T-Proc: An Embedded IEEE1500-Wrapped Cores
Tester

Matthieu Tuna
University of Pierre et Marie Curie
LIP6 / ASIM
France, Paris
Email: matthieu.tuna@lip6.fr
Telephone: +33 (0)1 44 27 65 28

Abstract— This paper presents a software-based approach for
testing IEEE1500-compliant SoCs. In the proposed approach,
the test program is no more executed by the external-traditional
tester but by the SoC itself. The novel feature is the use of a
dedicated test processor called T-Proc embedded onto the SoC
to test the components. Under the control of the embedded SoC
microprocessor, the test processor executes the test programs
stored in the outside external memory, through a functional
embedded external RAM controller interface. Using the ITC02
SoC benchmarks a comparison is done between T-Proc and a
classical bus-based test strategy.

I. INTRODUCTION

With the advent of Systems on a Chip (SoCs), design
methodologies are mainly driven by the Time-To-Market, and
therefore are more and more based on the use of predesigned
Intellectual Property (IP) cores. IP cores such as micropro-
cessors, memories, DSP, peripherals, or dedicated blocks are
bind together to make complex SoCs. This deep integration
has consequences for the test process. Poor test accessibility
for external testers increases test application time, and huge
memories are required in order to store test data. Moreover at-
speed testing is becoming a very challenging task since the gap
between the tester’s frequencies and SoC frequencies is getting
larger. Automated Test Equipments (ATE) are becoming more
and more expensive since these trends are getting worse as
circuits size shrinks and density increases. To deal with these
limitations, a natural way consists in transferring some of the
ATE capabilities into the SoC.

A solution to alleviate the role of the ATE can be found
in hardware Built-In Self-Test (BIST) techniques. Internal
hardware test generators and test response analyzers are used
to generate and apply test patterns at the speed of the circuit.
Unfortunately, each BISTed module inserted in the system
may result in performance degradation in terms of total area,
operating frequency and power consumption.

With the SoC paradigm, alternative solutions like Software-
Based Self-Test methodology is emerging. Software-Based
Self-Test (SBST) consists on the execution of a program by an
embedded microprocessor to test embedded cores. Usually, the
test program is initially downloaded into the internal memory
thanks to a low-cost external equipment. First, the embedded
microprocessor tests itself by executing a self-test program,

Mounir Benabdenbi
University of Pierre et Marie Curie
LIP6 / ASIM
France, Paris
Email: mounir.benabdenbi@lip6.fr

Alain Greiner
University of Pierre et Marie Curie
LIP6 / ASIM
France, Paris

then, it can be used as a pattern generator and response
analyzer to test the others cores of the system. As for the test
of microprocessors[1][2][3], system interconnects [4][5] and
memories[6][7] have been well studied and convenient SBST
solutions are provide. However, there is a lack of proposed
solutions to test other kind of cores.

In the other hand, to answer the needs for a uniform test
architecture for cores provided by different IP vendors, several
working groups have been spawned [8], [9]. They define new
standards in order to simplify test integration. The IEEE1500
working group defines the way a core must be shipped to
be tested when integrated in a SoC. This group specified a
Wrapper [10] to be added around each IP core, and a Core
Test Language (CTL) which enables the descriptions of the
core test features. Note that the working group does not intend
to standardize the way the core is accessed for test purpose.
The SoC integrator is free to use the appropriate Test Access
Mechanism (TAM).

In this context of IP reuse and embedded test, we present a
mechanism enabling the on-chip test of IEEE1500 wrapped
cores. The test of such cores consists of, among others,
delivering the test stimuli to the wrapped core interface,
capturing the test response, and comparing this response with
the expected one. This mechanism can be implemented using
an embedded processor dedicated for the test purpose. This
test processor is linked to the wrapped IP cores to be tested.

In the following, we present the T-Proc strategy: the targeted
SoCs and the test execution process. Then, the next section
presents the first results. Using the ITC’02 SoC benchmarks
[11], a comparative study in terms of test application time and
test data volume is done with a classical bus-based TAM. The
additional silicon area overhead induced by the test processor
is also presented. The last section concludes the paper.

II. T-PROC METHODOLOGY

In this section we first describe some hardware require-
ments, the SoC template enabling the on-chip application of
test patterns to wrapped IP cores. Then, we will see how the
test is performed follow by a quick overview of the T-Proc
internal architecture.

A. Targeted SoCs

This methodology can be applied to test SoCs having the
following characteristics (see figure 1):

=

System Interconnect
=1 = 1

I I

| External RAM controler

HTC IP 1

SoC

IEEE1 5&9 Wrapper

General

L Purpose
IRQ Processor

System
RAM/ROM

External RAM

HTCIP 2

T-Proc targeted SoCs

Fig. 1.

- The SoC is equipped with an embedded microprocessor
used for general purpose (GPP).

- The SoC must have an interconnect supporting
initiator/target scheme.

- The SoC is shipped with an external-RAM controller with
a 32-bit interface. During functional SoC operation, the
external controller is used to plug extra-memory or
peripheral. During SoC testing, the pins of this interface are
connected to an extra-memory containing as many test
programs as wrapped IP cores.

- IP cores to be tested are wrapped. This approach can drive
many wrapper types (IEEE 1500, boundary-scan and even
some BIST controller engines). However, the following of
the paper focuses on test of IEEE 1500 wrapped cores. For
each bloc (local or third-party), test informations and test
patterns are supposed available. The test interface of each
wrapped core includes test I/O data ports (one or many bits
wide) and test control ports.

Besides this SoC scheme, we introduce a single new hard-
ware component: a test processor entirely dedicated to SoC
testing called T-Proc. It has two interfaces. On one side,
it is a memory-mapped peripheral for the interconnect and
can thus be addressed like any resource by the embedded
microprocessor. On the other side, it is a IEEE 1500 pattern
delivery TAM for wrapped cores. As an initiator the T-Proc can
directly address the external RAM and thus, read test programs
stored in. As a target, the T-Proc receives commands emitted
by the GPP. The T-Proc can warn the GPP by the way of an
Interrupt Request (IRQ).

B. Test execution

In this methodology, the test is performed by the GPP/T-
Proc pair. T-Proc is in charge to process test programs. Each

tested IP have its own test program, available in a format
called HTC, specific to the T-Proc. Each HTC file is stored
in the external memory (see figure 1). HTC test programs are
fetched and executed by the T-Proc, each one contains scan
data (test patterns) as well as test control informations (signal
values to drive the scan shifting, the test pattern application
and the response capture). Test responses are shifted out from
the wrapped core into the T-Proc and compacted by the way
of an internal Multiple Input Signature Register (MISR). T-
Proc enables concurrent testing of many cores in order to
minimize the test application time. During the test process,
for each tested IP core, the T-Proc stores informations such as
the status (test done, test in progress), program counters, etc.
These informations can be accessed at any time by the GPP.
When the core test is done, an IRQ to the GPP is set up.
The GPP acts as a chief orchestra, controlling test programs
execution. It is in charge to launch the test on the desired
core by sending to the T-Proc a start request containing the
corresponding IP number. Thus, the T-Proc can start the test
of the IP as described above. During the test process, the GPP
can at any time send any request to the T-Proc to consult test
informations about a core. The GPP can monitor test execution
through polling. To avoid overload on the system interconnect
the GPP can also wait for an IRQ to be emitted by the T-Proc.
When the core test is over, the GPP collects the computed
response and compare it with the expected signature of the
core. Thus, one can know which IP core is fault free or not.

C. T-Proc: the test processor

The figure 2 shows the T-Proc internal architecture.

IEEE1500 wires

l

T-Proc X

y y y
TPIU TPIU TPIU
PREFETCH BUFFER

INITIATOR TARGET

SYSTEM INTERCONNECT

Fig. 2. T-Proc internal architecture

It includes two major kinds of components namely a
Prefetch-Buffer (PB) and TPIUs (standing for Test Program
Interpreter Unit). The Prefetch-Buffer acts like cache memory
containing some fragments of the test programs. The PB is
connected to the system interconnect and handles the T-Proc
addressing system. The role defined for the PB is to provide
an interface between the system interconnect and the TPIUs.
The TPIU is the unit that executes the HTC program and
convert it to a IEEE 1500 data stream. The number of TPIU

is equal to the number of IPs to be tested. Each TPIU is
dedicated to one wrapped IP core. For each added IP to be
tested a dedicated TPIU must be plugged onto the Prefetch-
Buffer. This modular architecture makes the surface of the
T-Proc proportional to the number of tested IPs. Each TPIU is
tooled up with a MISR in order to compact the test responses.
This compaction reduces the total size of the HTC programs.
An HTC program is a sequence of 32-bits instructions. The
execution is completely sequential, without any loop or jump.
An instruction is divided in 2 fields: 8 bits of opcode and 24
bits of data. The opcode specifies what to do with the data.
Software tools can automatically generated HTC test programs
from CTL standard test pattern files. At this time, developed
tools take a subset of STIL.

III. EXPERIMENTAL RESULTS

Five ITC’02 benchmarks [11] were used to show the test
application time and the test data volume. The results are
compared to those of a classical bus-based TAM strategy:
TestRail optimized by the TR-Architect software toolbox[12].
The selected results for TR-Architect are those using a 32-bit
channel width. The last paragraph of this section presents the
area overhead introduced by the test processor.

A. Test Application Time

The results have been obtained with a SystemC-based
simulation platform containing both hardware and software
components. Simulations done are bit-accurate and cycle-
accurate. The GPP model used is a MIPS R3000 five-stage
pipeline, written in SystemC as well as the T-Proc model.
An embedded RAM is added to store the MIPS binary, while
an external RAM contains all the HTC test programs. Those
latter components are connected via a VCI-compliant crossbar
interconnect. For each module described in the benchmark
a corresponding SystemC module is added in the plate-
form surrounded by an IEEE 1500 wrapper. The connections
between the T-Proc and the wrapped IPs are established thanks
to IEEE 1500 dedicated test wires. Five ITC’02 benchmarks
were used, test application time is presented in number of
cycles. Each module of those benchmarks can be seen as a
soft core or as a hard core. A hard core module implies that
the number of the scan chains as well as their length cannot
be changed. The module contains fixed-length scan-chains.
Whereas for soft core modules, scan-chains number and and
scan-chains lengths are not designed yet and can be optimized.
Thus, the module contains flexible-length scan-chains. Table I
and II shows respectively the test application time (in terms
of cycle number) for fixed-length scan-chains modules and
for flexible-length scan-chains. To perform the SoC test, the
proposed approach requires from 2 to 3 times more test cycles
than a traditional bus-based strategy. In case of flexible-length
scan-chains modules, T-Proc requires only a factor less than
2 compared to TR-Architect. It is an expected result that
this embedded methodology induces far more test cycles than
TR-Architect. This is mainly due to two issues. First, TR-
Architect makes an architectural exploration to find the best

test strategy in order to reduce the overall test application time.
Whereas T-Proc is a “plug&play” device and for instance,
the test plan schedule can be developed after the chip has
been sent to foundry. The second issue of lost cycles is in the
handshake protocol between the active components through
the system interconnect. Nevertheless, as these results are
provided as number of cycles, one must take into account
the test application frequency. In the presented method the
frequency is the functional SoC one, while in the TR-Architect
approach the frequency used is the tester’s one. Thus, the
global test time, in seconds, can then be in favor of T-Proc.
Moreover, as the test comparison is made on-chip, no yield
loss is due to the tester lack of accuracy, what can appear in
a traditional bus-based methodology.

SocC T-Proc TR-Architect TT*RPf .
d695 47,271 21,690 2.18
1023 47,936 16,855 2.84
p22810 723,220 226,640 3.19
p34392 | 1,109,078 552,746 2.01
p93791 | 1,720,399 940,745 1.83
TABLE I

T-PROC COMPARED TO A BUS-BASED TEST STRATEGY FOR FIXED-LENGTH
SCAN CHAINS

SOC | T-Proc | TR-Architect | IT-Froc
d695 | 38305 21,503 1.78
gl023 | 32,685 16,795 1.95
p22810 | 442327 223368 198
p34392 | 939.470 505,783 186
p93791 | 1.634.133 914,456 179
TABLE II

T-PROC COMPARED TO A BUS-BASED TEST STRATEGY FOR
FLEXIBLE-LENGTH SCAN CHAINS

B. Test Data Volume

Each ITC’02 benchmark consists in a set of M modules.
For each module m € M we have the number of functional
inputs %,,, the number of functional outputs o,,, the number
of functional bidirectional b,,,, the number of scan-chains s,,,
and for each scan-chain k the length of the scan-chain in flip-
flops I, k. Thus, for each module m the total number of scan
flip-flops is fm, = Y77, lmk- And finally, for each module
m we have the number of test patterns p,,. Since the size of
a test stimuli corresponds to the internals scan-chains plus the
functional inputs of the module m, the total size, in bits, of the
test stimulus is TSy, = (4m +bm + fim) %P In the same way,
test responses corresponds to the internals scan-chains plus the
functional outputs, then, the total size of the test responses is
TRy = (0m + b + fm) * Pm. Thus, for each module m
the total test data volume is v,, = T'S,, + T R,,. For one
benchmark b the total test data volume is V}, = 2%21 U
This volume is represented in the histogram (see figure 3) by
the first bar of each benchmark called “raw test data”. A test

program of a classical bus-based strategy contains at least this
volume of data plus a certain amount of test control. Since we
do not have informations about this amount of test control we
only consider this “raw test data” volume in the following. For
T-Proc, each HTC test program of each module consists in test
stimulus as describe above and test controls interpreted by the
TPIU. Test responses are shrank to only one 24-bits signature.
Therefore, the second bar in the histogram represents the sum
of all HTC test program in the case of fixed-length scan-chains.
Finally the last bar represents the sum of all HTC test program
in the case of the flexible-length scan-chains. The difference
between the two latter cases, in favor of the flexible-length
scan-chains architecture, is because in the fixed-length scan-
chains architecture this number is not optimized for the T-Proc
and results in padding bits increasing the test program size.

Bl 2 0 5099

<o+ 7] raw test data
7] E fixed-length
<+« « I flexible-length

p93791

BOf e

.
=]

()
o

()
o

millions of bits

1

4595 q1023 022810 p34ae2

Fig. 3. Test Program Size

The Table III shows the percentage of the test program size
reduction compared to the “raw test data”. In average, the
reduction for the fixed-length scan-chains architecture is about
11% and for the flexible-length scan-chains the reduction is
about 22%.

d695 21023 p22810 | p34392 | p93791
fixed-length 8.66% 17.09% | -10.50% | 16.92% | 25.57%
scan-chains
flexible-length | 24.93% | 17.09% | 23.01% 19.51% | 29.65%
scan-chains
TABLE III
TEST DATA VOLUME REDUCTION COMPARED TO A BUS-BASED TEST
STRATEGY

C. Area Overhead

A VHDL model of the test processor has been realized.
Synopsys tools were used to synthesize the model. The model
used for the layout generation contains a Prefetch-Buffer with
four TPIUs as presented in the figure 2. Thus, it can test four
different wrapped IP cores. The layout has been generated
using the ALLIANCE CAD tools[13] with a 0.13pm standard
cell library. The test processor surface is 0.45mm?2. Since this

test processor can test four different IP cores, the additional
surface to test one IP is 0.11mm?. If we take into considera-
tion the surface of an IP, for instance a MIPS with its cache
memory has a surface equal to 2.5mm? [14]. So the extra
added surface for such core is only 4%. This area overhead
seems to be reasonnable since in BIST techniques an area
overhead up to 10% is widely accepted.

IV. CONCLUSION

This paper has presented T-Proc a test purpose dedicated
processor. Under the embedded general purpose processor
control, it enables the on-chip test of wrapped IP cores. Since
this strategy is compliant with standards such as IEEE 1500,
its integration in the test design flow is very straightforward.
Reusing the functional resources for test purpose minimizes
the need of extra hardware dedicated for test. In traditional
bus-based test strategies the tests of the main cores are merged
in a single complex program, hard to develop and not easy
to modify. T-Proc offers much more flexibility since each
test program execution of each core is independent from the
other. Moreover the compaction capability can reduce the test
program size up to 30%. Compared to TR-Architect, T-Proc
requires two to three times more cycles to achieve the test.
However, the test program is executed on-chip at SoC speed.
The test process is not bound to the tester frequency and
accuracy, allowing the use of low cost ATEs.

REFERENCES

[1] F. Corno, M. S. Reorda, G. Squillero, and M. Violante, “On the Test
of Microprocessor IP Cores,” in Proceedings Design, Automation, and
Test in Europe (DATE), Munich, Germany, Mar. 2001.

[2] L. Chen and S. Dey, “Software-Based Self Testing Methodology for
Processor Cores,” IEEE Transactions on Computer-Aided Design, Mar.
2001.

[3] N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, and Y. Zorian,
“Low-Cost Software-Based Self-Testing of RISC Processor Cores,” in
Proceedings Design, Automation, and Test in Europe (DATE), Munich,
Germany, Mar. 2003.

[4] L. Chen, X. Bai, and S. Dey, “Testing for interconnect crosstalk defects
using on-chip embedded processor cores,” in Proceedings of the 38th
conference on Design automation. ACM Press, 2001, pp. 317-320.

[5] W.-C. Lai, J.-R. Huang, and K.-T. Cheng, “Embedded-Software-Based
Approach to Testing Crosstalk-Induced Faults at On Chip Buses,” in
Proceedings IEEE VLSI Test Symposium (VTS), Marina del Rey, CA,
May 2001, pp. 204-209.

[6] S. F. M.H. Tehranipour, Z. Navabi, “An efficient BIST method for
testing of embedded SRAMSs,” in Proceedings International Symposium
on Circuits and Systems (ISCAS), vol. 5, May 2001, pp. 73-76.

[71 R. Rajsuman, “Testing a System-on-a-Chip with Embedded Micro-
processor,” in Proceedings IEEE International Test Conference (ITC),
Atlantic City, NJ, Sept. 1999, pp. 499-508.

[8] “IEEE P1500 Web Site,” http://grouper.ieee.org/groups/1500/.

[9] “VSI Alliance Web Site,” http://www.vsi.org/.

[10] E.J. Marinissen et al., “On IEEE P1500’s Standard for Embedded Core
Test,” Journal of Electronic Testing: Theory and Applications, vol. 18,
no. 4/5, pp. 365-383, Aug. 2002.

[11] E. J. Marinissen, V. Iyengar, and K. Chakrabarty,

“ITC’02 SOC Test Benchmarks Web Site,”

http://www.extra.research.philips.com/itc02socbenchm/.

S. K. Goel and E. J. Marinissen, “Effective and Efficient Test Ar-

chitecture Design for SOCs,” in Proceedings IEEE International Test

Conference (ITC), Baltimore, MD, Oct. 2002, pp. 529-538.

“ALLIANCE CAD tools Web Site,” http://www-

asim.lip6.fr/recherche/alliance/.

“MIPS Technologies, Inc Web Site,” http://www.mips.com.

[12]

[13]

[14]

