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Abstract

Beside external test and hardware Built-In Self-Test tech-
niques, a non-intrusive low-cost strategy has been devel-
oped: Software-Based Self-Test. SBST component-oriented
approach for microprocessor allows to reach, with small
self-test programs, a high fault coverage. In this context,
this paper focuses on the test of the Register File of RISC
processor cores. This component has the structure of a
small memory. Then, using the appropriate March tests,
100% fault coverage for numerous fault models can be
reached. This method was applied to test the Register File
of a MIPS microprocessor. Results show that the method al-
lows to obtain small-sized self-test programs while the use
of March tests ensures a high test quality.

1 Introduction

With the advent of Systems on a Chip (SoCs), design
methodologies are mainly driven by the Time-To-Market,
and therefore are more and more based on the use of pre-
designed Intellectual Property (IP) cores. IP cores such as
microprocessors, peripherals, or dedicated blocks are bind
together to make complex SoCs. This deep integration has
consequences for the test process. Poor test accessibility for
external testers increase test application time, huge memory
is required to store test data volume. Moreover at-speed
testing is becoming a very challenging task since the gap
between the tester’s frequencies and SoC frequencies is get-
ting larger.

A solution to alleviate the role of the Automated Test
Equipment (ATE) can be find in hardware Built-In Self-
Test (BIST) techniques. Internal hardware test generators
and test response analyzers are used to generate and apply
test patterns at the speed of the circuit. Unfortunately, for
random-pattern resistant structures like microprocessor, ex-
tensive use of test point insertion is needed to improve initial
low fault coverage. This extra added circuitry may result in

significant performance degradation.

In the other hand, with SoC paradigm, alternative solu-
tion like Software-Based Self-Testing (SBST) methodolo-
gies re-emerge for embedded processors test. Software-
Based Self-Testing consists on the execution of a program
by an embedded microprocessor. Thus, functional internal
resources are used to vehicle test patterns targeting struc-
tural faults. The self-test program is initially downloaded
into the internal instruction memory thanks to a low-cost
external equipment. Then, the microprocessor executes the
self-test program, computes and stores self-test responses
in the data memory. Finally, the external equipment brings
back those self-test responses for evaluation.

Different methodologies have been proposed for the de-
velopment of the self-test program. Previous works like
[1], [2] and [3], based on the microprocessor Instruction
Set Architecture (ISA), have a low structural fault cover-
age since their approaches are functional. In [4] the au-
thors proposed a structural component-oriented approach.
High fault coverage is reached, but the resulting self-test
program is large since it is generated on-chip and applies
pseudo-random patterns. Another component-oriented ap-
proach has been presented in [5], where small specific self-
test routines, based on compact loops of instructions, are
developed for each component. Moreover, a classification
of all microprocessor components is done in order to prior-
itize the development of the self-test program of each com-
ponent. High priority is given for components with a great
silicon area (high percentage of the total fault coverage) and
directly accessible by the ISA. A contrario, low priority is
given to small components with few access. Having a hier-
archy for the components to be tested reduces the total test
development time.

The approach in [5] allots high priority to microproces-
sor key components like the Register File . Therefore, spe-
cial attention must be paid to achieve a high test quality
for high priority components. This paper focuses on the
software-based self-test of the Register File (RF) and de-
scribes a methodology to develop small self-test programs



Algorithm Algorithm sequence Faults detected
SAF AF TF SCF

MATS { l (w0); l (r0, w1); l (r1) } All Some
MATS+ { l (w0); ↑ (r0, w1); ↓ (r1, w0) } All All
MATS++ { l (w0); ↑ (r0, w1); ↓ (r1, w0, r0) } All All All
MARCH X { l (w0); ↑ (r0, w1); ↑ (r1, w0); l (r0) } All All All
MARCH C- { l (w0); ↑ (r0, w1); ↑ (r1, w0); ↓ (r0, w1); ↓ (r1, w0); l (r0) } All All All All

Table 1. Different Fault Model detected by March Algorithms.

while keeping a high fault coverage. This paper points out
the fact that the physical structure of an RF is the same as
a little Static Random Access Memory (SRAM). The out-
come is that appropriate fault models for the RF must be
taken into account. Thus, these fault models should be the
same as any memory. Insight of that, we decided to create
a methodology relying on March tests to develop self-test
programs for RFs.

The Software-Based Self-Test of RISC microprocessor
RF was first tackled in [6], however the authors do not con-
sider it as a memory: the RF used is synthesized in a logic-
gates netlist. Therefore, only the stuck-at fault model was
targeted. Using only this fault model leads to consider only
50% of all the faults occurring in the RF component [7].

This paper is organized as follows. Section two presents
the physical structure of a register file, some appropriate
fault models and a recap of March tests. The third section
describes a methodology for self-test program development
based on the use of March-based algorithms applied to RFs.
Several March tests were implemented, and experimental
results are presented in the section four. Finally the fifth
section concludes this paper.

2 Targeted Fault Models and Tests for RF

Appropriate tests for relevant fault models ensure detec-
tion of physical defects leading to high quality test. There-
fore, the purpose of this section is to present the physical
structure of an RF in order to show relevant fault model and
a selection of appropriate tests.

A RISC-architecture processor uses a large number of
general-purpose registers (GPRs). Those GPRs are grouped
together in one component : the Register File (RF). De
facto, the Register File of the processor is one of the largest
components and has an inherent regularity. Most RFs of
pipelined RISC processor cores have three ports, one for
writing, two for reading. If we consider a 32-bit architec-
ture microprocessor, the general case is an RF including 32
registers of 32-bits wide. Therefore, this RF contains 1024
memory elements accessed for a read or a write through a
32-bit word. In order to shrink size and consumption, the

RF is designed as a multi-port memory [8]. During the lay-
out generation of a processor core, the RF is integrated as
a pre-designed macro-cell, from a full-custom library, or
generated by CAD-tools (in case of standard-cell layout).
Usually, memory generator tools can provide a variety of
SRAM-memories such as FIFOs, ROMs, Memory Caches,
and Register Files. As a memory device the RF includes
three major parts: the memory array, the address decoder
and the read/write logic. The memory array is typically
made of memory cells based on the 6-transistor SRAM-cell
with two bit lines per write port and one bit line per read
port [9].

Thus, the RF can have the same physical defects as a
memory. Lot of works have been done in the memory test-
ing field to create fault model based on error caused by
physical defect. We succinctly present some RAM fault
models [10] used in this paper. The Stuck-At Fault (SAF)
occurs when the logic value of a cell is always 0 (SA0) or
always 1 (SA1). An Address Decoder Fault (AF) corre-
sponds to read or write in another cell than the expected one
. A Transition Fault (TF) occurs when a cell fails to transit
from 0 to 1 or from 1 to 0 when attempting to write a value.
The State Coupling Fault (SCF) occurs when the coupling
cell j is in a given state y that forces the coupled cell i into
state x.

In order to detect those RAM faults, well-known March
tests have been developed. The Table 1 presents several
March-based algorithms and corresponding detected faults.
As we say, the RF is only accessible using a word (or
register), in the special case of Word-Oriented Memories
(WOMs), the read and write operations involve reading
and writing a word of data called Data Background (DB).
For instance, the word-oriented MATS algorithm becomes
{l(wa); l(ra, wā); l(rā)} where a is the Data Background
and ā the Inverted Data Background. Fault occurring on a
single cell (e.g. SAF) can still be detected using any DB
and the corresponding Inverted DB. However, faults involv-
ing two cells (e.g. CF) introduce the problem of detecting
faults between two cells at one address (i.e. the same word).
In [11], Van De Goor divides faults between memory cells
into inter-word faults and intra-word faults. The only way



to detect the latter kind of faults is to execute the March test
several times using different DB. In [7] a method to con-
struct the DBs for state CFs has been given. The table 2
presents the 6 DBs for a 32-bit word memory. These 6 DBs
will be the ones used to test the RF.

Number Data Background
normal inverted

1 0x00000000 0xFFFFFFFF
2 0x0000FFFF 0xFFFF0000
3 0x00FF00FF 0xFF00FF00
4 0x0F0F0F0F 0xF0F0F0F0
5 0x33333333 0xCCCCCCCC
6 0x55555555 0xAAAAAAAA

Table 2. Different DB for state CF.

3 RF self-test program implementing March
algorithms

The main goal of this section is to present the self-test
program development enabling the test of the RF compo-
nent. The self-test program must implement a March Al-
gorithm in order to detect any fault detailed in the previous
section. Globally, the testing process consists in filling the
entire RF (in increasing or decreasing order) with a data
background (DB) and reading in the RF (also in increas-
ing or decreasing order) the expected data background. The
first part of this section presents the way to apply the dif-
ferent operations of a March Algorithm such as w<DB>,
r<DB>, and how to increase or decrease the sequence or-
der. This section highlights the fact that the program needs
some registers to store two kinds of informations. The first
kind of informations, needed by the March operations, is
what we call the persistent informations (typically the data
backgrounds). The second kind of informations are those
needed for the reduction of the self-test program size (use
of variables, counters, addresses, function arguments). Both
kinds of informations are stored in a set of registers called
the reserved area which does not undergo the test. The first
part of this section details the program corresponding to the
execution of March elements. It also describes what kind of
informations need to be stored in the reserved area. The
second part of this section exhibits a solution to test the
overall RF, including this reserved area.

3.1 Write, Read and sequence order

In the following we consider a Reduced Instruction Set
Computing (RISC) architecture: the MIPS architecture. All
MIPS instructions are 32-bits in length, the Register File has

32 registers named from $0 for the register number 0 to $31
for the register number 31. The Instruction Set Architecture
(ISA) of a MIPS-architecture processor is divided into three
different coding formats: R, I and J. Since only R and I-
Format address the registers of the RF, we present only this
two format (see figure 1).

Figure 1. R-Format and I-Format of the MIPS ISA

The I-Format is used for load and store operations
(lw/sw), for arithmetic and logic operations using an im-
mediate operand and for conditional short jumps (branch
if). The R-Format is used for instructions using two source
registers (Rs/Rt) and one destination result register (Rd).

3.1.1 WRITE operation

The w<DB> operation means put (write) the DB into a tar-
geted word of the memory. In our case this operation con-
sists in loading into the targeted register the DB value. The
I and R format provide three different ways to handle this.
The DB to be written may have three sources: it can be en-
coded in the instruction, it can be stored in the memory or it
can be stored in a register of the RF component.

From instruction The I-Format allows to directly store
an Immediate operand of 16 bits in the instruction. As the
DB is 32 bits wide it had to be cut into two 16-bit chunks.
Therefore, to write a DB in a register, at least two I-Format
instructions are necessary. A sequence implementing this
kind of write operation is given below:

lui $5, Immd1
ori $5, $5, Immd2

The DB is written into the register number 5. The Immd1
and Immd2 correspond respectively at the 16-MSB and the
16-LSB of the DB. The cost of March write operation with
such method is 2 cycles for execution and 2 words in in-
struction memory.

From memory Only one instruction allows to load data
from memory: lw $Rd, Immd($Rs). The word stored in the
memory at the address ($Rs+Immd) is written in the regis-
ter pointed out by $Rd. Using this instruction implies two
assumptions. First, the DB is assumed to be stored in the
memory. In the case of CF detection, all the DBs can be



stored in the memory. Second, the address of the DB is as-
sumed to be in the register pointed out by Rs. Since this reg-
ister cannot at the same time hold this kind of information
and undergo the test, we assume that this register is placed
in the reserved area of the RF. The cost in cycles depends
on the number of cycles needed to access the data memory.
In terms of memory storage, the operation requires the use
of one instruction per write and a set of DBs.

From register The last method uses an R-Format instruc-
tion like the or instruction: or $Reg, $Ref, $Ref. This
instruction copies $Ref into $Reg. The advantage of this
method is its promptness since one cycle is needed to
achieve the write operation of $Reg. Nevertheless, before
the use of this kind of R-Format instruction, $Ref register
must be initialized by another method like both described
above.

3.1.2 READ operation

A r<DB> operation means to read the word stored at a tar-
geted address, this word should be equal to the expected one
(DB). Thus, the read operation includes two distinct steps:
a read and a comparison. The comparison step can be done
by the microprocessor itself or by the external tester. In both
cases, it is mandatory to write at least one response in the
memory to be then processed by the outside test environ-
ment. There are several ways to achieve this March read
operation:

Store All One potential method is to store all the read
words of the RF in the embedded memory. Using a store
word instruction, each word of the RF is written in the mem-
ory. The comparison is done by the outside tester, to know
if the RF is fault free or not. As a load instruction, a register
is needed to hold the address where to store the value. Same
cause, same consequence this register can not undergo the
test and is put in the reserved area. This method is very use-
ful for diagnosis purpose, since after each read operation the
memory contains an image of the RF. The evident drawback
of this method is the memory consumption.

Compute a Signature Another method to implement
the March read operation is to use for the comparison a
pre-computed signature stored in a register located in the
reserved-area. This method is similar to hardware MISR
techniques. For that, we have to initialize the reserved-area
register with a seed and use a sequence of instructions to
compute the signature. To avoid aliasing, this sequence
must be carefully chosen since all the registers read con-
tain the same value. The last step consists in comparing

the computed signature with the expected one. The advan-
tage of this method compared to the first one is that only
one word (the computed signature) have to be stored in the
memory. However, the sequence of instructions to compute
the signature is very time consuming (in terms of cycle).

Read and Compare In the MIPS microprocessor ISA,
an instruction allows the comparison between two registers.
One register contains the DB value and is used as a refer-
ence, whereas the other register is the tested one. The ref-
erence register is stored in the reserved area of the RF. The
instruction Branch If not Equal is used like this: bne $Ref,
$Reg, label. $Ref is the reference register, $Reg the tested
one, and if $Ref is not equal to $Reg the program jump
to the label. At the address corresponding to the label, we
can find the part of the program managing the failing cases.
The advantage of this method is quiet obvious, just one in-
struction is needed to read and compare, and moreover the
algorithm can be stopped at the first error.

3.1.3 Increasing/Decreasing order sequence

In March algorithms, read and write operations are done af-
ter increasing/decreasing the cell address. In our case, the
address corresponds to the destination register number. Be-
low an example of the implementation of the March element
↑(r0, w1) is given, where $30 and $31 are registers located
in the reserved area and containing respectively a DB and
the corresponding inverted DB:

.

.

.
bne $5, $30, fail
or $5, $31, $31
bne $6, $30, fail
or $6, $31, $31
bne $7, $30, fail
or $7, $31, $31
bne $8, $30, fail
or $8, $31, $31

.

.

.

3.2 Divided RF and CF detection

We have to take into account that the resulting self-test
program must be small. Use of functions as well as loops
in the program allows a drastic reduction of code size. Con-
sequently, some registers had to be reserved for that pur-
pose in order to contain variables, counters, arguments, or
addresses. Furthermore, as seen before, almost all instruc-
tions used for the write operation, or the read operation re-
quire the use of some extra registers containing references



and addresses. Thus, to allow a flexibility for the self-test
program development we have to reserve a part of the Reg-
ister File. As a result, the entire RF can not undergo the test
in one time. A solution, is to divide in two parts the Regis-
ter File. One part (called part-B) is used for what we called
the reserved area, where variables, counters, addresses are
stored. Whereas, the other part (called part-A) undergo the
test. At the end of the test of the part-A, we switch these
two parts to test the part-B not tested yet, and the part-A
becomes the reserved area. Thus, the test of the entire RF
is done in two steps. The figure 2 depicts the bipartition of
the RF.

Figure 2. The Register File division

Some March Algorithms detect Coupling Faults. For in-
stance, a March C- can detect in the RF a coupling fault
between a cell i in the register $X and a cell j in the register
$Y. If $X and $Y belong to the same RF part, the coupling
fault can be detected, in the other hand, if $X belongs to part
A and $Y belongs to part B, since no test is performed be-
tween these two cells the coupling fault cannot be detected.
Thus testing the RF in two steps may, at first sight, not al-
low the detection of coupling faults between cells not lo-
cated in the same part. Nonetheless, if we take into account
the topology of the RF memory cell-array, we can restrict
the couple of cells involved in CFs to neighbor cells[12].
The figure 3 shows the two-dimensional memory cell-array
of the RF. A cell can be implied in a Coupling Fault with at
most eight potentially neighbor cells. The outcome is that in
case of a Word Oriented Memory, inter-word CFs can only
occur between the two neighbor words C-1 and C, or the
two neighbor words C and C+1, as shown in the figure 3.
As a result, to enable the capability to detect Coupling Fault
in the RF with our partitioning strategy, it is sufficient to
have between the two parts of the RF at least one overlapped
word. The figure 2 shows that in the first test step, the CF
between the register 14 and 15 can be revealed whereas dur-
ing the second step of the test, the CF between the register
15 and 16 can be detected.

Figure 3. Cell neighborhood

4 Experimental Results

To validate the method and make the corresponding mea-
surements we use a simulation platform running under a
complete SystemC framework. The simulation chosen is
cycle-accurate and bit-accurate, in order to measure the ex-
act number of clock cycles needed for the execution of the
self-test program, as well as its exact size in the memory.
The microprocessor used is a five-stage pipelined MIPS
R3000 with a Register File including 32 registers 32-bits
wide. Several March tests were implemented leading to dif-
ferent self-test programs. The Table 3 shows the results for
each self-test program. The size is given in terms of 32-
bit words and the test time is given in clock cycles. To see
detected faults by each algorithm refer to Table1.

Algorithm Test Program Size Clock Cycles
(32-bits words)

MATS 187 148
MATS+ 220 183

MATS++ 252 247
MARCH X 252 215
MARCH C- 479 2,178

Table 3. Different March Algorithms.

The outcome of these results is that the proposed de-
velopment methodology leads to small-sized self-test pro-
grams, from 187 words for the MATS algorithm to 479
words for the MARCH C-. A quick glance at the clock cy-
cles column allows one to highlight a striking difference be-
tween MARCH C- and other March test. Let’s consider two
sets of algorithms: {MATS, MATS+, MATS++, MARCH
X} in one hand, and {MARCH C-} in the other hand. The
first set needs very few clock cycles to complete the tests
whereas the second set is much longer. This difference is
due to the Coupling Fault detection capability of the second
set. In this case, the test must be repeated for each DB in



order to detect intra-word state CFs. In fact, this second set
contains all March algorithms able to detect the state Cou-
pling Faults. This latter set enhances the test quality but
multiply test time. In this paper only state CFs have been
targeted, nevertheless, the use of other appropriate DBs se-
quences allow the detection of other CF subclasses (e.g. in-
version CF, disturb CF, idempotent CF)[11].

Another comment on the results obtained for MATS++
and MARCH X algorithms must be done. Both programs
size are equal since they have the same number of write
and read operations. Thus, we can expect to have the same
test time execution. Nevertheless, a difference in favor of
MARCH X appears. This is due to the fact that MATS++
last March element is a read-write-read operation. More
exactly the last write-read operation in the same march el-
ement leads to a Read After Write data hazard in the five-
stage pipeline of the microprocessor inducing some stalls,
which improves the number of cycles.

According to Software-Based Self Test strategies, the
program size is the key-point to reduce the global test ap-
plication time. Indeed, the self-test program is first down-
loaded into the embedded memory from the external test
equipment, and then, is executed at the SoC operating fre-
quency. The key issue is that the download phase usually
predominates the overall test application time. In [6] the
self-test program needs 927 clock cycles to be completed
with a size of 425 words and only Stuck-At-Faults are tar-
geted. In our approach, the MATS++ self-test program is
1.7 times smaller and requires 4.3 times less cycles while
ensuring the detection of all Stuck-At-Fault, Address Fault
and Transition Fault. Since the program size is the key-
point to lower the test application time, using the MARCH
C- (or a March test detecting CF) improves the test quality
while the overall test application time is not significantly in-
creased. This is particularly true if we consider a high ratio
between SoC operation frequency and tester’s frequency.

5 Conclusion

Using a component-oriented Software-Based Self-Test
approach, this paper describes the self-test program devel-
opment of a high-priority component: the Register File of
RISC processor cores. A methodology for self-test program
development, fully suitable to apply any March test to Reg-
ister Files, was presented. The main novelty of this article
is the use of March algorithms since RF is designed as a
memory. The self-test program development do not require
any net-list or sequential ATPG since March test guarantee
100% fault coverage of detected fault model.

The proposed methodology enables a great flexibility in
the program development and leads to small-sized self-test

programs while the use of March tests ensures a high test
quality.
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