
A New Paradigm and Associated Tools for TLM/T
Modeling of MPSoCs

Emmanuel Viaud
Laboratoire LIP6

Université Pierre & Marie Curie
Email: emmanuel.viaud@lip6.fr

François Pêcheux
Laboratoire LIP6

Université Pierre & Marie Curie
Email: francois.pecheux@lip6.fr

Abstract— The paper presents a way to speed-up simulation
of complex MPSoCs at the TLM/T (Transaction Level Modeling
with Time) level and a way to switch from abstraction level
“at run time”. The hardware part of the platform is described
in standard SystemC. Rather than using statistical models for
adding timing, to obtain an accurate view of the platform
dynamic contention is taken into account. This allows to reach
a speed-up of up to 50 versus a corresponding BCA simulation
with a low timing error. The state saving method gives the ability
to save the state of a platform at the TLM/T level and move it to
the same platform described at the BCA level. This allows fast
and accurate debugging of the embedded software.

I. INTRODUCTION

Reaching high-simulation speed is of crucial importance
with the advent of more and more complex SoCs. Even if they
give the most valuable informations, low abstraction levels
are unmanageable as early simulation levels as they are slow
and they need a very precise description of the architecture
of the SoC, which is not available at the beginning of the
design phase. Moreover, the degree of accuracy provided may
be overkill for the needs.

Higher abstraction levels exist that provide different trade-
off between simulation speed, accuracy of the results and the
quantity of information one can get. From all the levels avail-
able, a fairly recent one coined Transaction Level Modeling
(TLM) seems to attract much interest from the community. Its
main characteristic is that it “abstracts the pin-level commu-
nication in the physical model to the level of media access
or individual protocol word/frame transactions”[1]. It means
that the computational part and the communication part of a
component are separated; whereas the computational part can
be more or less precise, the communication does not represent
a real protocol but only an abstracted view of it, represented
in term of read and write accesses of packet composed of
multiple words. Being an abstract view of the SoC, the TLM
level can be used early in the design process, thus providing
a way for software developers to quickly test their program
on a representative model of the platform and for hardware
architects to quickly explore the design space.

TLM allows a developer to answer questions such as “is
my SoC functional ?” but, being non-timed, some questions
pertaining to the performance or some real-time constraints
remain unsolved. Giving reliable answers to those problems
implies to model many more aspects of the architecture,

most notably the interactions between the different IPs found
in the SoC (dynamic effects of the contention in the inter-
connect, . . .). Thus, adding timing informations to TLM is
necessary in order to increase its usability. In the rest of this
paper, this updated level is called TLM/T (TLM with Time).
Another term used in the literature is PVT (Programmer’s
View with Time) in opposition to PV (Programmer’s View,
for TLM).

Usually, adding more precision to an abstraction level is
often synonymous of decreasing performance of the simula-
tion. The aim of this paper is to show that, on the contrary,
it is possible to get meaningful timing informations from a
simulation with only a small loss of performance, and that the
data we get are meaningful.

The paper is composed of six sections. After a brief in-
troduction, section II presents the relevant work in the TLM
and TLM/T modeling domains. section III briefly explains
the methodology, section IV shows a way to switch between
TLM/T level and BCA level and section V presents the
experiments we led. Finally, section VI comments the previous
results and gives some research perspectives.

II. PREVIOUS WORK

Even if the term is often used, getting a precise and common
definition of TLM is pretty hard. More than a unique level of
abstraction, it rather represents a set of levels all linked by
their approach of communication abstraction. Cai and Gajski
in [2] or Donlin in [3] proposed a taxonomy, trying to clear
the ground for some clean foundations. On that base, some
standards have been proposed for a concrete definition of
TLM. The most significant in our context is the one made
by the Open SystemC Initiative in [4]. It presents an API
and a set of channel that aim at easing the development of
platforms at the TLM level. Unfortunately, the proposal does
not address the problem of timing at all. Other approaches for
TLM have been proposed. A very efficient one is described
in [5]. Even if limited to untimed simulation, some concepts
(most notably the passive components) are shared with our
proposed methodology.

Nevertheless, approaches managing time exist. An example
is the CCATB (Cycle Count Accurate at Transaction Bound-
aries) level presented in [6]. Not formally a TLM approach
it still proposes to abstract the communication and, as in our

approach, to only keep pertinent timing information about the
begin and end time of a transaction. But, in that approach,
we are still close to the BCA level and, thus, the expected
speed-up over BCA level simulations is rather limited (about
a factor 2).

III. THE METHODOLOGY

Classically, time issues are handled through the wait
construct of SystemC and the use of SC THREADs. But using
that techniques has proved to notably slow the simulations
down [7]. But, as using SC THREADs eases the development
of the simulation models, keeping them in a methodology
is definitely a plus. As the main loss of speed comes from
context switching between threads, one must find a way to
reduce their numbers. Our key idea is to reduce the number
of logical events that are at their origin. So, instead of waking
up the different components every cycle even if they have
nothing to do, it is far better to find a way to only transmit
the smallest quantity of information, and only when needed.
These needs correspond to the ones addressed by the Parallel
Discrete Event Simulation (PDES) domain.

The approach presented herein is a direct application of
the classical PDES Chandy-Misra-Bryant algorithm ([8] and
[9]) to a SystemC simulation. Each component is seen as
an independent thread with its own clock, called local clock.
There is therefore no global clock in the system. Instead, every
time a packet representing an elementary data transfer between
an initiator (producer) and a target (consumer) is sent, it is
piggy-backed with the local time of the producer, in order to
synchronize the component with the remaining parts of the
platform. To preserve causality, a component is allowed to
increase its local time only when it has sufficient information
on all the components that feed it with data, i.e. all its input
channels contain data [10]).

As an example, we will now describe the structure of a
master component which plays the role of a processor with
its associated cache (instruction and data). It should be noted
that the proposed architecture is only an example, i.e. other
descriptions can be used (use of SC METHOD rather than
SC THREAD would lead to a faster simulation at the expense
of the easiness of writing the component model, but could
be managed with tools such as the one presented in [11]). In
the proposed structure, the main loop of the component is a
SC THREAD that can be described by the following pseudo-
SystemC code:

while(1) {
if (icache_hit(PC)) {

ir = icache[PC]
} else {

send_request(PC, icache_word_per_line)
wait(response)

}
switch(ir) {

case ADD:
...

break;

case LOAD:
if (dcache_hit(effective_addr_reg)) {

dest_reg = DCACHE[effective_addr_reg]
} else {

send_request(effective_addr_reg,
dcache_word_per_line)

wait(response)
}
break;
...

}
}

This code shows that communication with the rest of
the platform is done only when necessary, through the
send request function call. As long as the component finds
directly its local instruction and data (instruction and data
available in the cache), it works autonomously without giving
hand to the scheduler, thus decreasing the number of necessary
context switches. When communicating with the outside, the
component goes to sleep to give the possibility to the other
components to receive the packet and send their answer. Once
the response packet received, the component posts an event to
itself to wake up the main thread and to continue its task.

IV. SWITCHING BETWEEN DIFFERENT ABSTRACTION

LEVELS

TLM/T is used for architectural exploration and the valida-
tion of the embedded software. Even if it provides a useful way
to develop embedded code early, some tasks (like finding some
race conditions in the embedded code) are impossible to fulfill
due to the relative inaccuracy of the simulations and need to be
done at a lower level of abstraction (BCA as an example). But
a lower level of abstraction means a slow simulation and thus,
simulation time may become unacceptable if errors occur late
in the simulation. Hence, we propose a method that allows to
shift from TLM/T abstraction level to BCA abstraction level.
The idea is to take advantage of both levels, the speed of
TLM/T and the accuracy of BCA. To do this, the TLM/T
simulation is stopped just before the problematic point and
the BCA simulation is restarted.

Two problems appear. The first is linked to the methodology.
As each component has its own clock, stopping the simulation
at a common given time is impossible. Some algorithms
(like [12]) solve that problem by taking a “snapshot” of the
state system that is guaranteed to be at least “coherent”, which
means that no message will be forgotten or counted multiple
times. In our case though, we can simplify the problem a
bit. As a matter of fact, whereas in the general case one
should take great care not to forget some messages still in the
communication channels, in our methodology the channels are
either function calls (and thus, no message can stay in it as
the SystemC scheduler is not preemptive) or logical modules
(in which case, saving state is simple). So, we can use a

Interconnect

Processor

Cache

RAM ROM RAMLOCKS TTY

generator
Traffic

RAMDAC

Fig. 1. Architecture of the MJPEG platform

degenerated version of the algorithm which only consists in
saving the state of the different modules found in the simulated
platform. The second, inherent to the TLM level, is that the
components, being described in a more abstract way, do not
fully represent the internal architecture of the IP. Thus, it is
not possible to directly represent the state of the component
at the BCA level when simulating it at the TLM/T level:
a mechanism to convert from TLM/T state to BCA state is
mandatory.

The solution to both problems is in fact linked. We decided
to create a tool that would, given the TLM/T state of a
component, generate the corresponding BCA state. Obviously,
the informations pertaining to the elements not represented in
the TLM/T version of the component cannot be obtained from
the simulation and must be determined in a way or another.
Rather than giving them randomly a value, we decided to
limit the impact of this arbitrary decision by allowing to stop
the TLM/T simulation only in some states which minimize
the role of the undescribed parts of the architecture. For the
interconnect, it means that it must be stopped when it is empty
in order to be put in a clean state in the BCA simulation. For
a cache with a write buffer, we must not have any pending
transaction and the write-buffer must be empty. Thanks to
that constraint, we can put their initial values in the different
unknown registers and then launch one cycle of simulation to
correctly set the outputs of the different components before
continuing the normal BCA simulation.

Stopping the simulation with the previously given con-
straints is possible because the components are at different
times. This advantage also has a drawback: how to choose the
initial time of the BCA simulation ? At the moment, we put the
simulation time at the lowest time of the master components.
This obviously generates an error in the timing but, by limiting
the advance of the clock of the components with the lookahead
parameter [10], we can limit the resulting error.

V. EXPERIMENTAL RESULTS

All the following experiments were made on an Intel
Pentium IV running at 2.66 GHz running Linux.

In order to test the approach, we modeled a MJPEG decoder
platform (shown in figure 1). It contains a generic VCI/OCP
compliant interconnect [13], a variable number of processors,
two hardware coprocessors in charge of the I/O (one reads a
MJPEG stream and sends it to the first task, the other one
reads the decoded pixels and send them to a screen) and some
other needed components (ROM, RAM, . . .)

The platform is modeled first at the BCA level using
SoCLib [14] components and then at the TLM/T level. The
comparison between the two platforms is made on two points:

• the simulation speed
• the accuracy of the results

Here, the accuracy is measured by the difference of the
time needed to decode an image in the BCA and TLM/T
simulations (we suppose that the BCA is the correct decoding
time). To test the efficiency of the approach, we modify the
number of processors available in the platform.

TABLE I

SIMULATION SPEED AND ERROR FOR BOTH PLATFORMS (ROUNDED

VALUES)

1 proc 2 procs 4 procs
BCA (cycle/s) 36725 26345 17923

TLM/T (cycle/s) 2012814 901412 445958

speed ratio (TLM/T
BCA

) 55 34 25
error 2 % 4 % 3 %

cycles/δ-cycle 15 8 6

The results on Table I show that the methodology offers
a speed-up between 20 and 50 over the corresponding BCA
simulation, with an error of less than 5 %. One also see
that our previously stated goal of diminishing the number of
events provoking descheduling of threads is also reached as

one can see that for every delta-cycle, the equivalent global
clock has increased of around 10 cycles, which partly explains
the observed speed-up. The decrease in the efficiency of the
methodology can be explained by the needed wait states in
the interconnect to synchronize the different components.

Another comparison can be made concerning the state
switching method. Rather than just comparing the simulation
speed, which has already been done, we will rather concentrate
on the error between a pure BCA simulation and a TLM/T-
BCA one. The simulated platform is simpler that the previous
one. It consists in 4 processors and caches, a ROM and a
RAM, 4 TTYs to display text informations and a timer that
will periodically interrupt each processor. The comparison will
be made on the interrupt time displayed by each processor on
its TTY.

TABLE II

SIMULATION SPEED AND ERROR FOR THE STATE SWITCHING

METHODOLOGY

200,000 cycles 2,000,000 cycles
TLM/T

BCA
speed-up ratio 4 5

timing error (cycles) ≈ 10 ≈ 150

One can see (Table II) that switching state give a simulation
speed-up of only 5 for that platform. That is explained by the
fact that, as the processors are mostly idle, waiting for events
coming for each processor is a very long phase, and thus, many
delta-cycles are spent. In that case, the cycle/delta-cycle ratio
is only a bit more than one. The increase in the speed-up is
explained by the fact that the state saving phase is included in
the simulation time. As that time is a constant one for a given
platform, longer simulations implies that the cost of saving is
better amortized. Even if the gain is low, one can also see that
the timing error is also low. Obviously, both previous figures
depend on the simulated platform.

We also finally made some experiments to compare our
simulation speed with some existing TLM methodologies to
see the loss of performance brought by adding time to the
simulation. As we dispose of only generic components for
the classical TLM approach (we used the TLM package from
OSCI), we had to model a very simple platform using two
masters doing read and write access to a single RAM (it is
the example 4.2 from the OSCI TLM package). Each master
repeats a pattern of twenty accesses to the RAM. We will use
the number of times we encounter that pattern as our metric.

TABLE III

SIMULATION SPEED FOR A TLM AND THE PROPOSED APPROACH

TLM TLM/T
number of pattern for master 1 0 29853
number of pattern for master 2 48376 29853

simulation time 2.84 s 6.53 s
simulation speed ≈ 17000 ≈ 9100

There is no access to the RAM for the master 1 as the
arbitration scheme used in the TLM example allows starvation.
Thus, we see that, adding timing information to the simulation

led to a speed that is only half the one of the TLM simulation.
It has to be noted that the components in TLM/T are way more
complex than the one in the TLM platform which explains a
part of the simulation speed loss.

VI. CONCLUSION

We showed in this paper some tools that exploit the interest
of the TLM/T level of modeling. They provide an efficient
mean to model complex SoCs and explore the different
architectures available for a system but also some practical
ways to develop and debug the associated embedded software,
allowing a fast simulation of the correct parts of the software
and a “temporal zoom” on the faulty ones. The timing error
resulting from that method can be kept fairly low if the model
of the different components are accurately written.

Rather than replacing the whole platform when switching
between abstraction levels, an interesting improvement could
be to replace only a few components, meaning that we would
have a way to easily do co-simulation without having to rely
on third-party softwares.

REFERENCES

[1] A. Gerstlauer, D. Shin, R. Dömer, and D. Gajski, “Systel-level commu-
nication modeling for network-on-chip synthesis,” in ASP-DAC 2005.
IEEE Computer Society, 2005, p. 45.

[2] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in
Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis. ACM Press, 2003,
pp. 19–24.

[3] A. Donlin, “Transaction level modeling: flows and use models,” in
CODES+ISSS ’04: Proceedings of the 2nd IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system synthesis.
ACM Press, 2004, pp. 75–80.

[4] A. Rose, S. Swan, J. Pierce, and J.-M. Fernandez, “Transaction Level
Modeling in SystemC,” http://www.systemc.org, January 2005.

[5] Z. Kadi and P. Klein, “Efficient passive-TLM and transaction man-
agement,” in First North American SystemC User’s Group Conference,
2004.

[6] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Extending the trans-
action level modeling approach for fast communication architecture
exploration,” in Proceedings of the 41st annual conference on Design
automation, 2004, pp. 113–118.

[7] P. Garg, S. Shukla, and R. Gupta, “Efficient usage of concurrency
models in an object-oriented co-design framework,” in DATE ’01:
Proceedings of the conference on Design, Automation and Test in
Europe. Washington, DC, USA: IEEE Computer Society, 2001.

[8] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via a
sequence of parallel computations,” Commun. ACM, vol. 24, no. 4, pp.
198–206, 1981.

[9] R. E. Bryant, “Simulation of packet communication architecture com-
puter systems,” Tech. Rep., 1977.

[10] E. Viaud, F. Pêcheux, and A. Greiner, “An efficient TLM/T modeling
and simulation environment based on conservative parallel discrete event
principles,” in DATE ’06: Proceedings of the conference on Design,
Automation and Test in Europe. Washington, DC, USA: IEEE Computer
Society, 2006.

[11] N. Savoiu, S. Shukla, and R. Gupta, “Automated concurrency re-
assignment in high level system models for efficient system-level
simulation,” in DATE ’02: Proceedings of the conference on Design,
automation and test in Europe. Washington, DC, USA: IEEE Computer
Society, 2002, p. 875.

[12] K. M. Chandy and L. Lamport, “Distributed snapshots: determining
global states of distributed systems,” ACM Trans. Comput. Syst., vol. 3,
no. 1, pp. 63–75, 1985.

[13] Virtual Component Interface Standard, http://www.vsi.org.
[14] SoCLIB, “A modelisation & simulation platform for system on chip,”

2003, http://soclib.lip6.fr.

