TCPU. It has two interfaces. On
one side, it is a memory-mapped peripheral for the inter-
connect and can thus be addressed like any resource by the
embedded microprocessor. On the other side, it is a IEEE
1500 pattern delivery TAM for wrapped cores. As an ini-
tiator the TCPU can directly address the external RAM and
thus, read test programs stored in. As a target, the TCPU re-
ceives commands emitted by the GPP. TCPU can warn the
GPP by the way of an Interrupt Request (IRQ).

3.2 Test execution

In STESOC, test is performed by the GPP/TCPU pair.
The TCPU is in charge to process test programs. Each
tested IP have its own test program, available in a format
called HTC, specific to the TCPU. Each HTC file is stored
in the external memory (see figure 1). HTC test programs
are fetched and executed by the TCPU, it contains scan data
(test patterns) as well as test control informations. Test con-
trol consist on (among others) control the scan shifting, ap-
plying test patterns and capturing test responses. Test re-
sponses are shifted in the TCPU and compacted by the way
of an internal MISR. TCPU enables concurrent testing of
many cores in order to minimize the test application time.
During the test process, for each tested IP core, the TCPU
stores informations such as the status (test done, test in
progress), program counters, etc. These informations can
be accessed at any time by the GPP. When the core test is
done, an IRQ to the GPP is set up.

The GPP acts as a chief orchestra, controlling test pro-
grams execution. It is in charge to launch the test on the
desired core by sending to the TCPU a start request con-
taining the corresponding IP number. Thus, the TCPU can
start the test of this IP as described above. During the test
process, the GPP can at any time send any request to the
TCPU to consult test informations about a core. The GPP

3



can monitor test execution through polling. To avoid over-
load on the system interconnect the GPP can also wait for
an IRQ to be emitted by the TCPU. When the core test is
over, the GPP collects the computed response and compare
it with the expected signature of the core. Thus, one can
know which IP core is fault free or not.

4 TCPU hardware architecture

This section focuses on the TCPU internal architecture in
more details (see figure 2). This test coprocessor includes
two major kinds of components namely a Prefetch-Buffer
(PB) and a TPAU (standing for Test Protocol Associated
Unit). The number of TPAU is equal to the number of IPs
to be tested. Each core is assigned to one TPAU. All the
TPAUs shares the Prefetch Buffer interface. The role of
the PB is to get the test programs in order to feed the right
TPAU.
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Figure 2. TCPU Internal Architecture

The TPAU is the unit that execute the HTC program and
convert it to a IEEE 1500 data stream. The TPAU controls
the scan shifting, the application of test patterns and the cap-
ture of test responses. The TPAU brings back response vec-
tors that are compacted in an internal MISR. At the end of
the test, one signature characterizing the core has been com-
puted. The response compaction allows a drastic reduction
of test data amount. The TPAU is associated to one IP core
and so, one test protocol. For more simplicity only IEEE

1500 is evoked, but the TPAU can be Boundary-Scan com-
pliant, or any specific test protocol, and can also drive some
BIST engine.

The Prefetch Buffer provides an interface between the
system interconnect and the TPAUs. As described previ-
ously two connection ports are available. Through the ini-
tiator port the PB brings back the test program from the SoC
external RAM to feed the right TPAU. A round Robin algo-
rithm select the TPAUs to be fed (see figure 2). Through this
port, it acts as a DMA. The target port is memory-mapped
in the system, and so, provides a GPP access to the desired
TPAU. Each TPAU has a specific address in the memory
mapped environment. The PB receives all the requests, and
dispatch these requests to the right TPAU.

5 Test Programs

Two kind of test programs are executed. One by the
embedded processor, several by the test co-processor unit
(TCPU). The first one, called the Master Test Program,
managing the test process of the IP cores. The seconds,
called HTC Test Programs, executed by the TCPU, con-
tains test data and test control of the corresponding IP. Each
tested IP core has its own HTC test program.

HTC Test Programs. Nowadays most of IP cores test in-
formations and test patterns are delivered in STIL or CTL
formats. Therefore, it is required to convert this format in a
TCPU executable test program called HTC. This conversion
is automated by GenSTELA (for STEsoc LAnguage Gener-
ator). At the moment, GenSTELA only parses a subset of
STIL to generate the corresponding HTC file. This file in-
cludes a sequence of 32 bits instructions. The execution is
completely sequential, without any loop or jump in order to
reduce the hardware needs, and thus, TCPU size.

The Master Test Program. It is executed by the GPP su-
pervising the execution of the HTC programs. This mas-
ter test program is written in assembler or high-level lan-
guages like C. It is (cross-)compiled and the resulting bi-
nary is loaded into an internal memory. Easiness of writ-
ing in high-level languages allows designing a master test
program as complex as desired: smart test plan scheduling,
restarting test program on special part, etc. However, this
test program should include the following three steps:

1. Starting test process by sending to the TCPU the HTC
programs addresses. It starts the test execution of the
selected IP cores. Selected cores are tested concur-
rently.
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2. Wait TCPU interruption(s) indicating the end of the
test process of cores.

3. Read the computed signature and compare it with the
expected one.

6 Experimental results

The results are presented in terms of test application time
and not in terms of fault coverage. Because in STESOC’s
strategy the fault coverage only depends on the test patterns
delivered with the IP core. However, one can easily assume
that in case of full-scanned IP core using provided deter-
ministic test patterns a high fault coverage is achieved.

ITC’02 benchmarks [4] were used to show the test ap-
plication time. The results are compared to those of a clas-
sical bus-based TAM strategy: TestRail optimized by the
TR-Architect software toolbox[17]. The selected results for
TR-Architect are those using a 32-bit channel width. Nev-
ertheless, we can point out that in STESOC, no dedicated
test pins are added on the SoC since the functional external-
RAM interface is reused. The test pins overhead of STE-
SOC is null, whereas, at least 65 dedicated test pins need to
be added for TR-Architect (32 scin, 32 scout and test con-
trol pins).

First results have been obtained with a SystemC-based
simulation platform containing both hardware and software
components. Simulations done are bit-accurate and cycle-
accurate. The GPP model used is a MIPS R3000 five-
stage pipeline, written in SystemC as well as the TCPU
model. An embedded RAM is added to store the Mas-
ter Test Program, while an external RAM contains all the
HTC test programs. Those latter components are connected
via a VCI-compliant crossbar interconnect. For each mod-
ule describes in the benchmark a corresponding SystemC
module is added in the platform surrounded by an IEEE
1500 wrapper. The connections between the TCPU and the
wrapped IPs are established thanks to IEEE 1500 dedicated
test wires. Five ITC’02 benchmarks were used, test appli-
cation time is presented in number of cycles. Each module
of those benchmarks can be seen as a soft core or as a hard
core. A hard core module implies that the number of the
scan chains as well as their length cannot be changed. The
module contains fixed-length scan-chains. Whereas for soft
core modules, scan chains are not designed yet and can be
optimized at SoC-level test architecture. Thus, the mod-
ule contains flexible-length scan-chains. Table 1 shows the
test application time (in terms of cycle number) for fixed-
length scan-chains modules. The Table 2 presents experi-
mental results for flexible-length scan-chains. To perform
the SoC test, the proposed approach requires from 2 to 3
times more test cycles than a traditional bus-based strategy.

In case of flexible-length scan-chains modules, STESOC re-
quires only a factor less than 2 compared to TR-Architect.
It is an expected result that the STESOC methodology in-
duces far more test cycles than TR-Architect. This is mainly
due to two issues. First, TR-Architect makes an architec-
tural exploration to find the best test strategy in order to
reduce the overall test application time. Whereas STESOC
is a ”plug&play” approach and for instance, the test plan
schedule can be developed after the chip has been sent to
foundry. The second issue of lost cycles is in the handshake
protocol between the active components through the system
interconnect. Nevertheless, as these results are provided as
number of cycles, one must take into account the test appli-
cation frequency. In the STESOC method the frequency is
the functional SoC one, while in the TR-Architect approach
the frequency used is the tester’s one. Thus, the global test
time, in seconds, can then be in favor of the STESOC ap-
proach. Moreover, as the test comparison is made on-chip,
no yield loss is due to the tester lack of accuracy, what can
appear in a traditional bus-based methodology.

Reusing the functional resources for test purpose mini-
mize the need of extra hardware dedicated for test. No ded-
icated test pins are added, as the external RAM interface is
reused. This implies that in STESOC, the TAM bandwidth
is not scalable. However, this choice make STESOC ATE
independent.

Traditional bus-based strategies impose to make one chip
test program, the tests of the main cores are merged in a
single complex program, hard to develop and not easy to
modify. STESOC offers much more flexibility since each
test program execution of each core is independent from the
other.

SOC STESOC TR-Architect STESOC

TR−A

d695 47,271 21,690 2.18
g1023 47,936 16,855 2.84

p22810 723,220 226,640 3.19
p34392 1,109,078 552,746 2.01
p93791 1,720,399 940,745 1.83

Table 1. STESOC compared to a bus-based test strategy for
fixed-length scan chains

7 Future Work

Three major points have to be studied.

• The first one consists in designing a new TCPU inter-
nal architecture to improve test speed. We need also to
synthesize the TCPU to evaluate the additional silicon
area overhead induced by our approach.
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SOC STESOC TR-Architect STESOC

TR−A

d695 38,305 21,503 1.78
g1023 32,685 16,795 1.95

p22810 442,827 223,368 1.98
p34392 939,470 505,783 1.86
p93791 1,634,133 914,456 1.79

Table 2. STESOC compared to a bus-based test strategy for
flexible-length scan chains

• Provide a solution to test the TCPU (BIST or soft-
ware).

• Last but not least, is to tool up the TCPU with an LFSR
in order to deliver pseudo-random patterns to IP cores.
HTC test programs size can be reduced, and with the
add of some extra deterministic test patterns, high fault
coverage can be reach. Thus, those test programs can
be stored in internal memory and the use of an external
RAM can be avoided.

8 Conclusion

In software-based test of SoC, testing strategies for ap-
plication specific cores are often somewhat ad-hoc. This pa-
per has presented a software-based Test Access Mechanism
to test those remaining components. Since this strategy is
compliant with standards such as IEEE 1500, its integra-
tion in the test design flow is very straightforward. This
software-based TAM is a dedicated test co-processor con-
trolled by the embedded general purpose processor. Com-
pared to an optimized bus-based TAM, STESOC requires
two to three times more cycle to achieve the test. However,
the test program is executed on-chip at SoC speed. The test
process is not bound to the tester frequency and accuracy,
allowing the use of low cost ATEs.
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